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Translation-rotation decoupling of tracers reflects medium-range crystalline order
in two-dimensional colloid glasses
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The dynamic heterogeneity and the translation-rotation decoupling are the dynamic signatures of glasses and
supercooled liquids. Whether and how the dynamic heterogeneity would relate to the local structure of glasses
has been a puzzle for decades. In this work we perform molecular dynamics simulations for tracers in both
two-dimensional polydisperse colloids (2DPC) and two-dimensional binary colloids (2DBC). In 2DPC glasses,
hexatic local structures develop at low enough temperatures and grow quickly along with the dynamic correlation
length of the 2DPC, which is well known as the medium-range crystalline order (MRCO). In 2DBC glasses,
on the other hand, any explicit local structure has not been reported to grow significantly with the dynamic
correlation length at low temperatures. We introduce two different types of tracers into colloidal systems:
A diamond tracer that resembles the MRCO of 2DPC glasses and a square tracer that is dissimilar to any
local structure of glasses. The translation-rotation decoupling of the diamond tracer in 2DPC glasses is much
more significant than that of the square tracer in the same 2DPC glasses. On the other hand, such a tracer
shape-dependence of the decoupling is not observed in 2DBC glasses where the local hexatic structure does
not develop significantly. We introduce a shape-dependency parameter of the decoupling and find that the
shape-dependency parameter grows along with the dynamic correlation length in 2DPC glasses but not in 2DBC
glasses. This illustrates that the dynamic heterogeneity and the translation-rotation decoupling of tracers could
reveal the local structure that develops in glasses.
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I. INTRODUCTION

The dynamics of glass becomes extremely slow and spa-
tially heterogeneous such that even the fluctuation-dissipation
theorem, the cornerstone of the statistical mechanics, breaks
down [1–7]. Such intriguing dynamic behaviors play critical
roles in the kinetics of various systems, including col-
loidal suspensions, gels, porous materials, plastic crystals
[8–10], cell cytoplasms [11–19], and cell membranes [19–22].
Whether the slow and heterogeneous dynamics would relate
to any structural order in glasses has been an important ques-
tion for decades [23–38]. The presence of structural order
and the divergence of its correlation length near the glass
transition would indicate that the glass transition should be
a thermodynamic transition instead of a kinetic phenomenon
[28,38–42]. There have been, therefore, tremendous efforts
to identify structural orders in various glass-forming liquids
[42–49], which turns out to be formidable partly due to the
difficulty in obtaining the position vectors of molecules, es-
pecially in experiments [49,50]. Instead, tracers, labeled and
tracked in single molecule experiments, were often employed
to interrogate the dynamics of the glassy matrix [51–57]. In
this work we illustrate that one can take an advantage of
the breakdown of the fluctuation-dissipation theorem of the
tracer dynamics in order to search for the structural order in
glasses.
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Two-dimensional colloidal liquids should be important
systems to study the relation between the inherent structural
order and the intriguing dynamics, because one may take a
track of colloidal particles readily in both experiments and
simulations [31,58–62]. More importantly, depending on the
size distribution of particles, the two-dimensional colloidal
liquids may or may not develop local structural orders near
the glass transition [63–66]. In case of two-dimensional poly-
disperse colloid (2DPC) glasses, where the size distribution
function of particles is Gaussian, the hexatic order develops
strongly near the glass transition such that the correlation
length (ξ6) of the hexatic order grows significantly along with
the dynamic correlation length (ξ4) [28,31,43,47,63,67]. On
the other hand, for two-dimensional binary colloid (2DBC)
glasses, the hexatic order develops relatively weakly such that
the hexatic order should not account for the divergence of
ξ4 near the glass transition [28,38,68–70]. Tong and Tanaka
proposed a structural order parameter recently which relates
to the local packing capability [38,39]. The structural order
parameter measures the deviation of the local packing from
the optimized configuration where particles are packed most
efficiently. The structural order parameter accounts for the
slow dynamics of both 2DPC and 2DBC glasses successfully.
In this study we compare the local structural orders of 2DPC
and 2DBC glasses by taking a track of tracers. We insert two
different types of tracers: (1) a diamond tracer that resembles
the hexatic structure and (2) a square tracer that is dissimilar to
any local structure in two-dimensional (2D) colloidal liquids.
We find that the tracer dynamics can reveal the difference
between 2DPC and 2DBC glasses clearly.
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The transport of tracers in glasses and supercooled liquids
couples to the structure and the slow dynamics of matrices.
This allows one to glean information on the matrices from the
tracer transport [71–73]. For example, the diffusion of tracers
in gels depends on both the size of tracers and the porosity
of the gels. The spatiotemporal correlation of tracers provides
information on the local porosity and the local viscosity of the
gels [74,75]. The glass transition temperature and the spatially
heterogeneous dynamics of thin polymer films have been also
investigated by employing small dye molecules as tracers that
reflected the segmental dynamics of polymer chains [55]. In
this work we insert two different types of tracers (of very low
concentrations) in 2D colloidal liquids. We find that the tracer
transport of two different types of tracers can provide infor-
mation on whether the local structure develops near the glass
transition or not and how the local structure of the glasses, if
any, would grow like a dynamic correlation length.

