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Rheology of sliding leaflets in coarse-grained DSPC lipid bilayers

Othmene Benazieb ,1 Claire Loison ,2 and Fabrice Thalmann 1

1Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg cedex 2, France
2Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France

(Received 30 March 2021; accepted 6 October 2021; published 22 November 2021)

Amphiphilic lipid bilayers modify the friction properties of the surfaces on top of which they are deposited.
In particular, the measured sliding friction coefficient can be significantly reduced compared with the native
surface. We investigate in this work the friction properties of a numerical coarse-grained model of DSPC
(1,2-distearoyl-sn-glycero-3-phosphocholine) lipid bilayer subject to longitudinal shear. The interleaflet friction
coefficient is obtained from out-of-equilibrium pulling or from relaxation simulations. In particular, we gain
access to the transient viscoelastic response of a sheared bilayer. The bilayer mechanical response is found to
depend significantly on the membrane physical state, with evidence in favor of a linear response regime in the
fluid but not in the gel region. The linear response validity domain is established, and the timescales appearing
in the membrane response discussed.
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I. INTRODUCTION

A. Rheological properties of phospholipid bilayers

Glycerophospholipids are essential compounds of bio-
logical lipid bilayers. Their molecular structure comprises
one bulky zwitterionic, hydrophilic headgroup (phosphatidyl-
choline) and two aliphatic hydrocarbon chains esterified
around a glycerol molecule. With chain lengths compris-
ing between 12 and 20 carbon atoms, these molecules
self-assemble as flat bilayers made of two leaflets with
tail-to-tail opposing lipid molecules. Common phospholipids
[e.g., dipalmitoyl-phosphatidylcholine (DPPC) or distearoyl-
phosphatidylcholine (DSPC)] do not interdigitate under
standard conditions, and the leaflets are relatively weakly
bound together [1]. Bilayer fluidity depends significantly on
temperature [2]. Moreover, most pure lipid systems encounter
a sharp thermodynamic melting transition at a given tempera-
ture Tm (41 ◦C for DPPC, 55 ◦C for DSPC) [3]. Above melting,
lipid tails are isomerically disordered, weakly cohesive, con-
ferring fluidity to the bilayer with Arrhenius dependence in
temperature. Below melting, lipid tails adopt all-trans con-
formations and are subject to stronger cohesion, displaying
solid-type dynamics at short timescales, while remaining a
viscous fluid on longer scales.

Coating a solid surface with a dense phospholipid mono-
layer modifies the sliding friction properties significantly.
Experiments report a significant decrease in the sliding fric-
tion coefficient when both surfaces are covered with lipids
in a dense, or gel conformation [4]. This issue is relevant in
the field of biolubrication, such as the mechanism of articular
joints. In fact, synovial fluid combines lipid and biopolymer
molecules for optimal lubrication, the role of each component
still being a topic of investigation.

It is difficult to relate the macroscopic friction between a
pair of surfaces with microscopic mechanisms involved at the

molecular scale [5]. In the case of hydrated lipid bilayers,
a lateral shear displacement involves the solvent viscosity,
the sliding leaflet friction, and possibly some sliding of the
solvent on top of the hydrophilic bilayer surface. In the
framework of linear response, sheared lipid bilayers display
a viscous response, characterized by an interleaflet friction
coefficient b, a Newtonian transverse viscosity η for the sol-
vent, and a solvent-bilayer friction b′ which quantifies the
importance of the sliding of the fluid at the bilayer interface.

The experimental determination of b (and b′) is difficult.
Evans and Yeung suggested that b dominates the resistance of
a bilayer when pulling a lipid nanotube from a giant vesicle,
with a micropipette or an optical tweezer device [6]. Tube
pulling experiments have since become a standard protocol
for probing membrane physical properties, including the case
of living cells [7]. Leroy et al. were able to estimate the
dissipation induced by the friction of the interfacial water be-
neath a supported lipid bilayer deposited onto a mica surface
using a surface force apparatus [8]. More recently, simula-
tions by Schlaich et al. [9] investigated in detail the nature
of the friction between amphiphilic surfaces separated by a
variable amount of interfacial water using atomistic molecular
dynamics simulations. The competition between interleaflet
and water layer frictions in stacks of sheared lipid bilayers
was investigated by Boţan et al. [10]. Seifer and Langer [11]
showed how the relaxation dynamics of the transverse mem-
brane undulation modes depend on η and b, and interpreted
in this way experimental data from inelastic neutron scatter-
ing [12]. This formalism was successfully used by den Otter
and Shkulipa for estimating b for various numerical model
of lipids, using equilibrium molecular dynamics (MD) [13].
Müller and Müller-Plathe showed how the bilayer friction and
viscosity parameters could be obtained from reverse nonequi-
librium molecular dynamics (RNEMD) simulations [14]. Falk
et al. managed to determine b for a coarse-grained bilayer in
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both the fluid and gel states using RNEMD [15] for shearing
the solvent on both sides across the bilayer. In particular,
the authors reached the conclusion that there was only minor
sliding velocity effects at the solvent-lipid interface. Using a
similar method, Zgorski et al. determined b and the membrane
transverse viscosity for DPPC Martini models [16].

The approaches of den Otter and Shkulipa or Falk et al.
cannot easily be generalized to supported bilayers in close
interaction with a flat solid surface. It is known, for instance,
that a proximal solid surface influences the lipid diffusion
dynamics, as shown in Scomparin et al. [17]. There is there-
fore a need for simple approaches for determining the friction
properties of lipid bilayers interacting with solid surfaces.

A natural idea consist in pulling directly on various system
components (lipid or water layers) and measuring the result-
ing velocity profile. Alternatively, information can be obtained
by observing how a system initially prepared with mutual
nonvanishing relative sliding velocities relaxes to its equi-
librium state. When linear response from the system holds,
it is expected on general grounds that both approaches give
consistent results. In the present work we show how a constant
pull force and momentum relaxation methods can be used to
determine the interleaflet friction coefficient in the simple case
of a coarse-grained lipid bilayer in water.

B. The Martini model

Martini is a successful coarse-grained representation of
lipids, with a four heavy atoms to one bead center level of
coarse graining. This model displays a realistic fluid phase,
as well as an ordered “gel” phase, with nematically oriented
chains but disordered headgroups. In lipid biophysics, the gel
phase corresponds to a viscous, almost solid, state of the lipids
observed at low temperatures. The transition between gel and
fluid phases is a weakly first-order phase transition, called
main or melting transition, accompanied by a discontinuous
change in structural parameters such as the nematic ordering
of the chains or the bilayer thickness. If the fluid phase is fairly
well reproduced by the Martini model, which was designed
for this purpose, the existence of a gel phase is a happy out-
come of the model. While missing some characteristics of the
experimental gel phase, the numerical low-temperature phase
captures some important features: stronger cohesion, larger
thickness, lower molecular mobility. However, the Martini
model misses the existence of a ripple phase Pβ ′ below the
melting transition, and the presence of a chain tilt angle below
the pretransition temperature Lβ ′ → Pβ ′ [2,18].

We chose to study DSPC molecules, parameterized using
version 2.0 of the Martini model [19]. DSPC lipids possess
two saturated 18-carbon chains. This choice was driven by ex-
perimental considerations, as DSPC supported lipid bilayers
obtained by Langmuir deposition constitute a robust and well-
studied model systems [17,20] which we intend to simulate in
a near future. Our simulated systems comprise a single bilayer
alongside a single water slab, with periodic boundary condi-
tions in the three dimensions. Two representative snapshots
are shown in Figs. 1 and 2.

The Martini model is designed to reproduce faithfully the
structural and thermodynamic properties of lipids in the fluid
phase [19,21]. Coarse-grained beads interaction potentials are

FIG. 1. Snapshot of a configuration of a coarse-grained bilayer
containing 256 DSPC lipids per leaflet, with 2560 water beads
molecules on both sides, in the high temperature fluid state at
340 K. Water molecules are represented by a uniform blue vol-
ume, hydrophobic tails by gray thin segments and lipid headgroup
beads by colored spheres (green: glycerol, pink and magenta:
phosphocholine).

not tabulated but assume a Lennard-Jones functional form,
though with larger radii and energy parameters compared with
the atomistic case. The standard Gromacs implementation
[22] of the Martini model uses standard molecular dynamics
algorithms, such as Verlet integrator and Nose-Hoover or v-
rescale weak coupling thermostats [23–25]. These design and
implementation choices imply that the kinetic properties of
the Martini systems do not quantitatively agree with atom-
istic simulations or experiments. The corresponding kinetic
properties must therefore be discussed at a qualitative level,
focusing on relative differences between situations, or inves-
tigating various methodological approaches.

