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Aging-induced dynamics for statically indeterminate systems
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Statically indeterminate systems are experimentally demonstrated to be in fact dynamical. Take the classic
problems of a beam with three supporting points, granules in a silo, and a ladder leaning against a wall, for
instance; their reaction forces are found to vary logarithmically for over 104 s with an increment or decrement of
more than 10%. This seemingly contradictory mixture of dynamics for a static system is shown to derive from
the evolution of microcontact area with the ground and/or wall due to the aging effect.
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I. INTRODUCTION

Statically indeterminate systems are frequently encoun-
tered by architects, engineers, and physicists, such as a chair
or a beam with more than three or two legs or supporting
points, the weight of granules in a silo, and a ladder leaning
against the wall, as depicted schematically in Figs. 1(a)–1(c).
The reaction forces outnumber the equilibrium equations in
these systems and, therefore, are insufficient to be uniquely
determined. Physically, this implies that they are prone to
small perturbations because there are an infinite number of
solutions.

For the sake of illustration, we shall first concentrate on
the ladder-wall problem known to all students learning statics
[1] as well as a practical case concerning industrial safety
[2,3] and report an unanticipated dynamical property that has
eluded the scrutiny of scientists for so many years. Consider
the beam in Fig. 1(c). The friction and normal forces are
denoted by f1,2 and N1,2, where subscripts 1 and 2 refer to the
reaction from the floor and wall. At equilibrium, the equations
balancing planar forces and torques can be written as:

N2 = f1

N1 + f2 = W

W

2
(L cos θ − d sin θ ) = f2L cos θ + N2L sin θ, (1)

where W , L, and d denotes the weight, length, and width
of the beam. Clearly these three equations are insufficient to
uniquely determine the four unknown reactions.

Various textbooks and researchers have considered the
problem [4,5], but there is no consensus so far. For instance,
Mendelson [6–9] argued in 1994 that the correct limiting
condition is that the friction force at the top of ladder is
equal to the maximum static friction. This was disputed by
González and Gratton [10] two years later, who proposed that
the missing condition lies in analyzing flexion. Dissatisfied
with both assumptions, we decided to verify their validity and
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come up with a less ad hoc theory. But, as will be delineated
later, more mysteries were unfolded, mainly an unexpected
dynamical behavior for this static setup [11].

II. EXPERIMENTAL SETUP AND METHODOLOGY

To probe the nature of the ladder-wall system, three sepa-
rate observations, namely the (a) photoelastic (PE) response,
(b) time evolution of forces, and (c) real contact area were
analyzed. The setup for these three observables will be spec-
ified explicitly later. In our experiments, the indeterminacy in
Eq. (1) is resolved by measuring f1. As shown schematically
in Fig. 1(c), the beam is placed on a movable floor piece where
all friction is eliminated by the rollers underneath [12], and
f1 comes solely from the fixed horizontal force sensor (Futek
LRF 400). The sensor is placed on a micrometer, effectively
allowing us to fine-tune the geometry and initial conditions of
the setup. Experiments are all conducted on an optical table
with an rectangular aluminum beam of L = 10 cm, d = 4 cm,
and W = 475 gw. In practice, measurements of f1 are largely
influenced by initial conditions and ambient noise. To elimi-
nate these factors, the beam is kept several millimeters away
from the wall before each trial with an automated electro-
magnet. By shutting down the electromagnet, the beam is
gently dropped onto its leaning position in a controlled and
reproducible fashion at the designated angle. Furthermore, the
entire setup is put in a large box to shield from wind, while
temperature is conditioned at 20 ± 1◦C and humidity at 50 to
55%.

A. Photoelastic response

The wide range of solutions allowed by the system can
be illustrated by attaching a piece of photoelastic material,
PSM-4 by Vishay Instruments, onto the rigid wall [13,14].
By imposing a minute displacement ε ≈ 0.2 mm on the floor
piece via adjusting the micrometer so that the change in θ is
negligible, redistribution of the local stress on the PSM-4 can
be observed, as well as a substantial variation in the measured
forces, shown in Figs. 1(d)–1(g)
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FIG. 1. Schematics of the experimental setup and free body di-
agram for (a) a beam with three supports, (b) a narrow granular
silo, and (c) the ladder-wall system. Normal and frictional forces are
represented by blue and green arrows, while weight in yellow. Box in
magenta represents the force sensor. [(d)–(g)] Close-up photoelastic
images at the contact point between the ladder and wall. Starting
from (d), the micrometer drives forward a distance of ε ≈ 0.2 mm
before the next photo is taken. Force vectors in red arrow are then
calculated from the corresponding reading of the force sensor.

