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Large-displacement symmetrical foldable cones
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A foldable cone, or f-cone, is a discrete vertex folded from flat with curved faces, and is an exemplar of
nonrigid origami. We determine the exact equilibrium shape of a well-folded symmetrical f-cone by geometrical
considerations alone, by treating as cones intersecting along original fold lines expressing equal fold angles.
When moderate displacements prevail, the shape is found alternatively from the spherical image of the vertex,
from deploying Gauss’s mapping. The analytical working is much less compared to direct linearization of
the exact solution framework; expressions for shape parameters are availed in closed form, and some of their
variation is accurately retained compared to the exact case.
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I. INTRODUCTION

Figure 1 shows several homemade disk structures, which
combine folding and elastic curving in an obvious way. A thin
steel shim is folded plastically in half in Fig. 1(a) to form a
shallow inverted ridge line, which is then pushed through, and
upwards, at its center point. The ridge line pops and folds in
the middle, into a vertex with two conical halves connected
across the original ridge-line fold angle.

If paper card is used instead, the ridge line is more flexible
and can unfold when forming the vertex. Being paper, how-
ever, it is much easier to adjust the ridge-line fold angle, for
example by pinching the ridge line shut with glue to give more
pronounced conical portions: see Fig. 1(b). Upside-down ver-
sions, in metal and in paper card, Figs. 1(c) and 1(d), have
the same shapes when folding is equivalent, which suggests
a dominating geometrical character, independent of material
choice.

The original disk can obviously be folded more than once
to form an immediate apex, with conical faces extending
outwardly, cf. the twice-folded symmetrical disk in Fig. 1(e).
Steel, again, ensures near-rigid fold angles, which prevail
when the vertex is pushed though to form another but shal-
lower conical form.

These motifs are commonly known as foldable cones, or
f-cones for obvious reasons, and first coined in Ref. [1]. They
are also bistable structures, simply made, with two stand-
alone shapes; only the singly folded case has plane facets
initially.

They were devised as the simplest exemplars of nonrigid
origami vertices. Traditional origami has, for decades, in-
spired the design of deployable structures, which unfurl by
the relative opening of flat facets, hinged together around
vertices in the folded state. Applications include solar panel
membranes, antennae surfaces, and a variety of expandable
and collapsible tubes [2].
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A foldable vertex must be kinematically mobile, which
first sets conditions upon the layout and operation of the
hinge lines around it (assuming the hinges themselves to be
singular lines and freely articulating) [3]. Ideally, the material
thickness is zero, otherwise free motion is stymied by facets
possibly colliding and thence deforming. From knowledge
of spherical mechanisms, alternative thick-walled mobile ver-
tices can be synthesized by placing the hinge lines on different
planes through the facet thickness [4].

Each f-cone here is created from a single planar disk, where
hinge lines are strictly folded lines with elastic resistance
relative to some initial fold angle [5]; thin paper card avails
low resistance while metal shim folds are near rigid in com-
parison. Because each fold line must also fold again in half to
form the apex of vertex, material stresses are, thus, singularly
concentrated at the apex in both directions of folding, which
may restrict natural formation of the apex shape. Even if fold
lines and the apex can articulate freely, an f-cone is never an
ideal mechanism because there is always deformation during
folding; rather, it is a compliant mechanism.1

Irrespective of fold-line behavior, the proponents of f-
cones originally studied the relationship between folding,
deformation, and bistability, assuming fold angles to be spec-
ified parameters and the apex of vertex to be formed freely.
Two particular folding schemes were considered, with equal
levels of folding in the same sense, as in Fig. 1 (and the object
of study here), or folded alternatively in opposite directions,
and with different fold angles in either sense; this second
scheme reduces the conical deformation for the same level of
folding compared to the first.

Conical, i.e., inextensible deformation is realistic from
using thin sheets; and, correspondingly, simplifies displace-
ments for a tractable analysis. A variational approach in
Ref. [1] establishes a final governing equation of moderate
displacements, which is then solved in closed form. Boundary
conditions are the displacement gradients along the edges of

1Strictly, it is a compliant shell mechanism [6].
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FIG. 1. Foldable cones, or f-cones, made from disks of steel shim
(a), (c), (e) or paper card (b), (d) folded once, (a)–(d), n = 2, or twice,
(e), n = 4. In (a) and (c), the planar folded disk is pushed through
and upwards to form two conical portions on each side of the fold
line; (c) is (a) in upside-down views. The fold line in (b) is fully
creased, with the conical halves meeting tangentially on the line;
(d) has the same shape as (c), in paper card. The twice-folded disk
in (e.i) is pushed through and downwards to form the shape in (e.ii);
both vertices are conically curved.

shallow conical portions, equal in size to the specified fold-
line angles; and, originating in a Lagrangian multiplier, a fixed
angular separation of fold lines in plan view to account for
portions being connected to each other. Analysis was subse-
quently enhanced to include nonsymmetrical layouts of fold
lines and large-displacement behavior in Ref. [7], in which
exact solutions of shapes for different folding schemes are
furnished as special elliptic functions of conical curvature.

