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Unified scenario for the morphology of crack paths in two-dimensional disordered solids
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A combined experimental and numerical investigation of the roughness of intergranular cracks in two-
dimensional disordered solids is presented. We focus on brittle materials for which the characteristic length
scale of damage is much smaller than the grain size. Surprisingly, brittle cracks do not follow a persistent path
with a roughness exponent ζ ≈ 0.6–0.7 as reported for a large range of materials. Instead, we show that they
exhibit monoaffine scaling properties characterized by a roughness exponent ζ = 0.50 ± 0.05, which we explain
theoretically from linear elastic fracture mechanics. Our findings support the description of the roughening
process in two-dimensional brittle disordered solids by a random walk. Furthermore, they shed light on the
failure mechanism at the origin of the persistent behavior with ζ ≈ 0.6–0.7 observed for fractures in other
materials, suggesting a unified scenario for the geometry of crack paths in two-dimensional disordered solids.
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I. INTRODUCTION

Deciphering the statistical properties of crack roughness
has been a long-standing goal in condensed matter physics
[1,2] driven both by curiosity and the exploration of mi-
croscopic failure mechanisms that govern the macroscopic
resistance of materials. Here, we evidence a new class of
fracture profiles characterized by a random walk behavior that
results from a brittle failure mechanism, inviting us to propose
a unified scenario for the roughening processes in material
failure.

Fracture surfaces reflect the complex interaction of cracks
with microstructural material features and therefore represent
a ready-made pathway to explore microscale failure mech-
anisms. The observation of universal scaling behavior on
experimental fracture surfaces [3–5] has raised hope that a
unified theoretical framework could capture fracture processes
in disordered solids. However, such a theory and, more specif-
ically, a quantitative understanding of the scaling properties of
fracture surfaces are still missing [6,7]. To reach these goals, a
fundamental issue must first be addressed: most experimental
studies of fracture surfaces report large roughness exponent
ζ � 1/2, classified as persistent profiles, whereas linear elastic
fracture mechanics (LEFM) predicts antipersistent profiles
with ζ � 1

2 [1,2,8]. Here, persistence means that upward (re-
spectively downward) deviations from straightness are more
likely to be followed by subsequent upward (respectively
downward) deviations.
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In three-dimensional (3D) specimens of metallic alloy [4],
mortar [9], wood [10], and rock [11], fracture profiles display
an exponent ζ3D � 0.75 that is seemingly incompatible with
the LEFM predictions, ζ3D � 0.4 [12,13] or logarithmic cor-
relations [8]. This paradox was partly resolved thanks to the
observation in some ceramic and glass of another failure be-
havior characterized by an exponent ζ3D � 0.35–0.45 [14–17]
or logarithmic correlations [18], in agreement with LEFM
[8,12,13]. It was then conjectured that antipersistence (i.e.,
ζ � 1

2 ) does not reflect the failure behavior of these particular
materials, but instead is a signature of brittle fracture; as such,
antipersistence can be observed in any material, although
only at length scales larger than the size �pz of the damage
processes localized at the crack tip, thus satisfying the basic
assumption of LEFM. This was experimentally confirmed by
the observation of two separate scaling regimes: (i) a damage-
driven roughness with ζ3D ≈ 0.75 at scales smaller than �pz,
and (ii) a LEFM-consistent roughness at larger scales for a
wide range of materials including mortar [9], phase-separated
glass [18], and metallic alloys [19]. As an interesting applica-
tion, these results imply that the scaling properties of fracture
surfaces can be used to measure the characteristic length
scale �pz of the dissipative damage processes accompanying
crack growth. This idea, recently tested in simulations [20]
and experiments [19], led to the development of a method of
material characterization that provides the fracture resistance
of a material from the postmortem analysis of its fracture
surface [21].

Surprisingly, such a level of understanding is far from
being reached for the fracture of two-dimensional (2D)
solids—fracture of 2D solids arises either when the specimen
width is of the same order as the characteristic microstructural
size like, e.g., in thin sheets, or when the material microstruc-
ture is invariant along the crack front direction. The effective
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FIG. 1. Brittle intergranular crack profiles obtained from (a) the
experimental fracture test of a thin sheet of expanded polystyrene,
and (b) the large scale numerical simulation of the cohesive fracture
of a random arrangement of polygonal elastic grains.

line tension of the crack front resulting from 3D elasticity that
governs the roughening process in the general case [13,22]
does not play any role in two dimensions. Instead, the crack
propagation direction is controlled by the stress state at the
crack tip vicinity, which depends on the local crack inclination
and the past trajectory [23–25]. As a result, the response of an
advancing crack to small perturbations of its path is essentially
different in two and three dimensions.

In general, brittle cracks in homogeneous media recover a
straight trajectory after any small perturbation. Consequently,
LEFM based models of crack propagation in disordered 2D
solids predict antipersistent fracture profiles, with ζ2D � 0.5
[8], or even no self-affine regime at all [26,27]. These predic-
tions are in contradiction with experiments that systematically
report exponents in the range ζ2D ≈ 0.6–0.7 as in paper sheets
[28–30], wood [31], or nickel-based alloy [32]. Recent nu-
merical studies that take into account the nucleation, growth,
and coalescence of voids during the failure of 2D solids report
values in the range ζ2D ≈ 0.65–0.7, close to those obtained in
experiments [33,34]. These findings are also consistent with
the numerical observations made in random fuse and random
beam models that describe failure as a microcrack coalescence
process [35,36]. Overall, these results suggest that the per-
sistence observed on fracture profiles is reminiscent of crack
growth by void coalescence, like in 3D. But does this mean
that crack paths in 2D solids are systematically driven by void
coalescence, or can another behavior compatible with LEFM
be observed? If it exists, what are the geometrical features of
the resulting fracture profiles that have recently been a matter
of debate [26,27]? Last but not least, how would one rough-
ening mechanism be selected over the other? A crack growth
regime compatible with LEFM represents the missing piece
for explaining crack trajectories in heterogeneous materials.
Therefore, the exploration of this regime by experimental and
numerical means is the central point of this study.

To address this challenge, we consider 2D consolidated
granular materials characterized by intergranular failure that
have been used in the past as archetypes of disordered brittle
materials [12,15]. Their fracture profiles are investigated ex-
perimentally in nonporous thin sheets made of consolidated
polystyrene beads and numerically in large scale 2D simu-
lations of cohesive zone fracture of random arrangements of
polygonal grains, both shown in Fig. 1. They are shown to
display surprisingly simple properties that clearly distinguish
them from the persistent fracture profiles reported so far. In the
last part, we take inspiration from Refs. [26,27] and propose
a model of crack propagation through disordered brittle solids

FIG. 2. Setup of the double torsion test realized to investigate the
crack path: (a) schematic representation of the sample and boundary
conditions; (b) prenotched specimen and loading device.

that sheds light on our findings. Our study suggests a unified
scenario for the morphology of fracture paths in 2D disordered
solids that is discussed in the concluding section.