II. METHODOLOGY

A. Relaxation and forced sheared experiments

Our purpose is to characterize the response of a supported
bilayer sheared parallel to its longitudinal xy directions, as it

FIG. 2. Snapshot of a configuration in the low temperature gel
state at 280 K. Same system and color representation as in Fig. 1.
Compared to the fluid case, the bilayer is less extended in the xy
direction and thicker. No appreciable lipid chain tilt angle is visible.
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may provide clue on the experimentally observed drag friction
reduction upon coating surfaces with deposited lipid mono-
or multilayers. The determination of the interleaflet friction
bilayer in water solution is therefore a first step towards the
desired answer, which will be later extended to lipid layers
deposited onto solid surfaces.

Two strategies were used in the present work. Both were
implemented using the Gromacs molecular dynamics simula-
tion tool [22]. In the first approach, here referred to as constant
pull force (CPF), a nonequilibrium stationary pull of each
membrane leaflets was set up, resulting in a constant drift
velocity of the bilayer. The pulling force-velocity ratio gives
access to the value of the interleaflet friction coefficient b. In
the second approach, referred as force kick relaxation (FKR),
the relaxation stage of a leaflet consecutive to an initial step
increase in its center-of-mass (COM) velocity was measured.
The displacement response curve of the leaflet gives another
estimate of the interleaflet coefficient b. It provides in addition
a direct picture of the transient bilayer response following a
sudden shear force kick.

A linear response regime is expected provided the pulling
forces (CPF) and initial velocities (FKR) remain below their
respective threshold values. In the linear regime, both drift
velocities and displacements compete with random equilib-
rium fluctuations, a situation corresponding to a small Péclet
number. The extraction of the signal (drift displacement and
velocity) out of the noise (equilibrium fluctuations) requires
averaging over many independent simulation runs. The statis-
tical significance of the bilayer response curves was estimated
by means of a bootstrap statistical procedure. In our case, for
every simulation condition (external constant force, or initial
force kick), a sample of ca. Ns ∼ 50, 150, 1000 independent
runs was subject to random reweighting, in order to infer
a reliable value of the statistical uncertainty associated with
sample averaging. Details on our numerical simulation proce-
dure and the associated statistical analysis are deferred to the
Appendix.

B. Standard hydrodynamic description

A natural interpretation frame for our numerical simula-
tions is the classical hydrodynamics model. In this framework,
both lipid leaflets are described as rigid solid slabs (thickness
Lb, area A), surrounded by a water layer considered as a
Newtonian fluid (thickness Lw, viscosity η). Inertia of lipids
(leaflet mass M) and fluid (volumetric mass density ρ) com-
ponents are accounted for. The upper and lower leaflets move
with respective velocities Vu,Vd along the horizontal x direc-
tion. Water is described by a Eulerian velocity field v(z)�ex,
where the vertical coordinate z, normal to the bilayer, varies
in the interval z > Lb/2; z < −Lb/2 with periodic boundary
conditions v(z + L) = v(z) (PBC), and x is one of the hori-
zontal direction, without loss of generality (Fig. 3). The fluid
is subject to a Newtonian shear stress τzx(z), abbreviated as
τ (z). Sticking boundary conditions at the lipid water interface
z = ±Lb/2 are assumed (or equivalently an infinite lipid-fluid
friction b′ = ∞).

We assume that leaflets experience a friction proportional
to their mutual relative sliding velocity Vu − Vd , leading to an

FIG. 3. Geometric parametrization of the system used in the
present study, with L = Lb + Lw .

interleaflet shear stress τ = τ (z = 0) obeying

τ = b(Vu − Vd ), (1)

with b the interlayer friction coefficient. An average fluid
velocity can be defined as

Vw = 1

Lw

∫ Lb/2+Lw≡−Lb/2[L]

Lb/2
dz v(z). (2)

In addition, we consider the possibility to act upon each
leaflet, and the water layer, by means of a uniform force acting
on the center of mass of the corresponding subsystem. Such
forces are respectively denoted Fu, Fd , Fw, and directed along
x. For convenience, one introduces the corresponding stresses
φμ (Fμ = Aφμ) with μ = u (upper leaflet), μ = d (lower
leaflet) and μ = w (water region). We restrict ourselves to
the physical case of a vanishing total force Fu + Fd + Fw = 0,
henceforth preserving the total momentum ρLwVw + MVu +
MVd of the hydrodynamic system.

The stationary solution of the hydrodynamic problem cor-
responds to a parabolic flow. Two stationary velocity profiles
are of particular interest. The linear Couette profile corre-
sponds to φu = −φd , φw = 0, Vu = −Vd , Vw = 0 and

2
(

b + η

Lw

)
Vu = φu. (3)

The Poiseuille flow profile corresponds to φu = φd = −φw/2,
Vu = Vd and

6
η

Lw

(Vu − Vw ) = φu = −φw

2
. (4)

The relation above can be further simplified as the total
momentum is assumed to vanish 2Mφu + ρLwφw = 0. Both
flows are represented in Fig. 4.

C. Viscoelastic relaxation model

As the Results section demonstrates, the hydrodynamic
model is useful but does not accurately represent the observed
numerical behavior. We therefore introduce here a more gen-
eral viscoelastic model. We assume that a transient linear
response of a bilayer subject to a suddenly applied external
force exists, which can be expressed by means of a retarded
memory function. Using the same notations as above, but
now with time-dependent velocity fields Vu(t ),Vd (t ),Vw(t )
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FIG. 4. When opposing forces are exerted on each leaflet (a) the
resulting stationary state sees the two leaflets sliding at constant
relative velocity, surrounded by a uniform solvent velocity gradi-
ent profile, as emphasized in panel (b) where the simulation box
boundary has been purposely shifted to sit exactly at the midplane
of the bilayer. Panels (a) and (b) are subsequently referred as a
Couette situation. When a uniform force is exerted on both leaflets
and an opposing force on the solvent beads (c), a symmetric parabolic
velocity profile builds up in the solvent, assuming sticking boundary
conditions at the interface with the bilayer (d). Panels (c) and (d) are
subsequently referred to as Poiseuille situation. In all cases the total
momentum of the system is constant and vanishes.

one has

M

A
V̇u(t ) =

∫ t

−∞
ds {gbu(t − s)[Vd (s) − Vu(s)]

+ gwu(t − s)[Vw(s) − Vu(s)]} + φu(t ), (5)

M

A
V̇d (t ) =

∫ t

−∞
ds {gbu(t − s)[Vu(s) − Vd (s)]

+ gwu(t − s)[Vw(s) − Vd (s)]} + φd (t ), (6)

ρLwV̇w(t ) =
∫ t

−∞
s {gwu(t − s)[Vu(s)

+Vd (s) − 2Vw(s))} + φw(t ). (7)

The retarded response involves two memory functions. A
first kernel gbu(t ) accounts for the interleaflet interaction,
including interleaflet dynamic friction, lipid inertia as well
as viscoelastic lipid elastic tilt and stretch modes. A second
kernel gwu(t ) accounts for all the water leaflet interactions,
which possibly includes solvent sliding friction, retardation
of the fluid motion due to inertia, and again viscoelasticity
arising from lipid tilt and stretch. The same kernel is used for
both leaflets, as a consequence of the up-down z symmetry
of the flow. External stresses φu(t ), φd (t ), φw(t ) are arbitrary
functions of time.

We now restrict ourselves to two main situation of interests,
namely, Couette Vw = 0, Vu(t ) = −Vd (t ), φu(t ) = −φd (t ),
φw = 0 and Poiseuille Vu(t ) = Vd (t ) = −Vw(t )ρLw/2M,
φu(t ) = φd (t ) = −φw(t )/2 (see Fig. 4). The retarded motion

equations are in the Couette case:

M

A
V̇u = −

∫ t

∞
ds (2gud + gwu)(t − s)Vu(s) + φu(t ),

Vw = 0, (8)

and in the Poiseuille case:

M

A
V̇u = −

∫ t

∞
ds gwu(t − s)

(
1+ 2M

AρwLw

)
Vu(s),+φu(t );

ρLwV̇w = −
∫ t

∞
ds gwu(t − s)

(
2+AρwLw

M

)
Vw(s).+φw(t ).