The latter reminds us of the elastica solution for heavily
curved beams [8], which are also couched as elliptic func-
tions, except for the case of uniform bending under equal and
opposite moments applied to the beam ends, which is a simple
geometrical solution.

Equal folding delivers the same outcome for an f-cone,
in surface terms. Its exact shape thus comprises identical,
spatially uniform overlapping cones, which intersect radially
along the fold lines, where the rotation between the local tan-
gent planes is equal to the fold angle. This boundary condition
can be fulfilled by geometrical algebra alone, with solution
parameters as familiar conical shape terms such as the angle
of its apex, etc. Large rotations can be captured in closed
form, cf. the numerical approach needed in Ref. [7], and is
one solution aim here; we also show that bistable solutions are
inverted shapes for the same level, and direction, of folding.

We arrive at a set of coupled trigonometric expressions that
are solved implicitly for a specified fold angle. The degree of
coupling, however, does not easily avail direct expressions,
say, for moderate displacements from setting small rotations
and gradients. This is desirable because it provides a compact
linear basis written explicitly in closed form despite some
loss in accuracy. There are, of course, such descriptions from
Ref. [1] but they do not express a uniformly curved shape
for equal folding. Rather, enforcement of the Lagrangian

multiplier leads to in-plane forces, which induce extra,
nonuniform bending moments.

These forces are an artifact of the assumptions in Ref. [1]
for the approach taken. In particular, the width of each conical
portion between fold lines is reduced after rotating away from
horizontal contrary to the Lagrangian multiplier operation; a
second-order geometrical incompatibility is generated, which
leads to in-plane forces. The formulation is thus overcon-
strained but it is not erroneous: fictitious boundary conditions
are common as a worthy compromise for a solving advantage,
e.g., Mansfield’s inextensional theory [9].

We therefore turn to a different scheme, founded upon the
origami premise of vertex folding. From Gauss’s theorema
egregium [10], any such vertex has zero angular defect and
is said to be developable. Gauss also proves that the angular
defect is equal to the area of its spherical image, which is a
closed figure formed by mapping the orientation of the surface
around the vertex onto a sphere of unit radius. The image of
any developable vertex therefore has zero net area, which sets
a determinate relationship between the level of folding and
overall shape.

Constructing the spherical image of an f-cone is straight-
forward but evaluating zero net area must invoke rules of
spherical trigonometry, which are formidable at times; this
is not a worthy exercise given that the outcome will match
our exact geometrical solution. The corresponding image for
moderate displacements is, however, more simply configured
as a planar figure from assuming shallow gradients, as directed
originally in Ref. [11]. Obtaining the linearized solution from
the exact case is automatically conveyed by evaluating its
area conventionally. Furthermore, other f-cone properties of
shape are directly expressed from its spherical image, which
is worthy of comment.

The layout of this paper is as follows. Interconnected beam
elasticae are presented first in Sec. II as an introductory
geometrical analogy for f-cone behavior. Our two solution
schemes, the exact conical geometry and shallow spherical
image, then consider the simplest (singly folded) f-cone to-
gether in Secs. III and IV, respectively, before dealing with
general f-cones in Secs. V and VI. On the latter, there is nat-
urally more complexity and detail—and two conically folded
(bistable) states to account for: one upright and one inverted.
We present all results in Sec. VII, and new directions of study
are noted in our final discussions, Sec. VIII.

II. BEAM ELASTICAE

Equal and opposite bending moments, M, are applied to a
pair of straight beams in Fig. 2(a), which become ostensibly
curved and mirrored. The angle 2θ subtended by a uniform
radius of curvature, R, can be reexpressed, if required, in
terms of M, a bending stiffness B, and a beam length l as
θ = l/2R = Ml/2B.

The curved beams are brought together and slotted into
rotational fixtures. The applied moments are now internalized,
with the fixtures simulating a pair of permanent, symmetrical
folds in an elastica ring of arc length 2l .

The folded semiangle is μ, equal to θ − π/2 (or θ =
μ + π/2); while a trivial expression, the level of folding and
compatible curving are thus unique. An upper limit sets μ
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FIG. 2. Beam analogy for combined folding and curving of an
f-cone vertex: (a.i)–(a.iii); a pair of uniformly curved beams locked
together in rotational end fixtures, equivalent to n = 2; (a.iv) lo-
cal geometry of a general beam segment where μ, in particular,
is the fixture semiangle. (b.i), (b.ii) Two geometrically compatible
configurations when μ = π/2 (fully creased) for n = 4; (c) a beam
reconnected to itself (μ = π/2, arbitrarily) has nonuniform curva-
ture, equivalent to a single radial fold line in an f-cone (n = 1).

equal to π/2 when the beams ends in both fixtures are parallel,
i.e., fully creased. Setting μ = −π/2 restores straightness.