The fluctuation-dissipation theorem suggests that the trans-
lational diffusion coefficient (DT ) and the rotational diffusion
coefficient (DR) should obey the Stokes-Einstein (SE) and
the Debye-Stokes-Einstein (DSE) relations, respectively. In
other words, both DT and DR should be proportional to the
ratio of the temperature (T ) to the viscosity (η). Therefore
the translation and the rotation couple to each other such
that the ratio (DT /DR) of two diffusion coefficients should
stay constant over a range of T . In glasses and supercooled
liquids, however, DT /DR of tracers is not constant over a
wide range of T , which is called the translation-rotation de-
coupling [1,76–78]. Since SE and DSE relations are rooted
in the fluctuation-dissipation theorem, the translation-rotation
decoupling indicates that the fluctuation-dissipation theorem
breaks down in glasses. How the decoupling occurs in glasses
and whether the decoupling would relate to any structural
order in glasses should be, therefore, a topic of importance.
In this study we find that the translation and the rotation
of both diamond and square tracers decouple in 2DPC and
2DBC glasses. More interestingly, the rotation of diamond
tracers (which resembles the local hexatic structure of 2DPC
glasses) is suppressed significantly only in 2DPC glasses.
This makes the trend of the translation-rotation decoupling
of tracers dependent on the local structure of glasses. We
define a shape-dependency parameter (�) of the decoupling
and find that � grows well along with the divergent dynamic
correlation length.

The rest of the paper is organized as follows. In Sec. II
we describe the simulation model and methods to analyze the
structures and dynamics. In Sec. III we first investigate the
structures and dynamics of 2D colloidal liquids over a range
of temperature. Then, we choose three sets of comparisons
of 2DPC and 2DBC according to their structural changes.
The tracer transport is discussed in each comparison set. In
Sec. IV, a summary and conclusions are presented.

II. METHODS

A. Model and methods

We perform molecular dynamics simulations for 2DPC
and 2DBC liquids. We prepare initial configurations for two-
dimensional colloidal liquids by placing disks at random
positions with periodic boundary conditions in all directions.
If there were to be any overlap between disks, new ran-

FIG. 1. (a) A representative snapshot of the part of the simulation
system of 2DPC of � = 16% with a diamond tracer at T = 0.3.
The diamond tracer consists of black disks, while 2D colloidal disks
are colored in different colors depending on their diameters (σi).
The structures of (b) the diamond tracer and (c) the square tracer.
The angles (α, β) between two neighbor bond vectors (that share a
common disk) are (60◦, 120◦) and (90◦, 90◦) for the diamond and the
square tracers, respectively. �u(t ) is the unit vector that is parallel to
the side of a tracer at time t .

dom configurations are tried. In case of 2DPC liquids, we
sample the diameter (σi) of the ith disk randomly from Gaus-
sian distribution. The polydispersity (�) is defined as � =√

〈σ 2〉−〈σ 〉2

〈σ 〉 , where 〈σ 2〉 − 〈σ 〉2 and 〈σ 〉 denote the variance
and the average of diameters of disks. 〈σ 〉 = 1σ and σ is the
unit of the length in our study. � ranges from 0 to 16%. 2DBC
liquids consist of two types of disks, of which diameters are
σS = 1σ and σL, respectively. In our study we fix the number
ratio between large and small disks to be 1 while we change
the size ratio (	 ≡ σL/σS) from 1.1 to 1.4. For both 2DPC and
2DBC liquids, the area fraction φ = ∑N

i=1 πσ 2
i /4L2 ≈ 0.7 is

fixed. Here, the dimension (L) of our simulation system is
L = 64σ . The total number (N) of disks is N = 3578 for
2DPC and N = 2432–3256 for 2DBC.