(9)

Of particular importance in the present study is the re-
sponse to a couple of force kicks (in the Couette case)

φu = −φd = M

A
V0δ(t ) (10)

that confers instantly a momentum MV0�ex to the upper leaflet,
and −MV0�ex to the lower leaflet. Velocity profiles can be
inversed by Laplace transforms of the velocity, stress, and
memory functions, e.g.,

V̂u(p) =
∫ ∞

0
dt e−ptVu(t ), (11)

leading to(
M

A
p + 2ĝud + ĝwu

)
V̂u(p) = M

A
Vu(t = 0). (12)

In particular, the impulsional displacement �Xu =∫ ∞
0 dt Vu(t ) = V̂ (p = 0) obeys the relation

�Xu =
M

A
Vu(0)

2ĝud(0) + ĝwu(0)
. (13)

In the meantime, a stationary stress φu should result in an
asymptotically constant velocity Vu and V̇u = 0:∫ ∞

0
ds [2gud(s) + gwu(s)]Vu = [2ĝud(0) + ĝwu(0)]Vu

= φu. (14)

One recovers the hydrodynamic limit φu/Vu = 2(b + η/Lw )
and therefore

(2ĝud + ĝwu)(p = 0) = 2
(

b + η

Lw

)
. (15)

In conclusion, one obtains a useful relation between the
impulsional displacement �Xu and the interleaflet friction
coefficient:

b + η

Lw

=
M

A
Vu(0)

2�Xu
. (16)

This viscoelastic model assumes a linear relation between
forces (the cause) and displacement or velocity (the effect).
A master curve 	(φ)(t ) can be introduced to represent the
normalized drift displacement [Xu(t ) − Xu(0)]/φu associated
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to a step stress H (t ) = 1 for t � 0 and H (t ) = 0 for t < 0
(Heaviside function). This master curve obeys

	(φ)(t ) = 0 for t < 0, (17)

M

A
	̈(φ)(t ) = −

∫ t

∞
ds (2gud + gwu)(t − s)	̇(φ)(s)

+ H (t ) for t � 0. (18)

In the meantime, a master curve for the normalized displace-
ment 	(V )(t ) = [Xu(t ) − Xu(0)]/V0 can be introduced for the
impulsion case, which obeys

	(V )(t ) = 0 for t < 0, (19)

M

A
	̈(V )(t ) = −

∫ t

∞
ds (2gud + gwu)(t − s)	̇(V )(s)

+ M

A
δ(t ) for t � 0. (20)

Both master curves can be related to the memory function
2gud + gwu in Laplace space.

D. Diffusion of the lipids and water centers of mass

Simulations deal with finite-size systems, and thermal fluc-
tuations are always present. In our case, the center of mass
of each of the three main components of the simulated sys-
tem (upper and lower leaflets, water) is subject to Brownian
motion, while the global center of mass is fixed, as required
by weak coupling to Nose-Hoover or v-rescale thermostats. It
results that the instantaneous kinetic energy of the upper and
lower leaflets and water is not given by the usual equipartition
of energy theorem. However, the order of magnitude of the in-
stantaneous kinetic energies MμV 2

μ/2, μ = {h, u,w} remains
of the order of kBT/2.

We therefore distinguish the average, nonfluctuating hy-
drodynamic displacements Xμ(t ), μ = {h, u,w} from the
sampled, Brownian trajectories X (α)

μ (t ), with α an index
relative to a given COM trajectory realization, or simply
Xμ(t ), μ = {h, u,w} when referring to a generic trajectory.
Similarly, one introduces the Brownian instance of the veloc-
ity response V (α)

μ (t ) or generically Vμ(t ).
In order to quantify the magnitude of the Brownian fluc-

tuations acting on the positions Xμ(t ), one naturally defines
the diffusion coefficient DCOM,μ of the center of mass of the
subcomponent μ (not to be confused with the molecular diffu-
sion coefficient), based on the mean quadratic displacements
〈[Xμ(t ) − Xμ(0)]2〉. Hydrodynamic and Brownian displace-
ments are related by canonical ensemble averages Xμ(t ) =
〈Xμ(t )〉. So are the velocities Vμ(t ) = 〈Vμ(t )〉.

Expression (16) relates the dissipation b + η

Lw
to the nor-

malized displacement �Xu/Vu(0). Noting that �Xu/Vu(0) =∫ ∞
0 dt Vu(t )/Vu(0), one can write

A�Xu

MVu(0)
= A

MVu(0)2

∫ ∞

0
dt Vu(t )Vu(0)

= 2

b + η/Lw

. (21)

By analogy with Brownian motion, where the diffusion coef-
ficient is linked to the velocity autocorrelation function, one

has 2DCOM,ut � 2t
∫ ∞

0 dt 〈Vu(t )Vu(0)〉, and obtain from (21)
a heuristic “Stokes-Einstein” relation:

DCOM,u ∼ 2〈MV (0)2〉
A(b + η/Lw )

∼ kBT

A(b + η/Lw )
. (22)

The precise relation between the relative quadratic displace-
ments matrix of the various system subcomponents (leaflets,
water, etc.) and the hydrodynamic friction coefficients (b, η,
etc.) when the global center of mass is fixed is nontrivial and
will be the subject of future work. Equation (22) provides,
however, an order of magnitude for DCOM,u.

E. Constant pulling force simulations

A direct estimate of the asymptotic stationary drift velocity
〈Vμ(t )〉 obtained as a result of a piecewise constant step in-
crease of the external applied stresses φu = −φd , φw = 0 can
be obtained by pulling directly on the leaflets. Even though the
out-of-equilibrium features of the molecular dynamics soft-
ware that we use are somewhat limited, it is possible to exert a
constant force to the upper leaflet while exerting the opposite
force on the lower leaflet (Appendix). This feature comes as
part of tools available to perform biased, constrained umbrella
sampling simulation schemes. The displacement Xu(t ) can
then be read directly from the trajectory and its average value
〈Xu〉 fitted to an affine time function x0 + tVu.

The possibility of imposing a pulling force for long times
enables a quite precise determination of the relative stationary
drift velocity of the leaflets.

F. Force kick relaxation simulations

Starting from an equilibrium trajectory configuration (ref-
erence NVT run), an initial condition C (α) is prepared by
adding an identical V0�ex constant velocity to all the beads
pertaining to the upper leaflet, and the opposite velocity to
all the beads in the lower leaflet. In the Martini model, all
beads possess the same mass [72 amu (g mol−1 or atomic
mass unit), 1008 Da for a DSPC molecule], and the upper
leaflet center of mass acquires a finite momentum MV0�ex as a
result, with M the mass of all beads in a leaflet. The velocity of
the water beads is unaltered. Physically, this corresponds to an
instantaneous force torque (MVu�exδ(t ),−MVu�exδ(t )) applied
to the bilayer, and the total momentum of the system is pre-
served. In particular, the system center of mass remains fixed,
as required when using a Nose-Hoover or velocity-rescale
thermostat. Following the force kick, the kinetic energy of the
bilayer is increased by an amount

Nb∑
i=1

m

2
(�vi ± V0�ex )2 =

Nb∑
i=1

m

2
�v 2

i + Nbm

2
V 2

0 + V0

·
(

Nb∑
i=1

±�vi.�ex

)
, (23)

where Nb stands for the number of beads (center of forces)
present in the moving leaflet, and m the associated (here
identical) bead masses. The third term is a statistical O(

√
Nb)

fluctuation. The kinetic energy term is therefore increased by
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a relative amount

MV 2
0

3NbkbT
. (24)

This sets an upper bound Vmax for the velocity shift V0 that
can be applied without requiring the thermostat to pump
too much energy out of the system, of the order of Vmax =
(NbkbT/M )1/2 � 0.2 nm ps−1, using Nb = 256 × 14 = 3584,
M = Nb × 72 amu, and T = 340 K.

Assigning to each leaflet a too small initial velocity value
results in lowering the signal to noise ratio, the signal being
the forward displacement and the noise the Brownian dis-
placement of the leaflet center of mass. Assuming it takes
a characteristic time trelax for the leaflets to return to equi-
librium, and that a given initial drift velocity V0 drives the
leaflet over a distance �Xu, the ratio between ballistic and
random displacement reads �Xu/

√
DCOM,utrelax at the end of

the relaxation stage. If in addition, the simple and naive scal-
ing �Xu = V0trelax holds, the ballistic to random displacement
ratio assumes a familiar Péclet number expression Pe1/2 with
Pe = V0�Xu/DCOM,u.

The displacement �Xu(t ) is monitored as a function of
time t . As each run provides a noisy Brownian response
�X (α)

u (t ), the procedure must be repeated many times, until
a significant displacement 〈�Xu(t = ∞)〉 emerges from the
thermal noise. Meaningful information can only be obtained
in the linear response regime, i.e., when the ratio �Xu/Vu(0)
is constant up to some uncertainty. Too large velocity kicks
Vu(0)  Vlr deviate from the linear regime and cannot be
described within the framework of retarded linear response
functions. The velocity scale Vlr until which the linear regime
is expected to hold must be empirically determined and is
expected to be smaller than Vmax determined above. In the
opposite limit, a too low kick V0 does not give any useful
result as the signal-to-noise ratio becomes too large. Again,
to estimate a confidence interval for 〈�Xu〉, one resorts to a
statistical bootstrap procedure.

G. Bootstrap procedure

The bootstrap is an empirical statistical method that pro-
vides a quantitative estimate for the confidence interval of
an average sampled quantity [26]. In the absence of extra
information regarding the nature of the statistical process un-
der investigation, the bootstrap approach uses only available
sample values to build this estimate.