II. METHODS

A. Experimental fracture tests of two-dimensional
consolidated granular solids

To explore the fracture profiles formed by brittle inter-
granular failure, we use commercial panels of expanded
polystyrene from which fracture testing samples are ma-
chined. Each panel consists of consolidated pre-expanded
polystyrene beads with an average radius � � 2 mm. The
radius of the beads is comparable to the panel thickness,
but is two to three hundred orders of magnitude smaller
than the other dimensions of the specimens. The material
Young’s modulus, measured through a uniaxial tensile test, is
E = 6.5 ± 0.5 MPa while its fracture energy, obtained from
the fracture tests described next, is Gc = 60 ± 3 J m−2. An
estimate of the cohesive stress between individual grains is
obtained from uniaxial tensile tests with the blunt notch of
different tip radii [37], leading to σc = 0.6 ± 0.1 MPa. A co-
hesive zone model like the one by Barenblatt [38] provides the
characteristic size �pz = π GcE/(8 σ 2

c ) � 0.45 ± 0.20 mm of
the process zone where damage mechanisms localize in the
crack tip vicinity. The cohesive length �pz is found to be much
smaller than the grain size �, suggesting that the polystyrene
panels used in this study can be safely approximated by a
brittle cohesive granular solid.

Two fracture test geometries are considered. In the first
series of experiments, the so-called double torsion test, with
sample dimensions W ×L×d = 30 cm×60 cm×1.5 cm and
notch length c0 = 10 cm, is used. The sample is schematically
shown in Fig. 2(a). This geometry is used in experimental
fracture mechanics to achieve slow and controlled mode I
crack propagation under tensile loading conditions in thin
specimens [39,40]. In general, a groove carved in the speci-
men upper surface is required to guide the crack parallel to
the initial notch. In our setup, however, straight crack prop-
agation was achieved without a groove by properly choosing
the location of the applied forces. Two point forces are applied
at the top of the specimen on either side of the notch at a
distance w2 = 2.5 cm from it. Two parallel rails support the
specimen from the lower surface at a distance w1 = 10 cm
from the notch. In order to avoid indentation of the specimen,
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FIG. 3. Setup of the thin strip experiment realized to investigate
the effect of the specimen size on the crack roughness geometry:
(a) schematic representation of the sample and boundary conditions;
(b) broken specimen and loading device.

the upper jaws are not directly in contact with the upper face of
the sample, but apply a distributed force over an area of about
5 cm2 thanks to a thin plate placed between the jaw and the
specimen as shown in Fig. 2(b). The upper jaw is displaced
vertically in the downward direction at a constant velocity
vext = 0.1 mm/s, leading to slow crack propagation until full
failure of the specimen. During the test, the crack propagates
over a total distance �c � 50 cm that corresponds to about
250 polystyrene beads, thus allowing the investigation of the
scaling properties of the crack path over an extended range of
length scales (see Fig. 6).

In the second series of mode I experiments, the so-called
thin strip geometry, with sample dimensions W ×3W × 1.3 cm
and notch length 2W/3, is used. The sample is schematically
represented in Fig. 3(a). Opening stresses are applied through
uniform displacements imposed along the horizontal edges of
the specimen thanks to two couples of long metallic strips that
are firmly clamped to the polystyrene sheet in its lower and
upper region [see Fig. 3(b)]. The strips are attached to the me-
chanical test machine through U-shape jaws. The upper jaw
is displaced upward at a constant velocity vext = 0.1 mm/s,
leading to slow crack propagation until full failure of the spec-
imen. This geometry has been largely used to study slow mode
I fracture thanks to its ability to propagate straight cracks with
controlled speed under displacement controlled conditions.
Our aim is to investigate the effect of the sample size on the
geometry of the fracture profiles. As a result, several specimen
widths W ranging between 75� and 260� are investigated,
while keeping the sample aspect ratio constant.

After failure, crack profiles are extracted through the dig-
ital image analysis of pictures of the broken sample, an
example of which is shown in Fig. 1(a).

B. Simulations of intergranular failure

Intergranular crack propagation in any consolidated gran-
ular material with zero porosity can be adequately modeled
under the assumption that dissipative failure processes are
confined to grain boundaries. Crack paths are obtained using

W 140

2W 3

W 3

process
zone

σ

σ

W 2

W 2 = 4200 μm

A

b 28

FIG. 4. Geometry and boundary conditions of the notched spec-
imen employed in the simulations. For numerical convenience, the
polycrystalline microstructure is used in the process zone only.

a generalized finite element method for polycrystals [41], a
method in which the spatial discretization of a polycrystal is
obtained by the superposition of a polycrystalline microstruc-
ture on a background finite element mesh with no need to
generate meshes conforming to it. Additionally, the method
can deliver an accurate description of the stress field around a
propagating crack tip in polycrystalline materials and reliable
crack paths [42].

A representative example of the Voronoi microstructures
considered in this study is shown in Fig. 1(b). These mi-
crostructures are embedded in the numerical process zone
of the specimen depicted in Fig. 4. The material parameters
are taken to be representative of an average polycrystalline
alumina, Al2O3, with Young’s modulus E = 384.6 GPa and
Poisson’s ratio ν = 0.237. An average grain size of approx-
imately 20 μm has been used; this size corresponds to an
average grain boundary length � = 10.62 μm. The number
of grain boundaries ahead of the notch tip is around 320
on average. Plane strain analyses are performed under the
assumption of small elastic strains and rotations.

The linear elastic isotropic grains are connected to each
other by means of cohesive grain boundaries that follow
the Xu-Needleman traction-separation law [43] incorporat-
ing secant unloading and reloading behavior. As shown by
Shabir et al. [42], intergranular crack paths in brittle poly-
crystals are unique for a given microstructure, irrespective
of cohesive law parameters. Using therefore the parame-
ter set in Ref. [42], and with the mode I fracture energy
GIc = 39.6 J m−2 and the maximum normal cohesive strength
σmax = 0.6 GPa, a relatively coarse discretization can resolve
the cohesive zone along a grain boundary. The determina-
tion of the roughness exponent however calls for crack paths
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Direction of crack propagation

A simulation generating 323 cracked GB’s ahead the notch tip is split into eight sub-simulations

Notch Process window enclosing refined mesh

FIG. 5. Crack path obtained with the sequential polycrystalline analysis applied to the specimen in Fig. 4. Only the process zone, with the
embedded 3140-grain microstructure depicted in Fig. 1(b), is shown.