Contrary to conventional wisdom in statics, it came to our
attention that the stress distribution is in fact dynamical. A
series of photoelastic photos were taken at different times with
the PE setup. To facilitate contrast, the images at subsequent
t > 0 are turned into gray scale and subtracted from that at
t = 0. The illuminated area corresponds to where fringes have
expanded into. Figures 2(a)–2(c) show that the expansion is

FIG. 2. (a) Side view of local photoelastic fringes on PSM-4
attached on the wall at t = 0. [(b) and (c)] Differential image of
the same view for contrast at t = 10 and 500 s. (d) Typical data
of f2 in the main setup at θ = π/4. For t � 3 × 103 s, the data
can be fit by the dashed line, α + β ln t with α = 105.1 gw and
β = 1.367 gw. But if we expand t to 2 × 104 s, then a exp(−bt ) + c
with a = −7.000 gw, b = 2.91 × 10−4 1/s, and c = 112.953 gw
becomes a better fit (solid line). The left inset shows that the values of
α, β fluctuate with different tries and there is no obvious correlation.
In contrast, b ≈ (2.32 ± 0.52) × 10−4 in the right inset.

considerable, suggesting a comparable rate of increase for
stress in the vicinity of contact points.

B. Main setup and time evolution of forces

To rule out possible viscoelastic effects from the PSM-4,
the wall was replaced by a fixed large aluminum block, with
an #80 aluminium oxide abrasive paper of surface roughness
Ra = 1.8 μm attached to the surface. This renders a larger
static friction coefficient for the benefit of later experiments.
In addition, we attached a hard PVC edge guard by 3M
with Young’s modulus ≈ 2 GPa to the contact edge of the
aluminum beam against the wall. The edge guard avoids un-
wanted effects from the sharp edge of the aluminum beam and
is regularly renewed after each trial along with the abrasive
paper. We have checked the robustness of our conclusions
by (1) removing the edge guard and sand paper from the
beam-wall contact, (2) blunting the sharp edge of beam to
increase its contact area with the wall, and (3) testing on other
materials (i.e., acrylic, stainless steel, and wooden beams) and
shapes (such as whiteboard pen and sharpened pencil.)

Unexpectedly, experiments conducted with the main setup
described above shows the reading to drop monotonically
for up to 2 × 104 s. Such a trend reflects a 10% increase in
f2, as shown in Fig. 2(d). To check whether the beam is
subject to any mesoscopic slippage, a standard optical lever
experiment with a mirror on the back of the beam is carried
out. It is estimated that such variation in the reaction forces
would correspond to roughly 10−3 rad in θ for θ ≈ π/4, yet
no variation of this magnitude was observed. For the benefit
of later discussions, we convert the f1 data to f2 in Fig. 2(d)
that can be nicely fit by α + β ln t , characteristic of an ag-
ing effect [15–17]. Deviations eventually becomes evident as
the data approach a flat plateau after roughly 104 s, where
a exp(−bt ) + c becomes a better fit.

A logarithmic growth in static friction coefficient μ, known
as frictional aging, has been observed for various materials
including metals [18,19], rocks [20,21], and glassy polymers
[22–26]. One may falsely think that the observed time evo-
lution of f2 stems from the aging of μ2. This would amount
to assume that the contact point with the wall is constantly
at its Coulomb threshold, i.e., on the verge of slipping at all
angles. This proposal is rejected by the ratio f2/N2 calculated
from data in Fig. 2(d), which never reaches the measured μ2

in its growth until several hours into the trial, as shown in
Appendix B.