Considering a set of Ns independent sampled values S0 =
{x(α)}, α = 1 . . . Ns as the main input information, one can
generate a number M of synthetic samples Sβ = {x(α)

β }, α =
1 . . . Ns, β = 1 . . . M by drawing with repetition, at random,
Ns elements of S0. The variability of the average

〈 f 〉β = 1

Ns

Ns∑
α=1

f
(
x(α)
β

)
(25)

as a function of the synthetic samples Sβ , provides us with
a confidence interval 2σb for the sampled average, using the

TABLE I. Geometric characteristics of the simulated systems in
the fluid and gel regimes.

State Lx (nm) Lz (nm) A (nm2) Lb (nm) Lw (nm)

Fluid 13.2 8.2 174. 4.6 3.6
Gel 11.1 10.6 124. 5.6 5.1

following estimator:

σ 2
b ≡ 1

M − 1

M∑
β=1

(
〈 f 〉β − 1

M

( ∑
β ′

〈 f 〉β ′

))2

(26)

with M large enough. In our case M varies between 10 and
500. As discussed in [26], the bootstrap approach makes opti-
mal use of the sole available information contained in S0.

H. Preparation of the initial configurations

The system was equilibrated first at 340 K (fluid phase)
and 280 K (gel phase) using a thermostat and a semi-isotropic
barostat (see section). This thermalization stage makes it pos-
sible to determine the average system size in the absence of
external stress, or equivalently vanishing surface tension, re-
spectively in the fluid and the gel phases. Out-of-equilibrium
simulations were then run a number of times, using a ther-
mostat and constant box size conditions (Lx, Lz ), where Lx, Lz

were the result of the previous step. Coupling to a thermo-
stat was however still required to preserve the mechanical
energy of the system. For each phase, configurations from a
reference canonical, constant volume (NVT) runs were then
periodically recorded and stored, providing a set of up to 1000
initial conditions, in relation with the bootstrap and ensemble
averaging procedures. The resulting equilibrium lipid bilayer
geometrical characteristics are summarized in Table I.

III. RESULTS

A. Fluid phase constant pull force (CPF) simulations

The bilayer was submitted to a sequence of increasing
pulling stresses φu, resulting in an average displacement curve
〈Xu〉 (u standing for upper leaflet). Each external pulling force
condition was repeated about 50 times (Table II), resulting in
a sample set of raw displacement curves Fig. 5(a). As seen in
this figure, a typical pulling experiment generates a Brown-
ian displacement of the leaflet center of mass superimposed
with a constant velocity horizontal translation. Figure 5(a)
superimposes a raw displacement with an average over 50
equivalent simulations. An example of bootstrap averaging of
the trajectories is shown in Fig. 5(b). Displacements curves
start with a short transient regime, dominated by inertial and
viscoelastic contributions. It is followed by a linear regime
associated with stationary hydrodynamic dissipation and con-
stant velocity translation Vu. The bootstrap analysis shows a
dispersion among synthetic displacement curves, only slowly
decreasing with the size of the set of trajectories, and inversely
proportional to the applied stress φu.

Averages of the normalized displacement curves 〈Xu(t )〉/
Fu are shown in Fig. 6. In the framework of linear re-
sponse, the averaged normalized displacements are expected
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TABLE II. List of simulations used in the constant pull force statistics. The notation 512-10W stands for 512 lipids and 10 water beads per
lipid.

Simulation type State (K) Box size (nm) Lipids Stress (bar) Number of runs

CPF Fluid (340) xy:13.18; z:8.17 512-10W F = 10; τ = 0.955 50
F = 50; τ = 4.78
F = 100; τ = 9.55
F = 150; τ = 14.3
F = 200; τ = 19.1
F = 250; τ = 23.9
F = 500; τ = 47.8
F = 1000; τ = 95.5
F = 2000; τ = 191
F = 3000; τ = 2.87

CPF Fluid (340) xy:18.55; z:8.24 1024-10W F = 200; τ = 9.66 50
F = 250; τ = 12.1
F = 400; τ = 19.3

CPF Fluid (340) xy:18.55; z:8.24 1024-10W F = 200; τ = 9.66 50
F = 250; τ = 12.1
F = 400; τ = 19.3

CPF Gel (280) xy:11.14; z:10.6 512-10W F = 10; τ = 1.34 50
F = 50; τ = 6.69
F = 100; τ = 13.4
F = 150; τ = 20.1
F = 200; τ = 26.8
F = 250; τ = 33.4
F = 500; τ = 66.9
F = 1000; τ = 134
F = 2000; τ = 268
F = 3000; τ = 401

to converge to a master curve 	(φ)(t ). This is indeed the
case for a set of applied stresses within an interval 4.8 ×
105 � φu � 48 × 105 Pa (applied forces in the range 50 �
F � 500 kJ mol−1 nm−1). A too small applied stress φu =
105 Pa (force Fu = 10 kJ mol−1 nm−1) departs from the mas-
ter curve due to strong Brownian fluctuations [27]. Large
applied stresses clearly bring about strong deviations from lin-
ear response, associated with shear-thinning behavior. Taking
the bilayer thickness Lb = 4.8 nm as a characteristic length,
the upper limit of validity of the linear response regime (50
bars) can be turned into a surface tension φuLb of magni-
tude 25 mN m−1, typical of the oil-water surface tension
(35 mN m−1). It corresponds to a typical drift velocity of
10−3 nm ps−1 = 1 m s−1.

Figure 7 represents the average drift velocity Vu, as a func-
tion of the applied force Fu, or equivalently stress φu = Fu/A
in the fluid state. Each velocity Vu is obtained from a lin-
ear fit of the normalized displacement curves in Fig. 6. The
linear dependence of Vu in the applied stress φu leads to a
value for b + η/Lw equal to 2.75 ± 0.08 × 106 Pa s m−1. This
value was further confirmed by using a larger sample of 1024
lipids with the same hydration of 10 water beads (40 water
molecules) per lipid.

B. Fluid phase force kick relaxation (FKR) Couette simulations

Repeated kicks were there applied, starting from 150 to
1000 different configurations. A bootstrap sample of both
leaflet displacements is shown in Fig. S1 [28]. The typical

averaged displacement curve 〈Xu(t )〉 increases first linearly,
as a natural consequence of the initial force kick that con-
fers a uniform translation velocity to the leaflet (Fig. 8). The
initial impulsion dissipates fast and vanishes within 5 ps.
Surprisingly, the displacement curve starts to decrease, or
equivalently the leaflet velocity becomes negative. This peak
is followed by a much slower relaxation to an apparent plateau
value, also associated with a negative velocity, which extends
on a few hundred ps. The apparent plateau value is associ-
ated to a relaxation time trelax such that �Xu � 〈Xu(trelax) −
Xu(0)〉, with trelax of the order of 500 ps. In what follows,
for each run X (α)(t ), an estimate of the plateau value was
obtained by averaging the displacements over a time interval
[500–1000 ps].

The striking main feature of the impulsion relaxation curve
is the nonmonotonic behavior of the normalized displacement
Xu(t )/V0 = 〈Xu(t )〉/V0 (Fig. 8) and the velocity Vu(t )/V0 =
〈Vu(t )〉/V0 (Fig. 9). It is not possible to account for such a
behavior without an elastic contribution to the membrane re-
laxation. Figures 8 and 9 therefore suggest that the mechanical
response of a sheared bilayer is viscoelastic on a timescale
tvel ∼ trelax, with tvel a bilayer internal viscoelastic relaxation
time.

As in the constant pulling force experiments, it is pos-
sible to define a linear response regime, by plotting the
displacement normalized with the initial velocity 〈Xu(t )〉/V0

as a function of time. A master curve 	(V )(t ) is expected
to describe this averaged, normalized displacements in the
short and intermediate time regime t � trelax. The normalized
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FIG. 5. Constant force pulling experiments in the fluid state:
(a) single leaflet COM displacement X (α)(t ), starting from the simu-
lation box center (ca. 6.6 nm) and averaged displacement 〈X 〉(t ) =
1/50

∑50
α=1 X (α)(t ) vs time. A bootstrap procedure (b) estimates the

dispersion σb(Xu(t )) caused by the finiteness of the sample {α}.
Vertical bars represent the confidence interval of 10 selected points
from the second half of the trajectory (5000 < t < 10000 ps), taken
as twice the estimated bootstrap standard deviation. The vertical bars
are used to provide a confidence interval for the drift velocity (slope
of the averaged displacement curve).

displacement velocity Ẋu/V0 = Vu/V0 is dimensionless and
can be interpreted as a velocity autocorrelation linked to
the momentum scattering efficiency of the mutual interleaflet
molecular interactions.