obtained from polycrystalline aggregates with a large number
of grains [Fig. 1(b)]. Even with the meshing requirements that
come with the choice of the cohesive law parameters just
described, the resulting simulations cannot be conveniently
handled using traditional fully resolved monolithic analyses.
To solve this problem, we have developed a simple sequential
polycrystalline analysis approach in which the cohesive zone
along a grain boundary is resolved only for the grains in a
region around the propagating crack tip. In this approach,
detailed and validated in Appendix A, a simulation is split into
a suitable number of subsimulations. At the beginning of the
first subsimulation, a process window (the leftmost region en-
closed by the blue box in Fig. 5 and appropriately discretized)
encloses the notch and the region where the crack will most
likely propagate. The specimen is loaded by a uniform ten-
sile stress σ , ramped incrementally under quasistatic loading
conditions. When the crack tip approaches the boundary of
the process window, the subsimulation is stopped and the
simulation data are stored on a file. In the next subsimulation,
the previous simulation data are loaded, and the new process
window is large enough to contain the crack tip from the pre-
vious subsimulation, its corresponding nonlinear region, and
the region where the crack will most likely propagate. As in
the previous subsimulation, the load is applied incrementally
until the crack reaches the boundary of the process window.
This procedure is repeated until the specimen is fully cracked.

III. ROUGHNESS CHARACTERIZATION
OF THE CRACK PROFILES

A. Scaling properties

The statistics of experimental and computed crack profiles
are now investigated. We start by computing the correla-
tion function �h(δx) = 〈[h(x + δx) − h(x)]2〉1/2

x of the crack
roughness profile h, where δx is the increment in the spatial
coordinate x. In view of sample-to-sample stochastic varia-
tions, �h(δx) is averaged over six experimental crack profiles
obtained from double torsion tests and 18 simulated profiles.
In the simulations, the grain arrangements consist of 3140
grains [Figs. 1(b) and 13] obtained with a centroidal Voronoi
tessellation algorithm. Figure 6 shows the correlation func-
tions of experimental and computed profiles. Both follow a
power-law relation �h(δx) ∝ δxζ , which is reminiscent of
self-affine properties characterized by a roughness exponent
ζexp=0.48±0.03 for the experiments and ζsim=0.50±0.02
for the simulations (the standard errors are obtained from
the roughness exponents computed on each profile ana-
lyzed separately). The self-affine behavior extends over two

decades (≈100 �) beyond the characteristic microstructural
length � (bead radius in the experiments and grain boundary
length in the simulations). The value of the roughness expo-
nent close to the directed random walk exponent ζrw = 1

2 is
confirmed by the behavior of the function C(δx) = 〈h′(x +
δx)h′(x)〉x/〈[h′(x)]2〉x that, according to the inset of Fig. 6,
shows no correlation of the crack local slopes h′ = dh/dx on
length scales δx � �.

We take advantage of the large number of long fracture
profiles produced by the simulation to study the full statistics
of their roughness. The distributions Pδx of the height fluc-
tuations δh = h(x + δx) − h(x) computed at some scale δx
are shown in Fig. 7. When normalized by δxζ with ζ = 0.5,
the distributions corresponding to different values of δx col-
lapse to the same master curve, thus reflecting a monoaffine
behavior. Monoaffinity is ensured as long as δx belongs to the
self-affine domain, as shown in the inset. Note also that the
roughness statistics is Gaussian, as evidenced by the charac-
teristic parabolic shape of Pδx(δh) shown in Fig. 7.
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FIG. 6. Logarithmic representation of the height correlation
function of the experimental and computed crack profiles. At scales
larger than the microstructural length � (bead radius in the exper-
iments and grain boundary length in the simulations), the crack
roughness is self-affine with an exponent ζ � 0.5. The inset shows
that the correlator of the crack local slopes decays exponentially fast
over a few �, confirming the random walk behavior.
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FIG. 7. Statistical distribution Pδx of height variations computed
for different scales δx. After normalization by δxζ with ζ = 0.5, they
collapse to a Gaussian distribution. The inset shows that the studied
values of δx belong to the self-affine domain 1 � δx/� � 100.

The monoaffine behavior of the computed crack profiles
is further confirmed in Fig. 8 where the correlation functions
�hq(δx) = 〈[h(x + δx) − h(x)]q〉1/q

x of order q are computed.
Introducing the multiaffine spectrum H (q), which is an ex-
tension of the roughness exponent ζ = H (2) to moments of
order q 	= 2, the correlation functions are fitted by power laws
�hq ∼ δxH (q). As shown in the inset of Fig. 8, the scaling
exponents H (q), also referred to as the multiaffine spectrum,
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FIG. 8. Multiaffine spectrum of the simulated fracture profiles.
The main panel shows the correlation functions �hq(δx) of order q
in the range 0.5 � q � 3 as defined in the text. The inset shows the
multiaffine spectrum H (q) as obtained from the fit of the correlation
functions �hq ∼ δxH (q). The constant value H (q) � 0.5 is signature
of monoaffine behavior.
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FIG. 9. Power spectrum of simulated fracture profiles in 2D con-
solidated granular solids and comparison with experimental fracture
profiles in paper sheets (from Refs. [7,45]). The power law behavior
S(k) ∼ k−1−2ζ with ζ = 0.55 confirms the estimate of the roughness
exponent obtained in the direct space in Fig. 7: it is significantly
smaller than the roughness exponent ζ = 0.7 characterizing frac-
tured paper sheets. The length scale � used to normalize the wave
number k = 2π/λ is taken as the grain size for the granular solid
and a characteristic microstructural scale (like, e.g., the fiber length)
� � 1 mm for the paper sheet.

are independent of q. In other words, one exponent H (q) =
ζ � 0.5 is sufficient to fully describe the roughness statistics
of the computed fracture profiles.

To confirm the value of the roughness exponent (ζ � 0.5)
of the simulated fracture profiles, we now use an independent
method based on the calculation of their Fourier transform
[44]. Figure 9 shows the spectral density of the fracture pro-
files defined as

S(k) = |h̃(k)|2 with h̃(k) = 1

2π

∫
f (x)e−ikx dx. (1)

The observed power law behavior S(k) ∝ k−1−2ζ with ζ =
0.55 is compatible with the previous estimate based on the
scaling �h ∝ δxζ of the correlation function (see Fig. 6).

To provide a direct comparison with other 2D materials,
the spectral density of fracture profiles obtained in a paper
sheet that has been studied in Refs. [7,45] is also shown in
Fig. 9. The difference with the behavior of cracks in poly-
crystalline solids as studied here emerges clearly: the crack
profiles in paper show an excess of long wavelength modes
observable for k � � 1 which reflects in a larger value of the
roughness exponent ζ � 0.7. These modes, more abundant
in fractured paper sheets than in fractured granular solids,
are reminiscent of the persistent behavior of cracks in paper
sheets. Indeed, persistence means that an upward (respectively
downward) deviation is more likely followed by a subsequent
upward (respectively downward) deviation, thus building
up long wavelength perturbation modes. By contrast, the
roughness exponent close to ζrw = 1/2 indicates that cracks
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FIG. 10. Logarithmic representation of the height correlation
function of the experimental fracture profiles obtained from the thin
strip geometry for various specimen widths W (see Fig. 3). The crack
profiles are self-affine with an exponent ζ � 0.5, up to some cutoff
ξ that depends on the sample size. The inset shows that the upper
bound ξ of the self-affine regime increases linearly with the sample
width.

in 2D consolidated granular solids follow paths close to a
directed random walk, i.e., without significant correlations in
the sign of successive growth increments.