A general arrangement has n identical beams intercon-
nected by equal fixtures. Each beam portion subtends 2π/n,
with its center of curvature lying inside the ring. The perti-
nent triangle in Fig. 2(a.iv) has the same μ and θ definitions
as before, where summing interior angles to π returns μ =
θ − π/n.

A second inverted configuration has each center of beam
curvature lying outside, where μ = θ + π/n. Moving be-
tween the two states (if manufactured) may be achieved by
twisting the entire ring out of plane with, presumably, a clas-
sical bistable snapping through. The fully creased shapes for
n = 4 are shown in Figs 2(b.i) and 2(b.ii), where θ = π/2 ±
π/4. The ring outline clearly resembles a cross-sectional,
horizontal slice through the four-sided vertex in Fig. 1(e.i).

When n = 1, a single beam is curved and reconnected to
itself by a single fixture, see Fig. 2(c). The final shape cannot
be uniformly curved although end moments must be applied
to maintain a specified fold angle; its ends must also be prised
apart by collinear forces before slotting into the fixture. The
bending moments around the ring are no longer constant but
are solved as an elastica elliptic function. Axial forces are thus
present in nonsymmetrically folded scenarios.

III. BASIC F-CONE: n = 2

The folded shapes in Figs. 1(a)–1(d) can be characterized
entirely by properties of the single fold line: the semiangle of
the vertex measured along the fold line, denoted by λ; and the
folded semiangle across it, μ. The disk deforms on either side
to form geometrically compatible conical halves.

The left-side conical half is excised and tilted so that its
base rests horizontally in Fig. 3(a). This partial, open cone sits
upright, with its apex Q located vertically above the origin of
a coordinate system, O: the plane PQR divides both halves of
the original f-cone, and is our vertex fold plane.

The uniform radius of the cone base is r and subtends an
angle of π + 2θ radians from P to R, i.e., an increase of 2θ

relative to the flat half. The original radius of the flat disk is
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FIG. 3. Conical geometry of a singly folded f-cone vertex (n =
2). (a) Conical half, with its base resting horizontally and subtending
π + 2θ radians; μ is the semiangle of the fold line, and λ, the vertex
semiangle. (b) Vertical (i, k) plane through cone indicating apex
semiangle, α, and other auxiliary parameters. (c) PQR plane isolated
from (a); (d) conical base locus from (a) showing tangential unit
vector, t.

now a geodesic radius, rG, extending from the apex to every
point on the base: e.g., QP = QR = rG.

Orthogonal fixed unit vectors i and j lie in the horizontal
plane, k is vertical, and altogether they form a right-handed
set. A symmetrical vertical plane is specified by j, and the
cone, with the fold plane, is tilted by a positive angle β along
−j.

The side view in Fig. 3(b) also indicates the semiangle of
cone apex, α, its vertical height h above O, and an intrinsic
length l extending from Q normal to PR. There is also an
auxiliary unit vector e∗ acting normally to the PQR plane such
that e∗ = i cos β + k sin β.

The triangular opening formed by PQR shrinks as folding
is increased, up to a closing limit of θ = π/2 or a fully creased
limit of μ = π/2, whichever occurs first. Note that the vertex
semiangle, λ, is also the inclination of QP, or QR, relative to
the horizontal within the PQR plane; see Fig. 3(c).

In the (i, j) plane in Fig. 3(d), we see the base outline of
cone and a tangential unit vector, t, at R equal to i cos θ −
j sin θ . This vector also lies in the plane tangential to QR,
which is rotated from the fold plane by μ. The evaluation
formally uses the scalar dot product:

t · e∗ = cos μ → cos μ = cos θ cos β. (1)

We can substitute for β by observing from Fig. 3(b) that
cos β = h/l and l2 = h2 + r2 sin2 θ . For the cone itself, h/r =
tan α and r/rG = cos α; and inextensibility of the arc length of
base returns (π + 2θ )r = πrG.

Eliminating r/rG and β between expressions and noting
from the PQR triangle in Fig. 3(c) that cos λ = r cos θ/rG, we
ultimately find:

cos α = 1/(1 + 2θ/π );

cos μ = cos θ/(1 + sin2 θ/ tan2 α)1/2;

cos λ = cos θ cos α. (2)
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Their ordering is deliberate for solving purposes, which can-
not relate μ and λ explicitly. Instead cos α is computed from
a specified nonzero value of θ , from which we find tan α.
Both θ and α values are substituted into the second and third
expressions above, in order to unite μ and λ implicitly.