Figure 9 describes the normalized velocity relaxations
〈Vu〉(t )/V0 for a set of increasing V0, and shows a devia-
tion of the relaxation from the master curve 	(V )(t ) at V0

larger than 0.1−0.2 nm ps−1. Correspondingly, the effective

FIG. 6. Normalized averaged displacements (upper leaflet)
〈X 〉u(t )/Fu for a set of increasing pulling forces 1, . . . ,

3000 kJ mol−1 nm−1 (equivalently stresses τ � 1, . . . , 300 bars).
The displacement for Fu = 3000 lies clearly beyond the linear
regime and the force Fu = 10 competes with thermal agitation. For
clarity, only a representative subset of normalized displacement
curves is shown in the figure.

FIG. 7. Average drift velocities Vu vs applied forces Fu (lower
horizontal scale bar) or stresses (higher horizontal scale bar) in the
constant pull force (CPF) regime. A shear-thinning deviation is seen
at τ � 50 bars. Inset: focus on the linear regime region.

normalized translation shift (plateau) �Xu(trelax)/V0 starts to
increase, pointing again to a shear-thinning behavior (Fig. S2
[28]). The empirical upper bound Vl.r. of the linear response
regime is therefore found to be of the same magnitude as the
maximal velocity Vmax deduced from Eq. (24).

While the convergence to a finite plateau value is a rea-
sonable expectation for the averaged displacement curve,
simulated trajectories are subject to the thermal motion of the
leaflet center of mass, which is expected to be asymptotically
dominant at large times. Given a sample size Ns, the thermal
motion of the sample averaged displacement curve is set to
scale as (DCOM,u/Ns)1/2t1/2. The determination of �Xu from

FIG. 8. Normalized averaged displacements 〈Xu〉(t )/V0 for a set
of increasing initial velocities V0 = 0.01 and 0.08, . . . , 0.5 nm ps−1

in the force kick relaxation (FKR) regime. A fast initial increase
in the first 7 ps is observed, followed by a slow relaxation in the
opposite direction. As discussed in Sec. IV C, we interpret this peak
as related to a fast inertial propagation of stress into the bilayer
(acoustic propagation).
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FIG. 9. Normalized averaged velocities 〈Vu〉(t ) =
〈dXu/d t〉(t )/V0. The velocity starts at an initial value of 1, decreases
fast to 0 (coinciding with the sharp peak in the displacement curve)
reaches a negative minimum and finally slowly regresses to 0
from below, coinciding with the slowly decreasing approach of the
displacement plateau value.

MD sampling is therefore empirical to a certain extent, as
any finite sample average eventually departs from the plateau
value. The sample size must be large enough to keep the
combination (DCOM,u/Ns)1/2t1/2

relax smaller than �Xu. Equation
(22) provides a theoretical estimate of the accuracy of the
sampled value 〈�Xu〉. The bootstrap estimate of the variance
of �Xu [Eq. (26)] is another independent path to estimate the
sample dependence of �Xu.

C. Fluid phase Poiseuille flow geometry

Constant pulling rate experiments can be performed in
the Poiseuille geometry, when both leaflets are pulled in one
direction and the solvent homogeneously pulled in the reverse
direction. Assuming that the solvent does not slip at the lipid-
solvent interface, the average relative drift velocity obeys
relation (4). We justify this assumption from [15], which
found no significant sliding velocity at the lipid water inter-
face on a qualitatively similar system. Using Lw = 3.5 nm in
the fluid state (T = 340 K), one finds a value of the coarse
grained Martini water viscosity η = 8 × 10−4 Pa s [Eq. (4)].
Repeating the simulation with a larger number of water beads
(10 240 solvent beads for 512 lipids, Lw = 7.2 nm), the
resulting water viscosity changes to η = 7 × 10−4 Pa s. Inde-
pendent simulations using reverse nonequilibrium molecular
dynamics [29] (with Lammps, using an equivalent fluid of
truncated Lennard-Jones particles at the same temperature)
confirms that the solvent viscosity lies close to η = 7 ×
10−4 Pa s. The slightly larger value obtained in the presence of
a thin water layer is likely to be due to water interfacial effects,
the dissipation properties in the interfacial water region being
likely to slightly differ from the bulk. The Poiseuille flow sim-
ulation design described above can therefore be considered as
a viable route to estimate the viscosity of a solvent, provided
interfacial effects are small. It is worth noting that the Martini
water viscosity lies quite close to the experimental value,

FIG. 10. Normalized averaged displacements 〈Xu〉(t )/V0 in the
gel state for a set of increasing initial velocities 0.01 and
0.03, . . . , 0.1 nm ps−1. The plateau value is clearly increasing with
the initial applied velocity, and the normalized displacements do not
appear to collapse onto a master curve, pointing to an absence of
linear response.

a feature hardly expected from a coarse grained unrealistic
water model.

D. Gel phase CPF and FKR simulations

An ordered phase of the lipid bilayer was obtained at low
temperature T = 280 K. Concerning the FKR simulations, a
number of bootstrap realizations of the displacement Xu(t )
corresponding to an initial velocity step of V0 = 0.9 nm ps−1

is shown in Fig. S3 [28]. Normalized averaged displacements
curves 〈Xu〉(t )/V0 are represented in Fig. 10, for increasing
initial velocities ranging from 0.01 to 0.5 nm ps−1. The nor-
malized displacements do not superimpose well, even in the
low-velocity regime, and a master curve 	(V )(t ) may not exist
at low temperatures. This is especially visible in Fig. 11,
where the displacements �Xu are plotted as a function of the

FIG. 11. Normalized average displacements �Xu/V0 for a set
of increasing impulsions and sample size 150, with confidence
intervals.
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FIG. 12. Normalized averaged velocity 〈dXu/d t〉(t )/V0. Start-
ing from 1, the normalized velocity quickly crosses 0 to reach a
minimum, and then relaxes slowly to 0. Curves do not collapse to
a master curve. The shape of the normalized relaxation curve is quite
different from the fluid case state (Fig. 9).

initial velocity V0. The gel phase curve is much less linear than
the fluid phase curve.

Normalized velocities in the low-temperature phase are
shown in Fig. 12 and Fig. S3 [28,30]. The overall velocity
relaxation curve shape is distinctly different from the equiva-
lent fluid counterpart Fig. 9. It does not look like the curves
converge to a master curve limit. Correspondingly, the initial
displacement peak Xu(t ) − Xu(0) (inset of Fig. S3 [28]) is
smoother than in the fluid situation. However, the leaflet ve-
locity change of sign during the relaxation stage is seen both
at high (fluid) and low (gel) temperatures.

In order to extract the true velocity-stress characteristics
of the bilayer, we substracted the contribution of the sheared
solvent from the applied force. Equation (3) then becomes

τ = φu − 2η

Lw

Vu. (27)

The above relation is valid for an arbitrary stress-velocity
relationship, provided the solvent response remains linear in
Vu. The CPF results in the gel phase are summarized in Fig. 13
and Fig. S4 [28]. The average drift velocity was plotted as a
function of the pull force φu and as a function of the inner
stress τ . Unlike the fluid phase, the gel phase does not dis-
play any linear regime. The log-scale representation of the
velocity-stress characteristics seems to indicate a power-law
behavior over almost two decades, with apparent exponent
〈V〉 ∼ τ 1.50.

E. Lipid tilt modes

The non monotonic velocity relaxation curve consecutive
to an external force kick at t = 0 cannot be accounted for by
a simple hydrodynamic model. Instead, it suggests that some
elastic response is involved in the leaflet translational relax-
ation. All the numerical evidence suggests that the bilayer
remain flat, with negligible out-of-plane bending strain. On
the other hand, the simulations are held at constant volume,
ruling out standard membrane stretching (or compressibility)

FIG. 13. Velocity Vu-applied shear stress φu and inner stress τ

characteristics in the gel and fluid states, from CPF simulations, us-
ing logarithmic representation. Dashed lines: linear behavior Vu ∼ τ

in the fluid state (triangles) and power-law behavior in the gel state
(circles). The fluid regime is linear over the range of stresses consid-
ered here, while the gel regime seems consistent with a power-law
relation of exponent Vu ∼ τ 1.50 or φ1.44

u .

contribution. We therefore checked whether lipid tilt modes
were activated as a result of the interleaflet friction.