C. Theoretic analysis of static conditions

In Fig. 2(d), we observed that the logarithmic fitting fails
after 2 × 104 s. This hints at the existence of an intrinsic value
for the reaction forces that is static and presumably hidden
in Eq. (1). We were thus motivated to revisit the unsettled
problem of what the missing condition to Eq. (1) is. In the
following we shall propose that simplification and analytic
solutions for f1,2(μ2, θ ) are possible in the case of small
deformations. It is heuristic to note that the axial “squeezing”
force on the beam can take on arbitrary value as long as Eq. (1)
is satisfied, while the extent of bending is uniquely determined
by the weight. Therefore, minimizing the compressing force
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FIG. 3. (a) Phase diagram for μ1 vs. θ with μ2 = 1.07. Con-
sistent with the experimental data points, the beam will slip if μ1

falls below the solid line from Eqs. (2) when θ � θc = cot−1(μ2)
marked by the vertical dotted line. Meanwhile, for θ � θc instability
is triggered when μ1 is below the dashed line from Eq. (3). (b) Value
of f1 is normalized by W and plotted against θ with μ1 = 0.51
and μ2 = 1.07. The solid and dashed lines represent solutions de-
termined by Eqs. (4) and (5), respectively.

from the wall, N2 cos θ − f2 sin θ , can fill in as the fourth
condition missing from Eq. (1), and the Young’s modulus does
not enter the equation.

However, there are two caveats. First, N2 cos θ − f2 sin θ

can never be negative. Second, the friction f1,2 should never
exceed μ1,2N1,2 where μ1,2 denotes the static friction co-
efficient from the floor and wall. By imposing these two
conditions, we can obtain the boundary beyond which no
solution can exist:

μ1 = 1 − d
L tan θ

μ2
(
1 + d

L tan θ
) + 2 tan θ

(2)

and

μ1 = 1 − d
L tan θ

cot θ
(
1 + d

L tan θ
) + 2 tan θ

. (3)

Detailed derivations can be found in Appendix C. Equations
(2) and (3) indicate that these two phase boundaries are each
determined by μ2N2 = f2 and N2 cos θ − f2 sin θ = 0, which
is represented in Fig. 3(a) by the green solid and red dashed
lines, respectively. The beam will slip when its angle falls
below either line.

To properly discern these two phase boundaries in exper-
iments, a large μ2 is required, which is why the abrasive
paper was added. The predictions of Eqs. (2) and (3) are then
examined by experiments in the main setup, where different
materials are attached to the floor piece in order to vary μ1

as the controlled parameter. A series of drops by the electro-
magnet with decreasing θ are performed until the beam slips,
which indicates the boundary. The data points in Fig. 3(a)
were obtained under this protocol, offering vindication to
Eqs. (2) and (3).

Note that Eq. (2) is equivalent to that derived by previous
studies [7,9] where f2 is supposed to be at its maximum value.
But instead of just a single phase boundary, we argue that the
phase boundary at θ � θc is governed by Eq. (3) instead of (2).

FIG. 4. (a) Evolution of f2 for three distinct trials with identi-
cal setup and conditions is plotted against log t with θ = 0.54 rad.
Shaded bar indicated the maximum value of f2 beyond which f2 �
μ2N2 will be violated. However, note that μ2 may increase slightly
with t [16]. Data points far beyond the steep drop are not shown
for clarity. (b) Three trials for θ = 0.96 rad. Shaded bar indicates the
forbidden regime where N2 cos θ − f2 sin θ � 0.

A heuristic way to understand this is that the beam is never in
danger of slipping at large θ and, therefore, f2 never reaches
the Coulomb threshold μ2N2.

Furthermore, in determining the magnitude of f1,2 and
N1,2, the beam prefers to allocate its weight to f2 as much as
possible so that N2 cos θ − f2 sin θ can assume a smaller value
to minimize the axial compression energy. Consequently, by
requiring the equality in Eqs. (2) and (3) to hold separately,
the system is no longer indeterminate and explicit solutions
can be acquired as:

f1 = W

[
− d

2L
+ cot θ

2
− μ2(cot θ − d/L)

4(μ2 + tan θ )

]
(4)

for θ � θc and

f1 = W

[
− d

2L
+ cot θ

4
− sin 2θ

8

(
1 − d

L

)]
(5)

for θ � θc.
This prediction is put to the test in the main setup where

μ1 = 0.51 and μ2 = 1.07, while data are collected at roughly
103 s. The match between experimental results and theory
in Fig. 3(b) offers convincing evidence that minimizing the
compression energy indeed plays a decisive role. But how to
incorporate the static value predicted by Eqs. (4) and (5) into
the dynamic evolution we observed in Fig. 2?