We can determine a range of solution values, as if varying
the fold angle: this is conveyed later with some general f-cone
results but we first note two solution cases. Equation (1) is
satisfied simultaneously by the limiting conditions μ = π/2
and θ = π/2. A fully folded (viz. fully creased) f-cone thus
comprises two closed conical portions, which glance each
other on a single vertical line (λ = 90◦). The corresponding
apex semiangles from Eq. (2) are 30◦, which is also the value
for β, and their conical shapes can now be drawn alongside
the earlier informal experiments (as part of a general set) in
Fig. 11(a), to convey their similarities.

At the other extreme we assume a small fold angle (μ) for
a linearized solution along with small values of α, θ and λ.
Rewriting the (first) inextensibility condition in Eq. (2), we
obtain:

θ = π

2
· 1 − cos α

cos α
≈ π

2
· 1 − (1 − α2/2)

1 − α2/2
≈ πα2

4
(3)

after setting cos α ≈ 1 − α2/2 from its series expansion.
In the second expression in Eq. (2), sin θ ≈ θ and tan α ≈

α. Assuming that cos(..) is always written as 1 − (..)2/2 when
(..) is much less unity, then

1 − μ2/2 ≈ 1 − θ2/2

(1 + θ2/α2)1/2 ≈ 1 − π2α4/32

1 + π2α2/32
(4)

from using Eq. (3) and noting from the binomial theorem that
(1 + [..])1/2 ≈ 1 + [..]/2. The top line approaches unity faster
than the bottom and may be set equal to unity outright; the
bottom line can be brought up top using the binomial again,
i.e.,

1 − μ2/2 ≈ 1

1 + π2α2/32
≈ 1 − π2α2/32 → μ

= (π/4) · α. (5)

The final expression in Eq. (2) is also written in terms of series
expansions to yield λ2 = α2 + θ2. Replacing θ with Eq. (3),
taking the square root and employing the binomial theorem,
we find λ ≈ α(1 + π2α2/32). Ignoring small higher-order
terms compared to unity, then:

λ ≈ α → μ = (π/4) · λ. (6)

A final linear expression is fortuitous despite the second-
order dependency of θ upon α; the relative simplicity of
terms has enabled us to make sensible judgments about which
terms prevail or otherwise. Equation (6) is now obtained by a
different route, with much less algebra.

IV. SPHERICAL IMAGE: n = 2

The folded f-cone shape is drawn again in Fig. 4(a.i). A
sample set of unit vectors normal to its surface are labeled
1 . . . 6 and circulate in an anticlockwise direction around the
apex. In plan view in Fig. 4(a.ii) their nominal inclinations
away from vertical are indicated schematically.

(a.i) (a.ii) (b.i) (b.ii)
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FIG. 4. Spherical image construction for singly folded f-cone
vertex. (a.i) Some unit vectors, 1–6, normally appended to the vertex
surface, circulating anticlockwise; (a.ii) schematic orientation in plan
view. (b.i) Planar projection of corresponding spherical image for
shallow displacements: the north pole (black dot) is the vertex apex;
each curved path is semicircular, and the circulation follows the unit
vector sequence in (a). Three areas enclosed by the profile in (b.i):
A1, twice (white), and A2 (gray); (b.ii) is half of the image again, A3

is an auxiliary area.

The spherical image arises from mapping normal unit vec-
tors onto the surface of a unit sphere with the same normal
orientation to produce a closed figure around the vertex.
Relative to the apex unit normal at the north pole, 1 . . . 6
are located by their relative inclinations: “1” is thus south-
westerly, “2” easterly, etc.

The image clusters around the pole when gradients are
shallow and is practically flat, as drawn in Fig. 4(b.i). The
path taken from 1 to 3 through 2 is a circular arc because the
underlying cone is uniformly curved; this is reflected about
a vertical pole line in plan view for 4 . . . 6. The center of
curvature of each arc is displaced horizontally from the pole
when each conical portion tilts inwards to the fold plane.

Moving across the fold line beyond 3 to meet 4 (and from
6 to 1), there is an abrupt reversal in surface gradient equal
to the total fold angle, 2μ. Both arcs are now connected by
horizontal lines of length 2μ assuming no change in the angle
subtended radially by each conical half, i.e., π radians and
θ = 0.

The fold angle across the vertex pole, 2λ, is found equiva-
lently from a unit normal traversing the apex within a vertical
plane. This normal bisects the “3” and “4” normals initially
and thus starts midway on 3–4 before finishing at the center
of 6–1; this length is the image height in plan view.