We estimated the average lipid tilt angle, defined as a
polarization vector linking the first to the least bead in the
hydrocarbon chain (cf. Fig. 14). Figure S5 [28] shows, on an
enlarged scale, that the average bilayer tilt angle is less than
0.2◦ at equilibrium. When the bilayer is submitted to a CPF,
the angle deviates from its vanishing average, proportionally

FIG. 14. Martini CG representation of a DSPC molecule. Bead
1: choline, bead 2: phosphate, beads 3–4: glycerol, beads: 5–9 and
10–14 hydrophobic chains. A vector linking the first and last carbons
of each chain is used for defining the average lipid tilt angle θ relative
to the membrane normal.
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FIG. 15. Evolution of the average normalized tilt angle 〈θ〉 dur-
ing a constant pull force experiment for a set of forces ranging from
F = 250 kJ mol−1 nm−1 to 3000 kJ mol−1 nm−1.

to the applied force (in the limit of linear response and small
angles) as shown in Fig. 15. The tilt angle in the fluid phase
reaches a well defined asymptotic stationary value, while in
the gel phase, the angle seems to be still evolving on the figure
timescale (25 ns). In addition, the tilt angle in the gel phase has
a larger magnitude than in the fluid phase. The ratio between
the average tilt angle and the applied stress is of the order of
θ/φu � 2.75/24 � 0.125◦ bar−1 or 1.7 × 10−3 bar−1 with θ

expressed in radians in the fluid phase.
Curves in the gel state display a long-time drift, su-

perimposed with oscillations. In this case, the oscillations
correspond to a frozen out-of-plane undulation of the gel
initial configuration. Due to shear motion, a signal of period
Lx/2〈Vx〉 is seen, with Lx the box size and 2〈Vx〉 the aver-
age relative drift velocity of the leaflet. In the strongest pull
regimes, the bump is progressively annealed by the induced
shear motion leading to the disappearance of the oscillations.
After the motion has stopped, a finite long-lived remnant tilt
angle is observed.

Impulsional FKR tilt angle results are shown in Fig. 16,
associated to an initial velocity V0 = 0.09 nm ps−1. For

FIG. 16. Average tilt angle curves 〈θ〉 during a force kick exper-
iment (V0 = 0.09 nm ps−1 in the gel and fluid states, respectively).

comparison, we also represent equilibrium curves, in the ab-
sence of bilayer solicitation. The tilt angle in the gel state
relaxes slower than in the fluid state.

IV. DISCUSSION

A. Extension of the linear regime

The interleaflet sliding kinetics in the fluid phase display an
extended linear regime, in both the CPF and the FKR regimes.
Deviations from linear behavior emerge as the pulling stress
exceeds τc = 50 bars (Fig. 7) or the initial velocity exceeds
0.2 nm ps−1 (Fig. 9). This critical stress τc is of the same
magnitude as the cohesion stresses within the bilayer, of the
order of 200 bars [31]. Inversely, small Péclet number con-
siderations make it impractical to use both approaches for
too small initial velocities or pull stresses. This lower limit
is not intrinsically related to the physical system considered,
but a matter of finite simulation box size: increasing the
sample size amounts to decreasing the collective center of
mass diffusion coefficient and enhances the sensitivity of the
method. Unfortunately, unconfined large bilayer systems are
subject to strong unfavorable undulation fluctuations and do
not constitute a viable option.

The CPF linear regime yields a consistent estimate for b +
η/Lw, provided one neglects the sliding velocity of the sol-
vent. Subtracting off the viscous contribution, our estimate for
b is 2.54 ± 0.10 × 106 Pa s m−1, with η/Lw = 2.0 ± 0.12 ×
105 Pa s m−1 obtained from our stationary Poiseuille flow
pulling simulations. Other different approaches for the Mar-
tini water viscosity (7 × 10−4 Pa s m−1 in [13], or using
reverse nonequilibrium molecular dynamics with Lammps
[32]) provide fully consistent estimates. This value compares
well with the A55 model of den Otter and Shkulipa obtained
using a completely different scheme (RNEMD shear of the
surrounding solvent), for which the quoted value for b is be-
tween 2.7 × 106 and 2.8 × 106 Pa s m−1. The A55 is a similar
lipid with five beads in each chain (as our DSPC) parame-
terized using the values of the Martini model and which was
simulated at 323 K. The agreement between both models is
very good, given the difference between the approaches and
the 13 K temperature gap.

Falk et al. [15] simulated a different coarse-grained model
(SDK [33]; see also [34]) and obtained a b value of 1.4 ×
106 Pa s m−1. The difference may be attributed to a differ-
ence of parametrization between the SDK and Martini model.
This difference is significant enough to change qualitatively
the nature of the gel phase. In the SDK model, the low-
temperature state is a Lβ ′ tilted chain phase. It results that
the SDK solid phase displays anisotropic friction properties,
with the direction parallel to the tilt direction displaying a b
coefficient close to the fluid case (1.3 × 106 Pa s m−1) and a
yield force in the direction perpendicular to the tilt. In our
case also, the apparent b value is similar in the gel and fluid
case (Fig. 17). However, due to the absence of linear regime,
we cannot provide anything but a qualitative behavior of the
coefficient b.

Zgorski et al. [16] used a scheme close in spirit to RNEMD
to shear the solvent and the bilayer, in order to obtain b, a
similar approach as Falk et al. They compared the old and
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FIG. 17. Apparent friction coefficient b + η/Lw from FKR simu-
lations as a function of the initial induced velocity V0 in the fluid (red
squares) and gel (blue circles) states. Each point corresponds to 1000
repeated independent simulations. For each point, a vertical error
bar 2σb is inferred from the bootstrap variance σ 2

b of 10 synthetic
averaged displacement curves. The resulting confidence interval de-
creases with velocity in all cases. Confidence intervals are about
10% relative value for V0 = 0.08, 0.09 and 1 nm ps−1, and about 20%
relative value for V0 = 0.05, 0.06, and 0.07 nm ps−1 in the fluid state.

new version of DPPC Martini lipids (four-bead chains) and
obtain a value in the range of 4.3 × 106 to 5.5 × 106 Pa s m−1.
These values are significantly larger than ours (even though
not strictly comparable) and also than den Otter and Shkulipa
(2.4 × 106 Pa s m−1 for the four-bead chain model A44), a
discrepancy that might be due to a definition of b differing
by a factor 2 from ours. Interestingly, Zgorski et al. have
determined b for the atomistic CHARMM 36 model, reaching
values of the order of 1.1 × 107 Pa s m−1, still an order of
magnitude smaller than the experimental estimates of Evans
and Yeung or Pfeiffer et al. [6,12]. More work is therefore
needed, both on the experimental and simulation sides, to
determine how accurately current atomistic simulations repro-
duce the local interlayer friction phenomenon.

We finally note that that the friction coefficient b = 2.54 ×
106 Pa s m−1 can be interpreted as a Newtonian fluid sheared
between two infinitely thin parallel planes separated by a 5-
nm-thick gap, with an equivalent dynamic viscosity ηequiv =
13 mPa s, about 15 times the value of liquid water.

The FKR predictions for b + η/Lw are summarized in
Fig. 17 and the only numerical values in the linear regime with
reasonable error bars are those with V0 = 0.05 to 0.1 nm ps−1.
The resulting confidence interval decreases with velocity in
all cases. In the fluid phase, the three first velocities (V0 =
0.05, 0.06, 0.07 nm ps−1) are consistent with the CPF value
obtained in the linear regime (dash line), though with sig-
nificant error bars. The three following points 0.08,0.09 and
0.1 nm ps−1 are located slightly below the CPF value. The
last point 0.2 nm ps−1 is clearly below the CPF value, again
pointing towards shear-thinning behavior.

The estimation of �Xμ used in Eq. (16) was obtained
by computing the average stationary value of the relaxation
curves featured in Fig. 8. The position of the plateau may
have been underestimated as the displacements Xμ(t ) relaxes

slowly to their asymptotic limit. Extending the analysis to
longer timescales does not improve much the determination
of the displacement because the Brownian random diffusion
increases, and the signal to noise decreases with the elapsed
time. It is therefore necessary to both simulate for longer times
and to increase in parallel the number of independent trajec-
tories. We therefore conclude that there is a rough agreement
between the CPF and FKR methods. Such an agreement is ex-
pected based on linear response considerations, which is only
seen in the fluid phase. The numerically observed upper limit
of validity of the linear response regime Vlr ∼ 0.1 nm ps−1

is remarkably similar to the velocity Vmax ∼ 0.2 nm ps−1 de-
duced from the system kinetic energy argument. This does not
directly prove that the excess of kinetic energy is responsible
for the linear response breakdown, but it indicates that not
other limiting process occurs until the Vmax limit is reached.

B. Linear viscoelastic transient response

The FKR approach gives insight on the transient mechani-
cal response of the bilayer and predicts a sign inversion of the
leaflet COM velocity following the positive impulsional initial
velocity. We interpret this phenomenon as the consequence
of a slowly relaxing lipid chain tilt angle, causing a reactive
(nondissipative) stress contribution. Following the initial ve-
locity kick, an elastic stress builds up and is further dissipated.

We note that a different transient regime would occur if
the initial force kick was applied non uniformly to the bilayer
leaflets, for instance, on the lipid headgroups only. Linear
response arguments suggests that the macroscopic hydrody-
namic coefficient b + η/Lw must not depend on the location of
the applied pulling force or force kick. However, the transient
response is expected to depend on the way forces are exerted.
Further work is needed to compare the current procedure to
other possibilities, which would more closely mimic a real
shear force pulling experiment. The uniform pulling force
used in the current approach corresponds to a uniform body
force applied on each leaflet, due to the fact that all Martini
beads have an identical mass.