It turns out that these two equations, set respectively by
f2 = μ2N2 and N2 cos θ − f2 sin θ = 0 at small and large θ ,
define the upper cutoff in Figs. 4(a) and 4(b) beyond which
the ln t fitting fails at t ≈ 104 s. Although the initial value
of f2 varies with different trials, they all observe the same
logarithmic growth at short time and level off before their
maximum value is reached. In addition, the aging of μ could
not have been the sole root source of such dynamics, since in
Figs. 4(a) and 4(b) similar dynamics in f2 is observed for θ

054902-3



LIN, CHENG, CHENG, AND HONG PHYSICAL REVIEW E 104, 054902 (2021)

FIG. 5. A vs f2 is plotted over roughly 10 hours for θ = π/4. The
linear red dashed line is a guide for the eye. Upper inset shows the
logarithmic growth of A(t ) in the same trial, consistent with previ-
ous studies on aging effect [24,28,29]. Lower inset shows binarized
images of the rough contact against the glass wall.

smaller and greater than θc. In the latter case, the Coulomb
threshold is never reached, and thus μ2 and its aging are
irrelevant.

D. Measurement of real contact area

To establish a positive correlation between aging and the
dynamics in Fig. 2, we decide to measure another aging-
related quantity, real contact area A, in tandem with f2. It is
known that the growth in μ stems from the creep of asperities
between the two contact surfaces, resulting in an observable
increase of A which is generally only a small fraction of the
apparent surface area [15–17]. Such contacts between asperi-
ties are recognized as proxy for frictional force [15,24,27] and
can be directly observed to the micrometer scale via optical
procedures [24,28,29].

We thus deployed the real contact area setup by leaning
the beam against a smooth glass with a thin silicone-rubber
elastomer padding attached to its end. Light from a LED
source is injected from the side of the glass such that it is
totally internal reflected except at the contact points where it
is scattered and effectively illuminates the area of real contacts
to the scale of several microns. The scattered light is captured
by the charge-coupled device camera on the opposite side of
the glass, whose intensity is then binarized for quantitative
analysis, as demonstrated by Fig. 5(a). One pixel corresponds
to 10 μm × 10 μm. Results in Fig. 5(a) show that within the
time range of 104 s, f2 and A maintain a steady linear relation.
This confirms the aging of contact area follows an identical
time evolution as the increasing f2.

In a fully determined system, static friction emerges only
as a reaction upon external shear, and frictional aging refers
only to the logarithmic increase of μ. In contrast, a statically
indeterminate system allows for a broad range of possible
solutions, which opens the door for the aging of A to induce
the time dependence for the reaction forces. Mathematically,
this is made possible by the fact that each term in Eq. (1)

FIG. 6. (a) Schematics of the setup for a horizontal beam with
three supports. (b) The normal force on the far left, N1, is plotted
against time. The orange line denotes a logarithmic fitting line of
N1 = 54.15 + 1.363 ln t . Inset shows that the upper threshold of N1

decreses linearly with the magnitude of ascent, δ, in the middle
support. (c) The normal force, defined in Fig. 1(b) for the granular
silo experiment with 11 beads, is plotted over time. Straight dashed
line is the logarithmic fitting function to the first 104 s of data.

in reality involves an integration over the real contact area
between the ladder and the wall and floor. Increasing contact
points is like adding more legs to a chair, which naturally
will redistribute the weight and vary the normal force on each
existing leg. What remains elusive to us is why f2(t ) ends up
obeying the same time dependence as A(t ) in Fig. 5.

III. MORE INDETERMINATE SYSTEMS

To demonstrate that our conclusions are not limited to the
particular geometry of the ladder-wall setup, we will move
on to report similar findings in other statically indeterminate
systems, i.e., the horizontal beam with three supports and a
narrow granular silo displayed in Figs. 1(a) and 1(b).

A. Beam with three supports

A long horizontal beam laying on three collinear support-
ing points also falls in the category of statically indeterminate
systems. Given that all force vectors are coplanar, the two
equilibrium equations cannot uniquely determine the three
normal forces supporting the weight of the beam illustrated
in Fig. 1(a).

Experiments are performed with a thin aluminum beam
of length 105 cm, d12 = 19.9 cm, and d23 = 45.5 cm, shown
schematically in Fig. 6(a). A sharp brass blade on the right
serves as the pivot point, while steel beads of diameter 2r =
14 mm are fixed in aluminum adaptors as the other two
support points. The normal force N1 is measured with an elec-
tronic scale (T-Scale NB-1500) under the leftmost support.
Care is taken to ensure that there is no horizontal force. Before
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the start of each trial, the middle support is set at a height
that equals h0, at which point it barely supports any weight,
and N1 remains steady at W0 = 300 gw. Then, the middle
support is slowly raised by a distance of δ ∼ 10−5 m via a
micrometer and introduces the third normal force. Meanwhile,
the leftmost support remains in contact due to the elastic
deformation of the electronic scale. This triggers the time
evolution in Fig. 6(b), which can be nicely fit to a logarithmic
growth function up to 500 s. Afterwards, N1 drops, similar to
Fig. 4 for the ladder-wall system.