There are two crossing points in the completed image,
which separate three distinct areal portions: A1 top and bot-
tom, enclosed clockwise, and A2 in between, anticlockwise.
These areas oppose in the sense of their sign, allowing for zero
area in accordance with Gauss’s inextensibility requirement
by setting 2A1 = A2. There are rectangular and semicircular
features, and noting the extra area, A3, colored in Fig. 4(b.ii):

A3 + 2 × (A1/2) = μ · 2λ; A3 + A2/2 = πλ2/2. (7)

Eliminating A3, we find:

2μλ − πλ2/2 = A1 − A2/2 = 0 → μ = (π/4) · λ (8)

as per Eq. (6).
The linear expression is plotted alongside the exact solu-

tion from Eqs. (2) in Fig. 10(a), and other results calculated
later. There is practically no difference in performance up to
μ ≈ 0.5 radians before then diverging.
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FIG. 5. Conical geometry of f-cone with n radial fold lines (n =
4, arbitrarily). (a) Single conical portion, (b) vertical slice plane,
(c) base locus; and various auxiliary geometrical parameters.

Compared to the analytical linear solution in Eq. (3), θ has
been zero, as noted. Accounting for nonzero θ would change
the image by lengthening the semicircular arcs and connecting
them with gently curved arcs for the fold angles, instead of
straight. Such refinement adds (1 + π ) · (θ/2) to the prefactor
in Eq. (6), i.e., a negligibly small change, which does not alter
the fundamental linear result.

V. GENERAL F-CONE: n > 2

An n-sided f-cone has n radial fold lines originally sepa-
rated by 2π/n radians. When n is even, there are n/2 diametral
fold lines, otherwise, each fold line is half of a traditional fold
line for n odd.

The upright state corresponds to the apex pointing up-
wards, and vice versa during bistable inversion; and the fold
lines are always folded as valleys with the same fold angle.
Each conical portion deforms between two vertical planes
passing through adjacent fold lines, which, together with the
vertical pole axis and the horizontal plane, form bounding
triangles, see Fig. 5(a).

A general upright conical portion is also shown in Fig. 5(a),
which has been tilted to the horizontal. Some definitions are
the same as Fig. 3: the uniform base radius is r, the conical
apex semiangle is α, Fig. 5(b), and the geodesic conical radius
from the apex is rG. The fixed set of orthogonal unit vectors
remains, as do points P, Q, and R on the cone.

The angle subtended by r is now 2π/n + 2θ but drawn in
Fig. 5(a) to be less than π ; we account for being larger than π

later. Inextensibility of the base arc-length sets r/rG = 1/(1 +
nθ/π ), which is also equal to cos α from Fig. 5(b).

The conical surface therefore lies behind the j, k plane,
with the PQR plane rotated by β along j in Fig. 5(b). From
auxiliary parameters a, h and l , cos β = h/l and l2 = a2 + h2.
In Fig. 5(c) we see a = r cos (π/n + θ ), whence cos β =
1/(1 + cos2 (π/n + θ )/ tan2 α)1/2. The original f-cone verti-
cal axis also tilts to become QS, where S is a new point on
the i axis and rotated from PQR by φ, as shown: a normal
unit vector in a vertical plane, e∗, is written as i cos (φ − β ) +
k sin (φ − β ).

QPS and QSR are thus the tilted fold planes, with a unit
vector, p, normal to the latter. Figure 5(c) indicates a horizon-
tal tangent unit vector, t = i sin (π/n + θ ) + j cos (π/n + θ ),
and the fold semiangle, μ, is thus calculated via cos μ = t · p.

Looking along QS where the planes either side are ro-
tated in true view by 2π/n, we observe that p has relevant
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FIG. 6. Geometry of prism from Fig. 5. Note that S′ differs from
S because the plane PRS′ is normal to QS.

components j cos (π/n) and e∗ sin (π/n). Hence:

cos μ = t · p = sin (π/n + θ ) sin (π/n) cos (φ − β )

+ cos (π/n + θ ) cos (π/n). (9)

An isolated prism resting on the fold planes in Fig. 6 with
a face PRS′ normal to QS (S′ being different to S) provides
auxiliary geometrical detail; in particular, two lengths, b (=
PR/2, also shown in Fig. 5) and c, and two semiangles, ξ and
γ , on the outside faces, where:

sin ξ = b/rG, sin γ = S′P/rG, cos (π/n) = c/S′P → b

= rG sin ξ, c = rG sin γ cos (π/n). (10)

Inside the prism, sin φ = c/(rG cos ξ ). Replacing c us-
ing the above: sin φ = sin γ cos (π/n)/ cos ξ . To express γ ,
we observe sin (π/n) = b/S′P where, replacing b, sin γ =
sin ξ/ sin (π/n). Back substituting into sin φ and tidying up:
sin φ = tan ξ/ tan (π/n). From Fig. 5(c), b = r sin (π/n + θ );
thus sin ξ = cos α sin (π/n + θ ).

Altogether, we have, in order of specification:

cos α = 1/(1 + nθ/π );

cos β = 1/(1 + cos2 (π/n + θ )/ tan2 α)1/2;

sin ξ = cos α sin (π/n + θ ); sin φ = tan ξ/ tan (π/n). (11)

For a specified value of θ , we may calculate φ and β, whence
μ via Eq. (9).