A transient shear stress response can be inferred from
the retarded memory function formalism exposed in the
methodology section. This response can be probed by any
spectroscopic shear force experiment, using electromagnetic
[35] or piezoelectric vibrations (dissipative quartz-crystal mi-
crobalance QCM-D [36,37]). So far, none of these techniques
reach the frequency domain of the observed viscoelastic
regime. The characteristic “Maxwell” relaxation time pre-
dicted by the Martini model is about 100–1000 ps (Figs. 8
and 10). The connection between Martini coarse-grained and
atomistic kinetic properties is quite loose. At room tempera-
ture, the Martini lipid diffusion coefficients (ca. 70 μm2 s−1

in the DSPC fluid phase at 340 K) are predicted to exceed by
a factor 10 the actual values (ca. 15 μm2 s−1 at 60 ◦C [3,38]).
On the other hand, the predicted Martini water viscosity (0.7
mPa s) is in reasonable agreement with the real value (1
mPa s). These examples show that the difference between
the coarse-grained and atomistic timescales may stretch from
1 to 10, depending on the phenomenon considered. Assum-
ing that the actual relaxation dynamics associated with the
leaflet viscoelastic response falls between 1 and 10 times the
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corresponding numerical prediction, one may estimate the
real Maxwell relaxation time to be of order 1–10 ns, and a
frequency response possibly in the 100 MHz to 1 GHz range.

In addition to the intrinsic membrane elastic response, the
water gap probed by the sliding leaflets (Fig. 4) is also ex-
pected to respond according to a viscoelastic memory pattern.
Stokes hydrodynamics predicts that rigid slabs cannot drag the
interstitial fluid instantaneously. The stress-velocity response
function can be computed analytically for sticking bound-
ary conditions, using, for instance, Duhamel’s principle [39].
However, if there were no elastic contribution, the viscous
memory function alone would not lead to a reversal of the
COM velocity.

C. Origin of the viscoelastic characteristic times

The transient response is characterized by a sharp initial
increase. We attribute it to the fast loading of the bond springs
connecting the beads in the interleaflet area. A characteris-
tic timescale can be obtained dimensionally as the period
tfast ∼ 5 × 2π

√
(m/kbond ) of a chain of five harmonic springs

of stiffness kbond = 1250 kcal mol−1 nm−2 and bead mass
m = 72 amu, typical from the Martini force field used in this
approach. One finds tfast ∼ 7 ps, in reasonable agreement with
the observed initial peak dynamics in Fig. 8.

Let us now estimate the hydrodynamic damping time thyd

resulting from balancing inertia with interleaflet friction. One
has thyd = MNl/(2Ab). With M � 1000 g mol−1, Nl = 256,
b = 2.5 × 106 Pa s m−1, A = (13.2 nm)2, we obtain thyd =
0.5 ps. This timescale is extremely short. We note that it is
of the order of magnitude of the normalized plateau value
	(V )(∞) = �Xu/V0 � 0.5 ps in Fig. 8. If the displacement
curve following the initial force kick was a single exponential
dominated by a balance between friction and inertia, one
would see a very fast asymptotic approach to the plateau
value, on the same timescale as the first peak. Such a fast
relaxation would indeed describe the hydrodynamic response
of an incompressible rigid slab subject to solvent and inter-
layer friction. On the other hand, with ct � 1000 m s−1 as the
celerity of transverse sound waves in the bilayer (a typical
magnitude for a fluid sound wave celerity) it would take at
least 5 ps for the sudden shear stress wave following the force
kick to establish itself across a 5-nm-thick membrane. This
proves that the ideal incompressible solid relaxation result
cannot describe the observed situation. It also provides an
alternative estimate of the characteristic timescale of the initial
displacement peak position.

A Poiseuille characteristic timescale tPoiseuille can be
defined as the slowest relaxation time of the Stokes hydrody-
namic flow in a flat slab ρL2

w/(ηπ2) involving the channel gap
Lw = 3.5 nm and the water kinematic viscosity η/ρ � 7 ×
10−7 m2 s−1. Its value is tPoiseuille = 1.6 ps, and much shorter
than the observed relaxation time. We therefore conclude that
the sliding leaflets relaxation time trelax has a viscoelastic
origin, and we denote it tvel.

We therefore conclude that the relaxation seen on Fig. 8
results from slow membrane internal relaxation dynam-
ics. Slow lipid tilt modes relaxation, such as depicted in
Fig. 15, certainly contributes to the observed slow viscoelastic
response of the bilayer FKR. The inner bilayer dissipation

FIG. 18. Projected Brownian xy trajectory of the upper leaflet
center of mass, observed during 50 ns in the fluid phase (space units
in nm).

upon interleaflet sliding is therefore likely to be distributed
on the whole bilayer, and not just localized near the midplane
region.

The possibility of membrane viscoelastic response has
been put forward in the context of the short-time subdiffusive
displacements of lipid molecules, described in a number of
previous studies [40–42]. In fact, it is possible to account for
anomalous diffusion by introducing a viscoelastic memory
function in a generalized Langevin equation. It seems that lin-
ear diffusion of lipid molecules is usually recovered when the
lipid MSD reaches values of the order of 1 nm2. Depending on
the simulated systems, this involves timescales of the order of
a μs. On the other hand, subdiffusion of lipid molecules COM
or subgroups is expected on general grounds on short time and
length scales, due to the extended and fluctuating nature of the
objects (oligomer chains) [43]. The long timescale appearing
in the subdiffusive lipid motion points to a different mecha-
nism as the one involved in the momentum transfer between
leaflets.

D. Brownian error on the transient displacements

It turns out that the condition �Xu ∼ V0trelax is not met.
Instead, �Xu/V0 is of the order of thyd ∼ 0.5 ps, and the
long relaxation time trelax ∼ tvel  �Xu/V0 enhances the ef-
fect of Brownian fluctuations. Following Eq. (22) one expects
a COM diffusion coefficient of the order of 10 μm2.s−1.
A numerical estimate based on the COM mean-squared dis-
placement yields a value DCOM,u � 3.4 μm2 s−1 (Figs. 18 and
19).

As a consequence, the ballistic to Brownian displacement
ratio rbal/br equals

rbal/br = �Xu√
DCOM,utvel

=
(

V 2
0 thyd

DCOM,u

)1/2( thyd

tvel

)1/2

. (28)

054802-13



BENAZIEB, LOISON, AND THALMANN PHYSICAL REVIEW E 104, 054802 (2021)

FIG. 19. Mean square displacement curve of the upper leaflet
center of mass at 340 K (continuous black lines) and a linear ad-
justment with 2D = 6.8 × 10−5 nm2 ps−1 (red open circles).

For an initial velocity jump V0 = 0.08 nm ps−1, the ratio
rbal/br � 1. According to the above expression, Brownian dis-
placement and ballistic drift are for each single run X (α)(t )
of the same order of magnitude. With tvel � 500 ps, one finds
from Fig. 19 a mean square displacement of the center of mass
of the order of 0.004 nm2. Assuming a Gaussian distribution
of the latter and a sample size of Ns = 1000 independent runs,
the resulting 2σb confidence interval is expected to be ∼10%,
the right order of magnitude for what is seen in Fig. 17.

Let us now consider the friction properties of the bilayer in
the gel state. The most prominent characteristic is the absence
of visible linear response regime. This is particularly clear
from Fig. 13. The effective b + η/Lw coefficients decreases
with the external pulling stress (CPF) and the initial force kick
(FKR), a typical shear-thinning behavior. Since the solvent
viscosity does not change at the transition, the interleaflet
friction is responsible for the observed behavior. If it is not
possible to affirm for certain that no linear regime exists at
lower pulling stresses, such a linear regime clearly lies beyond
our current simulation capacities.

Shear thinning behavior is the hallmark of complex fluids
dynamics. In the CPF regime, the effective friction b appears
to follow an approximate power-law regime Vu ∼ τ 1.5, or
equivalently b = τ/Vu ∼ V −0.33

u , where τ is the shear stress.
Beyond linear response, one does not expect equivalence be-
tween CPF and FKR measurements in the gel phase.