The distinct turning point Wmax where the logarithmic
growth ceases can be directly collected from the original
data. For different values of δ, we observe a linear de-
crease in Wmax/W0 up until δ = 14 × 10−5m when N1 equals
zero entirely. This result can be derived by assuming that
the beam remains straight which requires the compression
strain on the three supports to obey a linear relation, x1 +
x3 = 2x2. In the presence of δ, this provides a third con-
dition to uniquely determine the threshold value of normal
forces,

N1 + N3 = 2
(

N2 − YA
δ

2r

)
, (6)

where Y and A are Young’s modulus and cross sectional area
of the middle support.

B. Granular silo

Another system that we checked is the granular silo in
Fig. 1(b). By measuring the force exerted by the granules on
the bottom plate that is detached from the silo [30], we again
found the logarithmic relaxation for 104 s. Experimentally, an
aluminum tube of diameter 2R = 26 mm is filled with iden-
tical steel beads of diameter 2r = 14 mm. The inner surface
of the tube is covered by sand paper in order to maximize the
friction. The bottom of the tube is open and placed slightly
above an electronic scale with a gap of 5 mm before each mea-
surement. After adding the beads, the tube is slowly pulled
up a distance of 1 mm to fully “mobilize” the friction at
contact points with the wall [31,32] to ensure the frictional
force always points upwards for different trials. The normal
force N1 is then measured by the electronic scale placed
below. The results shown in Fig. 6(c) again exhibits a loga-
rithmic relaxation that lasts for around 104 s, during which the
weight increases by more than 10% of the total weight for
11 beads.

This seems to differ from the ladder-wall case where the
aging friction acts to decrease the compression energy and
cause the observed weight N1 to decrease. We note that re-
laxation process of decreasing weight for up to 100 s has
been observed in Ref. [31], where the weight is measured
by an electronic scale on a translation stage descending in
steps. Similar experimental procedures have been conducted
by Bratberg et al. [32] for a long narrow column where
the relaxation is noticeable after the ascent of the scale but
insignificant after the descent. These features may seem to
disagree with our experiment at first glance. But we be-
lieve they are artifacts due to the higher pull-up velocity
we chose, about two orders of magnitude larger than that
of Bratberg et al. This gives the beads not enough time to

equilibriate during the pulling process. In addition, the high
kinetic friction coefficient of sand paper further mobilizes the
granular pile, resulting in considerable recompaction after the
pulling.

The percentage of weight change is found to increase
with the number of steel balls. Since this creates more
contact points between beads and the wall, it renders the
system more indeterminate by generating more unknown
forces than the equilibrium conditions can afford to deter-
mine. Therefore, we infer that this unexpected dynamical
relaxation is not only intrinsic to statically indeterminate sys-
tems, but also appears to be quantifiable by the degree of
indeterminacy.

The implication is that relaxation dynamics can have a
significant impact on the measured weight at the bottom,
especially for experiments related to the Janssen effect where
friction with the wall is crucial. Protocols for measurement
and time-dependent behavior should thus be handled with care
in future work.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we reported an unexpected dynamical be-
havior for the reaction forces in three statically indeterminate
systems, i.e., a ladder leaning against the wall, a beam with
three supports, and a granular silo. Experimental evidence
and physical arguments are provided to correlate and link
this time variance to that of real contact area due to aging.
Furthermore, we are able to identify the origin of threshold,
beyond which the monotonic increase for reaction forces is
replaced by an irregular series of fluctuations and precipitous
drop.

Since the logarithmic increase of real contact area due to
aging is not limited to indeterminate systems, the distribu-
tion of normal forces under a brick or a house must also
be dynamic if we analogize them to a desk with more than
three miniatured legs, although their sum is constrained by the
fixed weight of the object. This generalization is demonstrated
by the setup in Fig. 7(a) where a uniform load of 15 N is
exerted to seven identical photoelastic PSM-4 pillars. Red and
blue pixels in Fig. 7(b) shows the difference in pixels after
102 and 103 s, respectively. The dynamical fringes confirm
that the distribution of normal forces shifts between different
pillars with a slow relaxation time of several hundred seconds,
qualatatively resembling the three-suppport-beam examined
in Sec. III A.