The limit of θ is π − π/n when the cone base wraps around
completely by 2π radians. However, when θ > π/2 − π/n,
the conical portion subtends more than π radians, which alters
the definitions of β and φ: see Fig. 7(a). Correspondingly,
terms with φ − β in e∗ and cos μ are replaced by φ + β;
everything else remains the same.

The final f-cone shape is reassembled by first undoing the
tilt of a conical portion, tantamount to rotating by φ − β along
j, Figs. 7(b.i) and 7(b.ii), and restoring the f-cone axis as
vertical. The new surface is then repeated n − 1 times around
k at intervals of 2π/n, which effectively stitches each portion
to the next along their fold lines.

The second, inverted arrangement maintains the same fold
angle and thus follows the same geometrical assessment (all
other terms remaining positive). However, restoring the tilted
conical portion must replace φ by φ′, see Fig. 7(c), where φ′ =
π − φ, in order to convey the inverted f-cone shape.
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FIG. 7. (a) Vertical slice through conical portion, which subtends
more than π radians; β and φ differ compared to Fig. 5(b). Restora-
tion of conical portion, (b.i), by rotating its axis back to vertical,
(b.ii), for an upright f-cone; (c) as (b) for inverted f-cone, φ′ is equal
to π − φ.

Finally, the vertex semiangle, λ, has the same definition
as before; of measuring the vertical angle of inclination of
a fold line away from the horizontal. Calculating its value
from the f-cone shape follows the scheme in Fig. 8 for the
upright shape; for the inverted shape, φ is replaced by φ′.
The f-cone fold lines form the inclined edges of a pyramid
with two internal triangles highlighted, relating to φ and λ.
Comparing their geometries yields:

tan λ = cos (π/n)/ tan φ. (12)

Before dealing with general results, we derive the linearized
shape by extending the previous spherical image approach.

VI. SPHERICAL IMAGE: n > 2

Figure 9 conveys the spherical images for general folded
upright and inverted f-cones (where n = 3 arbitrarily in the
figure). The upright case is a straightforward extension of
Fig. 4(b.i), with n circular arcs subtending 2π/n radians and
interconnected continuously at their ends by fold-angle lines,
2μ, Fig. 9(a.i). The image has n exterior lobes attached to
the corners of a curved interior core where the image crosses
itself, and λ is measured from the pole point normal to the 2μ

fold line.
Specific lobe and core geometry is detailed in Fig. 9(a.ii),

where three areas are highlighted: A1, half of the lobe area;
A2, 1/(2n)th of the core area, which is equal to A1 from
Gauss’s inextensibility requirement; and A3, which completes
the sector area with A2. Each arc has a radius of curvature,
ρ, equal to λ + μ/ tan (π/n) after inspecting the trapezium
formed by adding A1 and A3. Its area, and that of the sector,
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FIG. 8. (a) Fold lines of an f-cone forming the edges of a regular
pyramid (n = 4, arbitrarily). Vertical pyramidal planes, (b.i) and
(b.ii), for relating the vertex geometry between φ, λ, and n.
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FIG. 9. Shallow spherical images for a general f-cone (n = 3,
arbitrarily) when, (a), upright, and (b), inverted. Overall images are
(a.i) and (b.i), with local areal detail in (a.ii) and (b.ii) respectively.

are

A1 + A3 = λμ + (1/2)μ · μ/ tan (π/n);

A2 + A3 = (1/2)ρ2(π/n). (13)

Eliminating A3 and setting A1 = A2, we find: λμ +
μ2/2/ tan (π/n) = (1/2)ρ2(π/n). Substituting for ρ and re-
arranging into quadratic form:

λ2(π/n) tan2 (π/n) + λμ[2(π/n) tan (π/n) − 2 tan2 (π/n)]

+μ2[π/n − tan (π/n)] = 0, (14)

which may be solved for the roots:

(λ/μ) · (π/n) = [1 − (π/n)/ tan (π/n)]

± [1 − (π/n)/ tan (π/n)]1/2. (15)

A positive value stems from selecting “+” under the ambigu-
ous sign.

The image features swap places for the inverted f-cone;
Fig. 9(b.i): the fold-angle lines now enclose the core portion
and there is a sizable reduction in ρ and λ, comparatively. Slic-
ing halfway through a lobe and some of the core, we obtain the
outline in Fig. 9(b.ii) with highlighted areal portions: A1 and
A2 deal with the lobe and core, A3 is the sector area altogether.

Two auxiliary lengths, d and e, are also introduced, where
d + e = μ and tan (π/n) = e/λ = d/ρ. Correspondingly:

A1 + A3 = (1/2)ρd; A2 = (1/2)eλ; A3 = (1/2)ρ2(π/n).