To be more precise, the difference between the geom-
etry of these fracture profiles goes well beyond the value
of the roughness exponent. Fractured paper sheets display
non-Gaussian fluctuations of height with fat tails [46] that
contrast with the Gaussian behavior reported in Fig. 7. They
also exhibit multiaffinity: different roughness exponents H (q)
are required to describe the scaling behavior of the various
moments 〈[h(x + δx) − h(x)]q〉1/q

x ∝ δxH (q) of the height fluc-
tuations [46], while one exponent only, ζ � 0.5, describes the
full statistics of a brittle crack path.

To characterize further their scaling properties, we now
investigate the effect of the size of the fractured specimen on
the resulting fracture profiles.

B. Effect of specimen size on the roughness scaling properties

The correlation function of the crack profiles represented in
Fig. 7 shows that the self-affine regime extends from the grain
size up to some characteristic length scale ξ � 100�. What is
the origin of this upper limit? To address this question, we
perform a series of fracture tests using the thin strip geometry
described in Fig. 3 with various widths in the range 75 �
W/� � 260 while keeping the ratio between W and the other
sample dimensions (such as length and notch length) constant.
The height-height correlation functions of the fracture profiles
corresponding to different widths W are shown in Fig. 10.
They show a self-affine behavior with an exponent ζ � 0.5,
irrespective of the specimen dimension. However, the range
of length scales � � δx � ξ over which a power law behavior

is observed clearly increases with the specimen width W . The
cutoff length ξ is then defined as the intersection of the power
law �h(δx) ∼ δxζ describing the self-affine regime with the
plateau �h(δx) = �hsat observed at large scales when the
roughness saturates. As illustrated in Fig. 6, �hsat is cho-
sen as the maximum value of the correlation function. The
variations of the upper bound ξ of the self-affine domain is
studied quantitatively in the inset of Fig. 10, revealing a linear
relationship (ξ � 0.4W ) between both length scales. In other
words, the finite domain of the roughness scaling behavior is
a consequence of the finite size of the fractured specimen. As
the sample size increases, the wavelength ξ of the largest per-
turbations of the crack trajectory increases too. This behavior
is analogous to that reported in fractured 3D brittle solids:
there, the upper bound of the self-affine regime with exponent
ζ3-D � 0.4 also scales linearly with the specimen size [16],
but differs from the scaling properties of fractured quasibrittle
and ductile solids with exponent ζ3D � 0.8 that are bounded
by the process zone size. The latter is a material characteristic
length scale that is independent of specimen size.

The properties of the experimental and simulated fracture
profiles observed in consolidated granular solids lead to sev-
eral questions. Where does the roughness exponent ζ � 0.5
emerge from, while crack trajectories in other 2D disordered
solids show persistence with ζ � 0.7? And can we rationalize
the Gaussian and monoaffine statistics of brittle crack paths as
opposed to the properties of fracture profiles reported so far in
2D solids?

IV. THEORETICAL INTERPRETATION

To address these issues, we perform a theoretical analysis
of the trajectory followed by a crack in a two-dimensional
elastic solid with disordered fracture properties and uni-
form linear elastic properties. Our model builds on basic
concepts of LEFM and more specifically on the principle
of local symmetry [23,47] that predicts crack propagation
along the direction of vanishing shearing mode II—note that
even though the specimens considered in our study may
be loaded in pure mode I tension at the structural scale,
the perturbations of the crack profile at the microstructural
scale result in some local shearing in the crack tip vicinity.
Following Katzav and co-workers [26,27], we describe the
crack path h(x) as a succession of straight segments of size
δx—taken as δx → 0 in the continuum limit—along the av-
erage propagation direction x. We start from the results by
Cotterel and Rice [23, below Eq. (43)] according to which
the kink angle between two successive incremental steps is
given by

h′(x+) − h′(x−) = −2
kII(x)

kI(x)
, (2)

where h′ indicates dh/dx. The kink angle is defined as the
difference between the propagation direction after and before
the kink, as done in [24]. The local stress intensity factors
kI(x) and kII(x) are calculated from the crack path configu-
ration before the kink. Since we limit our analysis to slightly
perturbed cracks for which h′ � 1, we can use the results of
Cotterel and Rice [23] complemented by those of Movchan
et al. [25]. These results provide the local stress intensity
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TABLE I. Structural length scales L1 and L2 and signs of the T stress and the parameter A that appear in the crack path equation (5). The
finite element method analyses used to compute them are described in Appendix B.

sgn (T ) L1 sgn (A) L2

Simulations −1 85W = 85 000� −1 W/3 = 330�

Double torsion experiments −1 � L2/W � 600� −1 � W/2 � 75�

Thin strip experiments 1 � W −1 � W/2

factors {khom
I , khom

II } for a homogeneous material as a function
of the past trajectory h(x̃ < x), the macroscopic stress inten-
sity factors {KI, KII} imposed by the loading machine to the
specimen, and the amplitudes {T, A} of the higher order terms
in the Williams development of the stress field near the crack
tip [48]:

khom
I (x) = KI,

khom
II (x) = KII + KI

2
h′(x−) −

√
π

2
Ah(x)

−
√

2

π
T

∫ x

−∞

h′(x̃)√
x − x̃

dx̃. (3)

Since in this study the macroscopically applied shearing
KII is zero, the combination of Eqs. (2) and (3), with kII(x) =
khom

II (x) for a homogeneous material, yields the following
closed form of the path equation:

h′(x+) = 2
√

2√
π

T

KI

∫ x

−∞

h′(x̃)√
x − x̃

dx̃ +
√

2π
A

KI
h(x). (4)

For a homogeneous material, this equation admits a triv-
ial solution, namely a straight crack path h(x) = 0. To take
into account spatial variations in the fracture properties of
the material and describing the resulting perturbations in the
crack trajectory, one introduces the stochastic term δkhet

II =
−KI η(x)/2 that describes the local shearing resulting from
the material microstructure. Note that perturbations δkI(x)
in the local tensile stress intensity factor do not affect the
linear path equation (4) as they give rise to higher order
terms proportional to the square of the height perturbations
h(x). Finally, as the materials considered here have a ran-
dom microstructure with a characteristic size �, we assume
an uncorrelated noise for length scales δx � �. Taking now
into account kII = khom

II + khet
II to predict the kink angle from

Eq. (2), one obtains

h′(x+) = sgn(T )√
L1

∫ x

−∞

h′(x̃)√
x − x̃

dx̃ + sgn(A)
h(x)

L2
+ η(x),

(5)

where L1 = π/8 (KI/T )2 and L2 = 1/
√

2π KI/|A| are struc-
tural length scales determined by the specimen geometry only.
Their calculation for the experiments and the simulations per-
formed in this study is detailed in Appendix B and their values
are listed in Table I.