With an increment up to 11% for the support force in
Fig. 6(b), we dare not imagine the potential hazard this may
pose to the safety of elevated highways and bridges. It will be
interesting and important to study whether such a dynamical
behavior might be suppressed by increasing the number of
piers or unknown variables in mathematical term, namely the
degree of indeterminancy. Although we have established a
positive and causal relation between the dynamics of normal
forces and that of real contact area, we stop short of proving
that their time dependence is the same—at least before the
normal force reaches its upper bound. Another challenge for
future researchers is to decipher the irregular dynamics for
both reaction forces and real contact area at long time and ex-
plain why their behavior ceases to be correlated. Preliminary
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FIG. 7. Illuminated by polarized blue LED light, these seven PSM-4 pillars under a uniform load of 15 N exhibit distinct fringes that allow
us to visualize the distribution of normal stress. Photo in (a) was taken at t = 0 when the load was added. (b) Red and blue pixels represent the
differential image at t = 100 and t = 1000. For contrast, the intensity at t = 0 is juxtaposed in white pixels.

results showed that the fluctuations can last for weeks with
amplitudes not diminished by time and the increase of weight.
Whether they can eventually be identified as a new source of
mechanical noise remains to be seen.
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APPENDIX A: CHARACTERIZATING FRICTION

The experimental confirmation of the phase diagram in the
main text requires precise measurement of the μ value for
various surfaces. Before each measurement, the edge guard
placed on the bottom of the aluminum beam is cleansed by
alcohol and dried. Thin patches of different material are then
glued on the surface of an inclined aluminum board. A motor
is used to slowly tilt the board, whose inclination angle is mea-
sured via an electronic level with uncertainty of ±0.1◦. The
threshold angle θs when the beam starts to slip is recorded, and
μ = tan θs can be calculated. Measurement for each material
is repeated several times, while the edge guard is renewed
every 10 trials to avoid wear. Results shown in Table I is used
to plot the phase diagram in the main text.

TABLE I. Table of μ measured for various materials.

Material μ

#80 Abrasive paper 1.070 ± 0.022
#120 Abrasive paper 0.637 ± 0.012
#200 Abrasive paper 0.509 ± 0.009
Copy paper 0.374 ± 0.008
Polypropylene film 0.176 ± 0.004
Polymethylmethacrylate 0.286 ± 0.005
Aluminum 0.277 ± 0.008

To double check the μ value obtained by the previous
approach, we employed a pull test by a step motor and
force gauge which measures the maximum static friction
fmax under different loading weight W . Results in Fig. 8
show good agreement with Amonton’s friction law within
W � 3 N, which is the magnitude of concern in our exper-
iments. The fitted slope is consistent with that measured
by the inclined plane. Furthermore, the inclination test is
repeated with beams of different weight, which shows no
significant effect on the resulting μ, as shown in the inset of
Fig. 8.

APPENDIX B: COULOMB THRESHOLD

The logarithmic time dependence of f2 observed in our
experiments can be easily mistaken to be a direct consequence
of the aging friction coefficient μ2, which is a well-studied
topic. To rule out this wrong belief, a straightforward check
can be done by calculating the ratio f2(t )/N2(t ). If the contact
between the beam and wall is at the Coulomb threshold at
all angles and moments, f2(t )/N2(t ) should accurately reflect
μ(t ) and its aging.

FIG. 8. The maximum static friction fmax between the edge guard
and #80 abrasive paper under different weight W measured by a force
gauge. Red dashed line is a linear fit with the shown expression.
Inset: The μ value measured with the inclination test with different
W . Red dotted line marks the total average.
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FIG. 9. (a) f2(t )/N2(t ) calculated from Fig. 4(a), and (b) from
Fig. 4(b) with the same symbols for different set of data. Shaded bar
in (a) represents the experimental value of μ2.