(16)

Eliminating A3 and setting A1 = A2, as per Gauss, ρd −
ρ2(π/n) = eλ, which has the final quadratic expression (after
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FIG. 10. Variation of f-cone vertex semiangle, λ, with fold angle,
μ, for specified n (blue-to-red, n = 3 . . . 15): (a) upright f-cones,
(b) inverted. The solid black line, (a), is for n = 2; dashed line is
Eq. (6), linear solution. (There is no inverted solution for n = 2.)
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FIG. 11. Rendered shapes compared to models from Fig. 1.
(a) n = 2 and μ = π/2; (b) is much less folded; (c) and (d), the same
upright and inverted f-cone.

some manipulation):

λ2(π/n) tan2 (π/n) − λμ[2(π/n) tan (π/n) − 2 tan2 (π/n)]

+μ2[π/n − tan (π/n)] = 0. (17)

Compared to Eq. (14), only the sign of the middle term
differs, which changes the sign of root terms not their expres-
sions. From the positive root the final relationships for both
spherical images may be written:

(λ/μ)(upr, inv) · (π/n) = ∓[1 − (π/n)/ tan (π/n)]

+ [1 − (π/n)/ tan (π/n)]1/2. (18)

Finally note that ρ in both images is equivalent to the local
apex semiangle of the conical portions. After some algebra,
we ultimately find:

(α/μ)(upr, inv) = ±(λ/μ) + 1/ tan (π/n), (19)

which, with other parameters, is now compared to exact solu-
tions.

VII. PREDICTIONS

Values of λ and μ as a function of n in the range 3–15
(arbitrarily) are calculated using Eqs. (9), (11), and (12). Their
variations are plotted in Figs. 10(a) and 10(b) for upright and
inverted f-cones, respectively. The exact solution for n = 2 via
Eqs. (2) is included in Fig. 10(a) along with the linear solution
from Eq. (6).

The general trends for both orientations become more
linear with n increasing. For a specific fold angle, an up-
right vertex becomes shallower, i.e., λ decreases; an inverted

f-cone behaves oppositely but has smaller displacements from
reduced levels of λ outright.

In both cases, the variations appear to converge to one
another as n gets larger, albeit slowly: Eq. (18) suggests
a limiting ratio for λ/μ ≈ 1/

√
3 when n tends to infinity;

or λ = 0.907 when μ = π/2, which appears to be accurate
from calculating and plotting variations with a much higher
limit of n.

Some f-cone shapes are rendered in Fig. 11 using MATLAB

[12] to match the physical forms from Fig. 1. The latter’s
fold angles are measured crudely using a protractor in order
to stipulate μ, and the rendered views aligned with them in
the photographs. All shapes compare rather well.

A more formal assessment of the folded properties is de-
livered in Fig. 12 for upright f-cones and in Fig. 13 for their
inverted states. Five final values of μ equal to μf are specified,
from a moderate fold angle, π/12, to being fully creased, π/2
radians. We compute the corresponding final values of θf , αf

and λf over the previous range of n; values are normalized
with respect to μf , for comparison.

For upright f-cones, θf/μf values increase with more fold-
ing but at slower rates with n. Starting values (n = 3) of θf/μf

for inverted f-cones are always smaller, rise quickly with n
before slowing.

Extra variations are plotted from linearizing the inexten-
sibility expression from Eq. (11). Assuming a small apex
semiangle, cos α ≈ 1 − α2/2; using the binomial theorem and
rearranging, we find:

α2 ≈ 2nθ/π → (θ/μ) = (α/μ)2 · (μ/2) · (π/n) (20)

with α/μ given by Eq. (19) after replacing λ/μ from Eq. (18):
the subscript “f” is reintroduced. Note that θ above is not
availed by the spherical image analysis, as discussed for the
case of n = 2. Except for lowest μf , the trends are poorly
captured linearly for upright f-cones, Fig. 12; but matters are
reversed for inverted f-cones, Fig. 13, where initial (low n)
behavior is rather good, and well maintained over n when μf

assumes moderate values.
The apex semiangle trends with μf are reversed, with the

largest ratios of αf/μf occurring when folded the least; the
rate of increase with n attenuates throughout. The linearized
expressions, Eq. (19), are included, which, unsurprisingly,
fare best when μf is lowest and the deformation is smallest.
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FIG. 12. Variation of final (subscript “f”) parameters with n for specified fold angles (π/12 . . . π/2) for upright f-cones. Dots are exact
geometrical solutions, and curves are linearized solutions via Eqs. (20), (19), and (18), respectively.
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FIG. 13. As Fig. 12, for inverted f-cones.

Again, the comparison is better for inverted f-cones because
their displacements are naturally smaller.

Finally, the variations of λf/μf with n oppose, with the
ratio decreasing for upright cones and vice versa. Compared
to θf and αf , the trends are, however, closely packed—even
converging altogether for inverted f-cones. The linearized pre-
dictions from Eq. (18) provide remarkably good boundaries
on behavior, presumably from the near-linear behavior of
exact solutions in Fig. 10.