The tilt relaxation dynamics (Figs. 15 and 16) suggests
that the lipid tilt relaxation occurs slowly in the gel phase.
A possible explanation would be that irreversible or slowly
reversible plastic deformations are involved in the gel sheared
bilayer as shown in Fig. 20. It is clear on the one hand that
the tail beads organization in the low-temperature state is
nearly crystalline, as in a close-packed Lennard-Jones beads
structure but with additional frustration caused by the bond
length constraint along the chain. One the other hand, plastic
deformation in crystals occurs through nucleation and motion
of dislocation loops or other topological defects. Such defects
have typically very large energies in bulk materials. In the case
of the thin membranes considered in this work, however, it
is much easier and less costly to nucleate dislocation loops,

FIG. 20. Schematic representation of an ordered bead packing
(a), homogeneous elastic shear deformation (b), and plastic defor-
mation (c). The plastic deformation reduces the angle between the
crystal axis (blue arrow) and the local normal direction (full black
arrow) thus decreasing the shear elastic energy of (c) with respect to
(b) at the expense of a crystalline plane shift. The dashed arrow in
(c) indicates the global bilayer normal direction.

and many more stress-induced plastic deformation events are
expected. When the shear stress is released, the time necessary
for the membrane to anneal and recover its initial structure is
significantly longer in the cohesive gel state than in the fluid
state, which explains the observed persistence of the tilt angle.
We have yet to find a quantitative explanation for the apparent
power-law exponent of the velocity-force characteristics.

V. CONCLUSION

We investigated two different approaches for studying lipid
bilayer friction, which can both be generalized to supported
membrane systems. A constant pull force method was used
to determine the solvent shear viscosity and the bilayer inter-
leaflet friction, with good accuracy. A DSPC fluid membrane
was found to behave linearly until the shear stress reaches the
order of 50–100 bars, and the sliding velocity the order of
1 to 2 m s−1. Meanwhile in the gel state no linear response
was observed, but instead linear power law stress velocity
characteristics. The magnitude of the friction is similar in both
phases.

A second original approach consisted in monitoring the
relaxation of the membrane drift motion following an initial
force kick. This method was found to be less accurate, but
consistent with the previous one. It reveals that both fluid and
gel membranes relax slowly to equilibrium, on a characteristic
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timescale tvel much larger than the hydrodynamic damping
thyd. The overall response bears the hallmark of linear vis-
coelasticity. The interpretation of the characteristic timescales
seen in the membrane mechanical response and in particular
the initial transient regime suggests that the dissipation ex-
tends beyond the interfacial lipid mid-plane and involves the
whole lipid bilayer.

The next step will consist of applying the pull and kick
force methods to atomistic models of fluid bilayers and to
supported bilayer membranes where strong confinement and
interaction between solid surface and bilayer may change
significantly the results.
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APPENDIX: SIMULATION DETAILS

1. Simulation conditions

We used the Martini lipid version 2.0 and Gromacs 5.1. The
representation of a DSPC lipid is described in Fig. 14. It con-
sists in 14 beads located at various levels on an hydrophilicity
scale, interacting with Lennard-Jones interactions of radius
r0 = 0.47 nm, connected with harmonic springs of stiffness
k0 = 1250 kJ mol−1 [19,21].

In all the simulations, the standard Gromacs md leap-frog
molecular dynamics integrator was used, with a time step of
20 fs. The velocity rescale [25] was used to keep the energy
constant in the simulation. This thermostat is an alternative
to Nose-Hoover and uses a single supplementary stochas-
tic coordinate Q ensuring canonical ensemble ergodicity for
the simulated system. Lipid and solvent groups of molecules
were separately coupled to two v-rescale thermostats, with a
coupling time constant of 1 ps. For constant pressure simu-
lations, we used a semi-isotropic Parinello-Rahman barostat
with a time coupling constant of 12 ps and a compressibility
3 × 10−4 bar−1 in the xy and z directions.

2. COM fixation

Center-of-mass (COM) fixation (nstcomm) deserves spe-
cial attention. It is required to fix the system COM to a
constant position as soon as the system in translation invari-
ant conjugated with the use of a Nose-Hoover or v-rescale
thermostat. In the Couette flow situation, the bilayer and wa-
ter groups have a separately vanishing linear momentum. In
the Poiseuille flow, only the system COM is stationary. One
must therefore apply the constraint on the system center of
mass (which would otherwise not be perfectly steady due to
the approximate treatment of intermolecular forces), and not
separately to the subsystems.

A NPT run of 40 ns was used to determine the average
box size for a system subject to constant pressure conditions
(Figs. 21, 22). A NVT run of 5 μs was then used to generate

FIG. 21. Evolution of the horizontal and vertical box sizes during
the NPT simulation, used for determining the average box size, in the
fluid phase.

1000 thermalized initial conditions, in both the fluid and the
gel phases.

3. Force pulling

Constant force pulling was implemented using umbrella
sampling control parameters, such as in the following example
for pulling in the Couette geometry with a constant force of
250 kJ mol−1 nm−1:

Pull =yes
pull_ngroups = 2
pull_ncoords = 1
pull_group1_name = up
pull_group2_name = down
pull_coord1_type = constant-force
pull-coord1-vec = 1 0 0
pull_coord1_geometry = direction-periodic

FIG. 22. Evolution of the horizontal and vertical box sizes during
the NPT simulation, used for determining the average box size, in the
gel phase.
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TABLE III. List of simulations used for the force kick relaxation statistics. The notation 512-10W stands for 512 lipids and 10 water beads
per lipid.

Simulation type State (K) Box size (nm) NBR lipids Velocity (nm ps−1) NBR runs

FKR Fluid (340) x-y: 13.18; z: 8.17 512-10W
0.01 : 0.1 step = 0.01

0.1–0.5 step = 0.1
150

x-y: 13.15; z: 11.88 512-20W
0.05 : 0.1 step = 0.01

0.2

x-y: 18.55; z: 8.24 1024-10W
0.04 : 0.1 step = 0.01

0.2

FKR′ x-y: 13.15; z: 8.21 512-10W
0.05–0.10

0.20
1000

FKR-Tilt x-y: 13.18; z: 8.17 512-10W
0.09
0.00

500

FKR Gel (280) x-y: 11.14; z: 10.64 512-10W
0.01 : 0.1 step = 0.01

0.1–0.5 step = 0.1
150

FKR′ x-y: 11.14; z: 10.63 512-10W
0.05–0.10

0.2, 0.3
1000

FKR-Tilt x-y: 11.14; z: 10.64 512-10W
0.09
0.00

500

pull_coord1_groups = 1 2
pull_coord1_dim = Y N N
pull_coord1_k = 250
pull_coord1_start = yes
In the CPF analysis, 50 trajectories of 10 ns were used and

combined for each pulling stress condition.
Force kick relaxation simulations were realized by chang-

ing with a python script the x components of the velocities
in the initial configuration file (gro file when using Gromacs
5.1) as suggested in Eq. (23) and using the new velocities
as a starting configuration. The FKR relaxation dynamics is
unusual in terms of short characteristic relaxation times, of
the order of 1 ps. To perform our statistical analysis, tra-
jectory frames were dumped every 10 time steps (0.2 ps),
and 150 trajectories of 25 000 steps (500 ps) were used
and combined for each initial velocity condition. Home-made
analysis software was used to open and extract trajectory
frames and calculate the displacements, velocities, and other
related properties of each subsystems. Tables II and III sum-
marize the characteristics of the trajectories used in the present
study.

4. Bootstrap analysis

The bootstrap analysis [26] was implemented as follows.
In each case, a number Ns of realisations X (α)

μ (t ) of given
procedure (CPF, FKR, etc., with different input parameters)
is taken as working sample. Prior to analyzing, a collec-
tion of weight vectors w

(α)
β ; β = 1, . . . , M; α = 1, . . . , Ns

was drawn at random, where for each given β, Ns indepen-

dent draws of integers I ∈ [1, Ns] were performed and w
(I )
β

was set equal to the number of times I was drawn (with
repetition) during the process, and divided by Ns. In this
way w

(α)
β is normalized(

∑
α w

(α)
β = 1). The flat sample av-

erage corresponds to the special vector w
(α)
0 = 1/Ns. Each

bootstrap realization corresponds to a contraction Xβ,μ(t ) =∑
α w

(α)
β X (α)

μ (t ) of the working sample. Functions Xβ,μ(t )
represent a randomly resampled average of the original work-
ing sample, close to the flat average 〈Xμ〉 = 1/Ns

∑
α X (α)

μ (t ).
The relative variation of the quantities of interest deduced
from 〈Xμ〉(t ), such as plateau values or average velocities,
provides a confidence interval for the quantity of interest.
Bootstrap amounts to randomly selecting subsets of the work-
ing sample in order to infer its intrinsic variability. The whole
procedure is a kind of Monte Carlo estimate of an aver-
age value, using the working sample as configuration space.
For large and independent enough samples, the bootstrap
approach should indicate the true variability of the desired
average value. Throughout this work, we used twice the
square-root deviation 2σb of the bootstrap samples as our
confidence interval.

5. Open data repository

A sample of initial configurations, topology files and
molecular dynamics simulation parameter files corresponding
to the main cases of interest (CPF and FKR regimes, in the
fluid and gel states) can be obtained from the Zenodo reposi-
tory [44].
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