By use of Eq. (1), N2(t ) can be readily obtained as:

N2(t ) = W

[
− d

2L
+ cot θ

2

]
− f2(t ) cot θ. (B1)

Data of f2(t ) from Figs. 4(a) and 4(b) are then inserted to
yield f2(t )/N2(t ), plotted in Fig. 9. It is clear that after 104 s,
increment of f2(t )/N2(t ) generally falls around 0.2, which is
considerably larger than 0.1 of an aging μ from frictional
surfaces [16]. Furthermore, a large portion of the growth in
Fig. 9(a) takes place at short times and far from the shaded
bar that represents the measured μ2 and its error bar in Fig. 8.
As for the large-angle trials in Fig. 9(b), the maximum peak
is less than half of μ2. This indicates that the contact at the
wall is generally far from the Coulomb threshold, and the
logarithmic growth in the first 104 s cannot be explained by
the well-known aging of μ.

APPENDIX C: DECIDING PHASE BOUNDARIES

Balancing the torques requires that the perpendicular
forces acting on both ends of the beam are equal and fixed.
As a result, the extent of bending is uniquely determined
by the weight. In contrast, the compression enjoys an addi-
tional degree of freedom. In other words, the the two axial
“squeezing” force on the beam can take on arbitrary value as
long as they are opposite and equal. We therefore propose
the minimization of the compressing force from the wall,

FIG. 10. The b value for the exponential fitting function,
a ln(−bt ) + c, at different θ . Each dot represents the mean value
from 10 trials. The range of θ is chosen to stride between the green
solid line and the blue dotted vertical line in Fig. 3(a). The standard
deviation σ in the inset is the largest at small and large θ .

N2 cos θ − f2 sin θ , as the fourth condition to solve the inde-
terminate problem.

The physical constraints, namely N2 cos θ − f2 sin θ � 0
and f1,2 � μ1,2N1,2, can each be expressed solely in terms of
N1:

N1 �
W
2

(
cot θ + d

2L

)
cot θ − μ1

≡ x1(θ, μ1), (C1)

N1 � W
(
1 + μ2

2 cot θ + μ2d
2L

)
1 + μ2 cot θ

≡ x2(θ, μ2), (C2)

N1 � W
(
1 + 1

2 cot2 θ + d
2L cot θ

)
cot2 θ + 1

≡ x3(θ ), (C3)

where x1,2 are constraints imposed by μ1,2, while x3 comes
from N2 cos θ − f2 sin θ � 0. We are concerned with the
boundary beyond which no solution can exist. It is worth
noting that only Eq. (C1) presents an upper bound. Hence,
solutions of N1 cease to exist if x1 < x2 or x1 < x3. It is then
clear that x1 = x2 and x1 = x3 are the critical conditions that
verge on instability, each of which can be rearranged into a
neater form:

μ1 = 1 − d
L tan θ

μ2
(
1 + d

L tan θ
) + 2 tan θ

(C4)

FIG. 11. As the measured f2 drops spontaneously in the inset, A
underwent noticeable fluctuation. The dashed vertical line marks and
shows that the onset of these two phenomena coincide.
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and

μ1 = 1 − d
L tan θ

cot θ
(
1 + d

L tan θ
) + 2 tan θ

. (C5)

Equations (C4) and (C5) define the two phase boundaries
presented in the main text.

APPENDIX D: FLUCTUATIONS FOR INTRINSIC
TIMESCALE AND LONG-TERM INSTABILITY

In the main text, it was demonstrated that in the short-time
regime, i.e., within 104 s, f2 grows logarithmically. However,
the eventual divergence of a log function implies that it has
to breakdown at certain time point. Figure 5 confirms this.
When the saturation of f2 is taken into account, the overall
fitting turns to favor an exponential curve, a exp(−bt ) + c. In

contrast to the scale-free logarithm, the intrinsic timescale 1/b
reveals an interesting physics. Namely, the fluctuation of b in
Fig. 10 is found to increase by more than three folds when
θ is near either the phase boundary [the green solid line in
Fig. 3(a), below which the ladder will slip] or θc [the blue
dotted line across which the solution switches from Eqs. (4)
and (5)]. Of course, we do not expect this finite and nonther-
mal system to exhibit a diverging correlation time-harbinger
to a continuous phase transition. But the enhancement of 1/b
near the phase boundary must be an integral part to the future
theory for this macroscopically static and yet mesoscropically
dynamic phenomenon.

We notice a common feature in Fig. 4 that we do not yet
understand. Namely, upon reaching the upper limit f2 will
fluctuate for several hours before a precipitous drop. Simulta-
neously, the contact area begins to fluctuate vehemently to the
point it appears discontinuous at times, as shown in Fig. 11.
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