VIII. DISCUSSION

We have argued that the shape of uniformly folded, inex-
tensible f-cones depends only on their kinematical boundary
conditions: we do not solve an equilibrium problem, rather,
one of geometrical packaging. The exact conical shape stems
from solving a set of coupled, nonlinear trigonometric (and
algebraic) equations as a function of the number of fold lines
and their level of folding; a principal output is the fold angle
of the resulting vertex.

Because we assume developable folding, an exact spheri-
cal image via Gauss’s mapping yields the same geometrical
description: our equations resemble typical relationships from
spherical trigonometry [13]. A planar approximation of this
image, however, affords an alternative linearized solution
describing shallow gradients from small fold angles, which
commands less working. We have not directly compared our
analysis to the seminal study in Ref. [1] because their shapes
are not uniformly curved (but we expect any differences in
shape predictions to be very small, for shallow displacements,
at least).

A singly folded (n = 2) f-cone is a bistable structure with
a flat-folded configuration and a single vertex state; otherwise
(n > 2) f-cones are bistable vertices. An inverted f-cone has
less conical deformation and a smaller vertex angle compared
to the upright case folded the same. The more fold lines there
are, the smaller the limit of vertex folding—because more
conical portions are required to form.

The f-cone is also a type of conical defect, which can arise
when thin-walled structures deform heavily [14]. In many
related studies of defect shape, governing equations of de-
formed equilibrium are sought accordingly while embracing
singular properties at the vertex of curvature and stress (viz.
strain, bending strain energy density). Their success depends

on capturing the true constitutive nature, elastic and inelastic,
of whatever singular features arise, naturally or otherwise, and
is a nontrivial exercise [5].

Because of symmetry and uniformity in our packaging
approach, we can circumvent these difficulties and focus on
the exact geometry. Variations on the vertex character are also
simpler to propose and to study, for example, when there are
nonuniform fold lines and fold angles, which admit, never-
theless, uniform shapes throughout. Taking inspiration from
Fig. 2, we may start with interconnected beams of different
lengths but uniformly curved, for example.

Furthermore, we refer to the fabric sculpture in Fig. 14.
Clearly, this is an f-cone but one which cannot be laid flat; not
because the fold lines are themselves curved, rather because
the total angle subtended around the vertex appears to be well
below 2π .

There is thus angular deficit and a corresponding spherical
image with net area [10]. Even though it is not strictly de-
velopable from flat, the vertex can deform inextensibly once
assembled from its individual pieces. There are now limits
on the range of deformation compared to an ordinary f-cone,
which may be revealed by having the deficit as an independent
parameter when evaluating the spherical image area. We leave
this exercise to the interested reader.

Finally, the packaging intent of f-cones is truly expressed
only if the level of folding can be controlled, presumably

(a) (b) (d)

(c)

FIG. 14. Fabric f-cone artwork hanging in the Royal Victoria
Hospital, Belfast (photographed by author circa July 2019). (a) Gen-
tly curved rods emanating from the apex, support a heavy fabric,
hanging in conical sections; (b) base outline resembles the beam
analogy from Fig. 2; (c) apex structural details; (d) axial view of
pillowed interior.
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FIG. 15. Buckled f-cone made from thin copper beryllium sheet,
whose unique ductility and hardness allow for many close fold lines
(n = 24). No longer uniform but nearly cylindrical about a given
axis, (a). This axis can be cycled around the disk almost neutrally,
(b.i)–(b.iii); compare the cylindrical orientation to a fixed marker line
(black) on the underside of disk (shown inverted).

by some external agency: our study, and that of others,
establishes a snapshot of correspondingly viable conical de-
formation. But consider the folded metal disk in Fig. 15, made
by the author over a decade earlier as a proof of concept for
introducing residual bending prestresses in a simple way.

Rather than folding about successive diameters, each fold
line is created by drawing a scribe tool along the diame-
ter, which permits better control of how folding is imparted.

Because folding is permanently set along many more lines
than usual (n = 24, in this case), the interlineal spaces are
imperceptibly curved (conically) but curved nevertheless, and
the vertex shape rather weak.

The shape is, however, dominated by the prestresses,
which approach the continuum case of uniform radial bending
throughout. This is similar to the case of heating a bimetallic
disk, which attempts to become doubly curved; but here, there
is no circumferential bending intent, and thus interlineal con-
ical bending can prevail to an extent. But like the heated disk,
there is a threshold of folding extent (viz. heating levels [15]),
which leads to a mode of near-developable, singly symmetri-
cal displacements, as if the disk has buckled under progressive
folding.

In Fig. 15 we therefore see an almost neutrally stable
folded disk, whose shape can be circulated manually about
a central axis with little resistance because of the general
axisymmetry of the prestresses. From close inspection, local
conical bending, however, remains, which presents an intrigu-
ing hierarchy of displacements compared to the overall shape,
worthy of future study.
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