Contrary to the model proposed in Refs. [26,27], we do
not consider variations in elastic properties. This hypothesis
significantly changes the nature of the crack path equation that
is a first order differential equation for uniform elastic con-
stant and of second order otherwise [26,27]. In our model, the

crack path perturbations result from the variations of fracture
properties only. In the context of the consolidated granular
solids considered in this study, these heterogeneities [embed-
ded in the quenched noise δkhet

II (x)] result from the randomly
oriented weak planes present in the granular microstructure.
Note that a similar description was previously employed in
the context of cracks propagating through brittle materials
with random fracture properties [8,12,13]. To characterize the
geometry of the predicted crack profiles, we calculate the
correlations of the slopes that can be directly inferred from
Eq. (5) as detailed in Appendix C. Since the first and the
second terms on the right-hand side of Eq. (5) are inversely
proportional to

√
L1 � √

� and L2 � �, respectively, and are
therefore negligible, the correlation of the slopes is simply
expressed as

〈h′(x + δx)h′(x)〉x � 〈η(x + δx)η(x)〉x. (6)

Local slopes of the crack profile have therefore the same cor-
relator as η and, as such, display no correlations for δx � �.
This property defines a random walk: the predicted cracks
are self-affine profiles with a roughness exponent close to
the random walk prediction ζrw = 1

2 , in excellent agreement
with the experimental and numerical observations reported
in Fig. 6. The Gaussian statistics of the experimental and
computed crack profiles evidenced in Fig. 7 derive from the
central limit theorem, as the height variation at a scale δx � �

decomposes as the sum of δx/� uncorrelated height variations
computed at a finer scale � [7].

To describe effects emerging from the finite specimen size,
like the saturation of the roughness �h observed in Fig. 6
for δx � 100�, the path equation (5) is solved numerically
using the parameter values listed in Table I (the solution
is reported in Fig. 11). First, Eq. (5) is discretized using
a step size δx0 = �/100 much smaller than the correlation
length � of the disorder. We then use an explicit scheme
so that the crack position h(x0 + δx0) is inferred from the
crack geometry for x < x0 using the relation h(x0 + δx0) =
h(x0) + F[h(x)], where the functional F[h(x)] corresponds
to the right-hand term of Eq. (5). A simulations is run un-
til the crack propagates over a total distance of 1000�. The
correlation function �h(δx) shown in Fig. 11 is obtained by
taking the average of ten crack profiles obtained from ten
different realizations of the disorder. We use a short range
disorder η with correlator 〈η(x + δx)η(x)〉x = σ 2 e−(δx/�)2

and
amplitude σ =

√
〈η2(x)〉x = 1. The correlation function ob-

tained compares rather well with the one of the computed
fracture profiles in Fig. 6—note in particular the position of
the plateau at large scales. The inset shows the correlator of
the crack slopes predicted by our model which, as expected
from Eq. (6), is close to the one of the disorder term η. This

055003-7



L. PONSON et al. PHYSICAL REVIEW E 104, 055003 (2021)

100 101 102 103
10−1

100

δx

Δ
h

Fit: ζ = 0.49

0 1 2 3

0

0.5

1

δx

C
or

re
la

to
rs

η(x + δx)η(x) x

dh

dx x+δx

dh

dx x x

FIG. 11. Correlation function of the fracture profiles as predicted
by the path equation (5) solved numerically. For δx > �, the cracks
follow a random walk with exponent ζ = 0.49 (red straight line).
In the inset, the correlator of the slopes of the predicted fracture
profiles is compared with the correlator of η describing the effect
of the material microstructure on the local shear conditions on the
crack.

validates the assumption that the terms proportional to T and
A in the path equation (5) do not significantly impact the
scaling properties of the fracture profile at scales much smaller
than the structural length L1 and L2.

Overall, the scaling behavior �h ∝ √
δx reported in the

simulations and the experiments at short length scales emerges
from the simplified path equation h′(x) = η(x). However, over
sufficiently large propagation distances, large wavelengths
build up along the crack profile so that the two terms on the
right-hand side of the path equation (5) cannot be neglected
anymore. The roughness then deviates from the self-affine
behavior. In practice, as the constants T and A are generally
negative, they act as restoring forces that tend to maintain
the crack as close as possible to the straight configuration
h(x) = 0. The roughness then saturates and reaches a plateau
�h(δx � ξ ) � �hsat, as observed in Figs. 6 and 11.

How can the cutoff length ξ of the self-affine regime be
determined? A closer look at the scaling behavior of the
two terms on the right-hand side of Eq. (5) reveals that
the first one becomes of order 1 for perturbations of wave-
length λ �

√
L1 � while the second one becomes relevant

for λ � L2
2/�. As a result, the cutoff length is given by ξ �

Min(
√
L1 �,L2

2/�). This expression confirms that the scale
separations L1 � � and L2 � � between the microstructural
length scale and the structural length scale are required to
observe self-affine fracture profiles.

V. DISCUSSION

Our experimental and numerical observations, supported
by our LEFM-based theoretical model, indicate that brittle
cracks follow a directed random walk in 2D materials as
long as the structural length scales L1 and L2 set by the

fracture test geometry are much larger than the characteris-
tic microstructural length �. Then how can we explain the
discrepancy fractures in paper [28–30], wood [31], or nickel-
based alloy samples [32] that display persistent paths with
ζ � 0.6–0.7?

A key assumption of our theoretical model is the scale
separation � � �pz between the characteristic size � of the
microstructural disorder and the extent �pz of the fracture
process zone along the propagation direction where nonlin-
ear damage processes take place. Indeed, LEFM assumes an
elastic response everywhere in the material, and therefore �pz

is expected to be small with respect to any other length scale
of the problem. This assumption is satisfied in the materials
investigated here, as the cohesive zone lengths chosen in
the simulations and estimated in the experiments are much
smaller than the microstructural length �. On the contrary,
the extent of the fracture process zone does compare with the
characteristic size of the microstructural features in paper (� �
100 μm –1 mm � �pz � 1 mm), wood (� � �pz � 1–5 mm),
and nickel-based alloy (� � �pz � 100 μm) for which a large
exponent ζ � 0.6–0.7 was measured. These observations sug-
gest the following scenario:

(i) For �pz � �, crack paths can be accurately described
by LEFM and follow a directed random walk with exponent
ζ = 0.5 in the limit of very large specimens, as shown in this
study.

(ii) For �pz � �, the roughening process is dominated by
the underlying damage mechanism that takes place within
the process zone. As shown by Bouchbinder et al. [33], this
crack growth mechanism leads to persistent crack paths with
ζ � 0.6–0.7, in good agreement with the experimental obser-
vations in paper [28–30], wood [31], and alloy [32].

Interestingly, this scenario also accounts for the puzzling
observation of random walk crack profiles with ζ � 0.5 in
paper sheets perforated with holes [49], while fracture lines in
virgin paper display ζ � 0.65 [28–30]. The upscaling of the
characteristic size of the disorder, from the distance between
fibers � � 100 μm to the distance � � 1 mm between holes,
may have shifted the roughening mechanism from a damage
coalescence driven process to the brittle mechanism described
in this study. Note that this scenario applies to the roughness
of cracks observed at scales larger than the grain size or the
process zone size (whichever is larger). For example, at a very
fine scale—δx < �pz in the granular solids considered in this
work—one may observe roughness features reminiscent of
damage coalescence.

To conclude, we would like to highlight the remarkably
simple properties of brittle crack paths in large 2D specimens
which show a Gaussian statistics of height fluctuations and
a roughness exponent close to the random walk prediction
ζrw = 1/2. This behavior reminds us of the large scale rough-
ness regime in 3D solids that also display Gaussian statistics
and monoaffine properties with ζ � 0.4–0.5 [9,14,16]; it can
also be easily distinguished from fractures dominated by
damage coalescence that display complex multiaffine features
with fat-tail statistics both in 2D [46] and 3D [16,19,50] ma-
terials. This simple scenario suggests that fracture roughness
in both two and three dimensions may be broadly understood
in terms of one or the other mechanism, with the major
difference that the damage driven regime may extend to large
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scales in two dimensions, but remains confined to small scales
in three dimensions. We hope that this work will pave the way
for the development of new tools of quantitative fractography
that translate statistical properties of fracture surfaces into
meaningful quantities for engineering applications, in the
spirit of recent works relating roughness and toughness
[20,21].
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APPENDIX A: LARGE SCALE SIMULATIONS
OF INTERGRANULAR FAILURE THROUGH

SEQUENTIAL POLYCRYSTALLINE ANALYSES

In the sequential polycrystalline analysis approach, a sim-
ulation is split into a suitable number of subsimulations. The
approach is inspired by the evidence that most of the grain
boundary deformation takes place around the crack tip in
intergranular brittle failure of polycrystals. The preliminary
analysis of the specimen in Fig. 4, with the embedded 90-grain
microstructure shown in Fig. 12(a), is performed by means
of two monolithic simulation approaches and demonstrates
the effectiveness of the proposed sequential polycrystalline
analysis.

A reference set of results is built with a first monolithic
approach which employs a discretization that resolves the
cohesive zone along each grain boundary following the rules
suggested by Shabir et al. [42]. The resulting crack path is
depicted in Fig. 12(a); Fig. 12(d) shows the corresponding
load-displacement curve (green line). In this simulation all
the grain boundaries that experience a non-negligible opening
contribute to the definition of the (evolving) active process
zone. These grain boundaries are flagged and used in the
second monolithic approach.

In the second monolithic approach, we allow nonlinearities
from the cohesive law within the previously defined active
process zone only. The grain boundaries outside this zone are
given a high stiffness to simulate a perfect bond. This type
of analysis yields the same crack path and load displacement
curve as that obtained in the first monolithic simulation. It can
be therefore deduced that a mesh that resolves the cohesive
zone is needed only in the active process zone to account for
nonlinearities across grain boundaries. The region outside the
active process zone, exhibiting mostly a linear elastic behav-
ior, can be discretized with a coarser mesh. Following this
argument, in the sequential polycrystalline analysis approach
we split the simulation into a sequence of subsimulations as
described next for the case of two subsimulations.

(i) A discretization that resolves the cohesive zone along
each grain boundary as proposed in [42] is provided around
the crack tip in the active process zone. Outside this region,
at least two elements are provided along each grain boundary.
Both regions can be seen in Figs. 12(b) and 12(c) for each
subsimulation.

FIG. 12. Sequential polycrystalline analysis of the specimen in
Fig. 4 with a 90-grain microstructure embedded in the process zone:
(a) discretized process zone with final crack path; (b), (c) subsimu-
lation 1 and 2 with refined mesh in the active process zone—at least
two elements along each grain boundary are provided outside the
active process zone; (d) load-displacement curves corresponding to
the simulations in (a)–(c), with point A the bottom, leftmost point of
the specimen, as indicated in Fig. 4.

(ii) When a crack tip reaches the end of an active process
zone in the crack propagation direction, the simulation is
stopped and the resulting crack profile is saved—the crack
path obtained from subsimulation 1 is indicated by the red line
in Fig. 12(b). The next subsimulation is launched considering
the saved crack profile from the previous simulation—the
green line in Fig. 12(c). A new crack tip is defined by reduc-
ing the length of the loaded crack profile such that the new
tip is now at a position where the cohesive strength of the
previous simulation would be negligible—the green line in
Fig. 12(c) does not extend up to the upper end of the red line
in Fig. 12(b). In other words, we make sure that nonlinear pro-
cesses are accurately captured by enclosing nonlinear regions
with an active process zone. An overlap of � 2.5� between
two consecutive active process zones satisfies this requirement
with the current choice of cohesive law and parameters.

The sequential polycrystalline analysis yields a crack path
[Fig. 12(c)] identical to that obtained with the first monolithic
analysis [Fig. 12(a)]. The equivalence of the two approaches
in delivering the same results can also be appreciated from
the load-displacement curves in Fig. 12(d). In this figure,
the curves related to the two subsimulations are basically
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Direction of crack propagation

(a) A simulation generating 323 cracked GB’s ahead the notch tip is split into eight sub-simulations

Notch Process window enclosing refined mesh

(b) First sub-simulation

Crack being analyzed in the active process window At least two finite elements along each GB

(c) Last sub-simulation

Crack from previous sub-simulations

FIG. 13. (a) Crack path obtained with the sequential polycrystalline analysis applied to the specimen in Fig. 4. (b), (c) First and last
subsimulations in the sequential analysis. Only the process zone, with the embedded 3140-grain microstructure depicted in Fig. 1(b), is shown.

indistinguishable from the curve obtained with the monolithic
analysis in their respective domains. With regard to the stress
field, we could hardly find any difference between the two
approaches.

With the sequential polycrystalline analysis approach, the
large crack propagation simulations needed for the estimation
of the roughness exponent can be carried out by considering a
suitable number of computationally doable subsimulations. A
typical example employing a 3140-grain microstructure and
eight subsimulations is shown in Fig. 5 and reproduced in
Fig. 13(a) with the first and last subsimulation reported in
Figs. 13(b) and 13(c), respectively. The blue boxes in these
figures contain the active process zone and show the region
where the crack is allowed to propagate within a subsimu-
lation. The corresponding load-displacement curves for the
eight subsimulations are reported in Fig. 14. From the inset
in this figure, the complexity of the analysis, overwhelmed
by many sharp snapbacks, can be easily recognized—it is
worth noticing that each jump in the curve corresponds to the
fracture of one grain boundary. At variance with conventional
adaptive refinement approaches [51], the only information that
is transferred from simulation to simulation is the crack path.

APPENDIX B: DETERMINATION OF THE STRUCTURAL
LENGTH SCALES L1 and L2

The structural length scales involved in the path equation
(5) emerge from the specimen geometry and the boundary
conditions. They are defined as

L1 = π

8

(
KI

T

)2

L2 = 1√
2π

KI

|A| . (B1)

In these expressions, the stress intensity factor KI , the
T -stress, and the parameter A correspond to the prefactors in
the Williams expansion,

σxx(x) = KI√
2πx

+ T + A
√

x, (B2)

FIG. 14. Load-displacement curves obtained through the pro-
posed sequential polycrystalline analysis applied to the specimen
in Fig. 4. The 3140-grain microstructure depicted in Fig. 1(b) is
embedded in the process zone, and the corresponding crack path is
reported in Fig. 13.
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FIG. 15. Nonsingular contribution �σxx (x)=σxx (x) − KI/
√

2πx
of the stress that applies parallel to the crack in the thin strip geom-
etry considered in the simulations (see Fig. 4). The fit by an affine
function �σxx = T + A

√
x [see Eq. (B2)] provides the structural

lengths Lsim
1 and Lsim

2 through Eq. (B1).

of the near tip stress parallel to the crack before considering
geometrical perturbations of the crack profile [23,25].

The value of KI, T , and A, as well as the value of Lsim
1

and Lsim
2 for the specimen geometry and boundary condi-

tions in Fig. 4 used in the simulations, are computed using
the finite element method. Since both L1 and L2 are inde-
pendent of the amplitude of the applied stress, we consider
a unit applied stress normal to the crack propagation di-
rection. The elements of the mesh are chosen so that their
size decreases exponentially while approaching the crack tip,
down to a minimum element size of 10−9W where W is
the specimen width. This allows us to capture the square
root divergence of the stress field within reasonable com-
puting times. The variations of σxx(r) are then fitted using
the Williams expansion (B2) following the procedure pro-
posed in Ref. [52] and described next. First, KI is obtained
from the square root divergence of the stress in the near tip
region. Then, the leading term KI/

√
2πx of the stress field

expansion is subtracted from the total stress so that the resid-
ual �σxx(x) = σxx(x) − KI/

√
2πx can be fitted by an affine

function �σxx = T + A
√

x (see Fig. 15)—this provides the
value of T and A. Finally, Eqs. (B1) yield Lsim

1 = 85W and
Lsim

2 � W/3 for the geometry considered in the simulations
where the crack tip lies in the middle of the specimen. Using
the actual size of the sample considered in the simulations
yields W � 1000�, where � is the grain boundary length,
which corresponds to structural lengths Lsim

1 = 85 000� and
Lsim

2 � 330�. These structural length scales are indeed much
larger than the microstructural length. The same procedure is
applied to determine L1 and L2 in the thin strip experiment.

To determine Lexp
1 and Lexp

2 in the case of the double torsion
experiment shown in Fig. 2, we follow a different approach,
as the bending conditions imposed to the specimen and the
complex crack front geometry (see, e.g., [53]) would have

required a full 3D finite element analysis of the stress field in
the crack tip region. Instead, we estimate these length scales
from approximate formulas for KI, T , and A. In the double
torsion test used in our experiments, the stress intensity factor
follows KI � (w1−w2 )P

d2
√

W
for an unperturbed straight crack [40].

An estimate of the T stress can be obtained using the relation
T = σ (nc)

xx − σ (nc)
yy [25] where the superscript nc refers to the

stress field calculated for the same geometry and boundary
conditions, but without a crack. As the boundary conditions
are close to generating pure bending in the central part of the
specimen, the stress σ (nc)

xx aligned with the crack propagation
direction is close to zero while the stress σ (nc)

yy can be estimated
at the bottom surface of the specimen where the tensile state
of stress drives the crack, leading to T � −σ (nc)

yy � − (w1−w2 )P
d2L ,

so that Lexp
1 � L2/W from Eq. (B1). To estimate Lexp

2 , we take
inspiration from other fracture tests. For example, in the thin
strip geometry, one gets L2 � W/2. Similarly, in the double
cleavage drilled compression test analyzed in Ref. [52], the
third order term, proportional to A ∼ 1/L2 in the Williams
expansion of the near tip field, is also set by the specimen
width W . We assume a similar behavior for the bending test
used in the experiments, yielding Lexp

2 � W/2. This relation
is supported by the physical intuition that the term h/L2 in
the path equation (5) should be relevant when the crack starts
to feel the specimen boundary, i.e., for crack path excursions
h of the same order as the specimen half width. The values
of the structural lengths expressed in terms of sample dimen-
sions and microstructural length � (i.e., the bead radius in the
experiments and the grain boundary length in the simulations)
as well as the signs of the T stress and the parameter A are
provided in Table I. It is worth noticing the opposite signs of
the T stress in the simulations and in the thin strip experi-
ments that result from different boundary conditions: in the
simulations the stress is imposed so that the boundary can
move freely along the x direction, while in the experiments
the vertical displacement is imposed by clamping the upper
and lower part of the sample so that the strain εxx = 0 on the
boundaries.

APPENDIX C: PERTURBATION ANALYSIS
OF THE PATH EQUATION

To gain insight into the path equation (5), we introduce the
parameters

ε1 =
√

�/L1 and ε2 = �/L2, (C1)

equal to εsim
1 � εsim

2 � 0.003 in the simulations and ε
exp
1 �

0.04 and ε
exp
2 � 0.01 in the thin strip experiments. Employing

the change of variables

w = x/�

f (x) = h(x/�)/�

γ (x) = η(x/�), (C2)

the path equation (5) can be rewritten as

f ′(w+) = −ε1

∫ w

−∞

f ′(w̃)√
w − w̃

dw̃ − ε2 f (w) + γ (w), (C3)

where f and w are dimensionless and provide the crack per-
turbation and the distance along the mean crack path in units
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of �, respectively. The small values of ε1 and ε2 indicate that
they can be used as small parameters to perturbatively solve
the path equation in the context of the fracture tests performed
in this work. Thus, we seek a solution in the form

f (w) = f (0)(w) + ε1 f (1)(w) + ε2 f (2)(w). (C4)

Inserting this expression into the path equation (C3) and sep-
arating zeroth order terms from those proportional to ε1 or ε2,
we find

f ′(0)(w+) = γ (w)

ε1 f ′(1)(w) + ε2 f ′(2)(w) = −ε1I (w) − ε2
f (0)(w)

�
, (C5)

where I (w) = ∫ w

−∞
f ′(0) (w̃)√
w−w̃)

dw̃. In terms of the original vari-
ables, the zeroth order equation gives

h′(0)(x+) = η(x). (C6)

We recall that the term η describes the local shear perturba-
tions resulting from the material microstructure. We therefore
expect that it behaves as a short range correlated quenched

noise. As a result, the solution h(0) of the zeroth order equa-
tion predicts a directed random walk. This is consistent with
the numerical and experimental observations reported in this
study.

We now seek to determine the correlation function of the
local slopes along the crack path which, using the decom-
position (C4) expressed in terms of h(x) as h(x) = h(0)(x) +
ε1h(1)(x) + ε2h(2)(x), reads

C(δx) = 〈h′(x)h′(x + δx)〉x

= 〈h′(0)(x)h′(0)(x + δx)〉x

+〈h′(0)(x)[ε1h′(1)(x + δx) + ε2h′(2)(x + δx)]〉x

+〈h′(0)(x + δx)[ε1h′(1)(x) + ε2h′(2)(x)]〉x + · · · .

(C7)

Since ε1 � 1 and ε2 � 1, the terms proportional to ε1 and ε2

can be neglected. With the aid of Eq. (C6), Eq. (C7) reduces
to C(δx) = Cη(δx) = 〈η(x)η(x + δx)〉x. The correlator of the
local slopes therefore coincides with that of the quenched
disorder which implies that it is close to zero for δx > � as
also observed in our experiments and simulations.
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Phys. Rev. E 78, 046105 (2008).
[37] F. J. Gómez, M. Elices, and J. Planas, Eng. Frac. Mech. 72, 1268

(2005).
[38] G. I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962).
[39] B. K. Atkinson, J. Geophys. Res. 89, 4077 (1984).

055003-12

https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1080/00018730300741518
https://doi.org/10.1038/308721a0
https://doi.org/10.1209/0295-5075/13/1/013
https://doi.org/10.1103/PhysRevLett.96.035506
https://doi.org/10.1140/epjb/e2012-30471-9
https://doi.org/10.1007/s10704-016-0117-7
https://doi.org/10.1103/PhysRevLett.79.873
https://doi.org/10.1103/PhysRevE.78.016112
https://doi.org/10.1103/PhysRevE.58.6999
https://doi.org/10.1103/PhysRevE.75.016104
https://doi.org/10.1103/PhysRevLett.97.135504
https://doi.org/10.1051/anphys:2008044
https://doi.org/10.1051/epjap:1998194
https://doi.org/10.1103/PhysRevLett.97.125501
https://doi.org/10.1103/PhysRevE.76.036108
https://doi.org/10.1103/PhysRevE.91.012406
https://doi.org/10.1103/PhysRevLett.101.255501
https://doi.org/10.1103/PhysRevLett.114.215501
https://doi.org/10.1016/j.jmps.2013.10.003
https://doi.org/10.1209/0295-5075/30/2/005
https://doi.org/10.1007/BF00012619
https://doi.org/10.1016/0020-7683(92)90210-K
https://doi.org/10.1016/S0020-7683(97)00231-X
https://doi.org/10.1209/0295-5075/78/46006
https://doi.org/10.1103/PhysRevE.88.052402
https://doi.org/10.1140/epjb/e2003-00111-x
https://doi.org/10.1142/S0218348X93000101
https://doi.org/10.1103/PhysRevLett.98.255502
https://doi.org/10.1103/PhysRevLett.73.834
https://doi.org/10.1103/PhysRevLett.93.065504
https://doi.org/10.1103/PhysRevLett.92.245505
https://doi.org/10.1103/PhysRevE.74.046102
https://doi.org/10.1103/PhysRevE.71.026106
https://doi.org/10.1103/PhysRevE.78.046105
https://doi.org/10.1016/j.engfracmech.2004.09.005
https://doi.org/10.1016/S0065-2156(08)70121-2
https://doi.org/10.1029/JB089iB06p04077


UNIFIED SCENARIO FOR THE MORPHOLOGY OF CRACK … PHYSICAL REVIEW E 104, 055003 (2021)

[40] A. G. Evans, J. Mater. Sci. 7, 1137 (1972).
[41] A. Simone, C. A. Duarte, and E. Van der Giessen, Int. J. Numer.

Methods Eng. 67, 1122 (2006).
[42] Z. Shabir, E. Van der Giessen, C. A. Duarte, and A. Simone,

Modell. Simul. Mater. Sci. Eng. 19, 035006 (2011).
[43] X.-P. Xu and A. Needleman, J. Mech. Phys. Solids 42, 1397

(1994).
[44] J. Schmittbuhl, J. P. Vilotte, and S. Roux, Phys. Rev. E 51, 131

(1995).
[45] E. Bouchaud and L. Ponson, Fracture Mechanics of Heteroge-

neous Materials: A Statistical Approach (unpublished).
[46] E. Bouchbinder, I. Procaccia, S. Santucci, and L. Vanel,

Phys. Rev. Lett. 96, 055509 (2006).

[47] R. V. Gol’dstein and R. L. Salganik, Int. J. Fract. 10, 507
(1974).

[48] M. L. Williams, J. Appl. Mech. 24, 109 (1957).
[49] O. Ramos, P.-P. Cortet, S. Ciliberto, and L. Vanel, Phys. Rev.

Lett. 110, 165506 (2013).
[50] L. Ponson, Y. Cao, E. Bouchaud, V. Tvergaard, and A.

Needleman, Int. J. Fract. 184, 137 (2013).
[51] A. Akbari, P. Kerfriden, and S. Bordas, Philos. Mag. 95, 3328

(2015).
[52] G. Pallares, L. Ponson, A. Grimaldi, M. Georges, G. Prevot, and

M. Ciccotti, Int. J. Fract. 156, 11 (2009).
[53] M. Ciccotti, J. Am. Ceram. Soc. 83, 2737

(2000).

055003-13

https://doi.org/10.1007/BF00550196
https://doi.org/10.1002/nme.1658
https://doi.org/10.1088/0965-0393/19/3/035006
https://doi.org/10.1016/0022-5096(94)90003-5
https://doi.org/10.1103/PhysRevE.51.131
https://doi.org/10.1103/PhysRevLett.96.055509
https://doi.org/10.1007/BF00155254
https://doi.org/10.1115/1.4011454
https://doi.org/10.1103/PhysRevLett.110.165506
https://doi.org/10.1007/s10704-013-9846-z
https://doi.org/10.1080/14786435.2015.1061716
https://doi.org/10.1007/s10704-009-9341-8
https://doi.org/10.1111/j.1151-2916.2000.tb01625.x