Disks interact with each other via truncated and shifted
Lennard-Jones potential (Ui j) as follows:

Ui j (r) = 4ε[(r/σi j )
12 − (r/σi j )

6] − Uc, r � rc, (1)

where Uc = 4ε[(rc/σi j )12 − (rc/σi j )6], rc = 2.5σi j , and σi j =
(σi + σ j )/2. For r > rc, Ui j (r) = 0. The mass (mi) of the ith
disk is proportional to the area of the disk, i.e., mi ∝ σ 2

i . The
unit (m) of mass is set as the mass of the disk of σi = 1σ . kBT
is also employed as the unit of energy, where kB is the Boltz-
mann constant. The unit (τ ) of time is, then, τ =

√
mσ 2/kBT .

We introduce two different types of tracers: diamond and
square tracers. Each tracer consists of 16 identical disks of
diameter 1σ and mass 1m [Figs. 1(b) and 1(c)]. In order to
maintain the shape of the tracer throughout simulations, we in-
troduce bonding (Ub) and angle (Ua) potentials with relatively
large force constants to the tracers. The harmonic bonding
potential Ub is defined as Ub ≡ 100kBT (r/σ − 1.2)2, where
r is the distance between a pair of bonded neighbor disks.
The harmonic angle potential Ua is also defined similarly as
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Ua ≡ 100kbT (θ − θ0)2, where θ denotes the angle between
two bonds that share a common disk. θ0 is the value of θ at
the minimum of Ua. In case of a diamond tracer, θ0 = π/3
or 2π/3 [Fig. 1(b)]. On the other hand, for a square tracer,
θ0 = π/2 [Fig. 1(c)]. The interaction between the disk of
tracers and a colloidal disk is described via Ui j (r). We insert
a single tracer in 2D colloidal liquids at random positions
without any overlap between disks [Fig. 1(a)].

We propagate the systems by performing molecu-
lar dynamics simulations with LAMMPS (large-scale
atomic/molecular massively parallel simulator) software [79].
We employ the velocity-Verlet integrator and Nosé-Hoover
thermostat to obtain trajectories under the canonical NVT
ensemble. The time step for the integration is 0.005τ . The
initial velocities are sampled randomly from the Maxwell-
Boltzmann distribution for a given T . We change the
temperature (T ) of the system from 0.2 to 2. We equilibrate
all the systems until both the kinetic and the potential energies
converge. We confirm that the presence of a single tracer in
each system does not affect the density, the overall transport,
and the structure of 2D colloidal liquids.

B. Structures of colloidal disks

In order to compare 2DPC and 2DBC liquids in a fair
fashion, we estimate the degree of the disorderedness (ω)
that is introduced by Hamanaka and Onuki [64]. Even if the
size distributions of 2DPC and 2DBC are different from each
other, ω allows us to compare the dynamic properties of both
tracers and colloids in 2DPC and 2DBC liquids of compara-
ble disorderedness (ω). First, we calculate the disorderedness
(ω j) for the jth disk by using ω j = ∑Nj

i |ψ j
6 − ψ i

6|2, where

ψ
j

6 = (1/Nj )
∑Nj

k=1 exp(−i6θ jk ) and θ jk is the angle between
a vector from the jth disk to its kth neighbor disk and an arbi-
trary reference vector. Here, the ith disk is the neighbor of the
jth disk. Nj denotes the number of neighbor disks around the
jth disk. If the jth disk and neighbor disks construct a perfect
hexagonal structure around the jth disk, ω j = 0. The overall
disorderedness of the system is defined as ω ≡ ∑N

j=1 ω j/N . A
larger value of ω indicates that the system is more disordered
like liquids.

To investigate the structural transition of the 2D colloidal
liquids, we calculate the susceptibility (χ6) as follows:

χ6 = L2
[〈
�2

6

〉 − 〈�6〉2
]
, (2)

which measures the fluctuations in the order parameter
[80–82]. Here, �6 ≡ |(1/N )

∑N
j ψ

j
6 | is the magnitude of the

global orientational order parameter. As shown in Fig. 2, the
liquid-to-hexatic phase transitions are observed for relatively
monodisperse 2D colloidal liquids (2DPC of � = 5% and
2DBC of 	 = 1.1). In such relatively monodisperse 2D col-
loidal liquids, χ6 diverges at certain temperatures of T =
0.8 and 0.9 for 2DPC of � = 5% and 2DBC of 	 = 1.1,
respectively. On the other hand, we do not observe any liquid-
to-hexatic phase transition for 2DPC of � = 16% and 2DBC
of 	 = 1.3 and 1.4.

C. Dynamics of colloidal disks and tracers

To investigate the dynamics of tracers, we estimate the
translational diffusion coefficient DT by calculating the mean-

FIG. 2. The susceptibility (χ6) as a function of T for various 2D
colloidal liquids.

squared displacement 〈[�r(t )]2〉 = 〈|�r(t ) − �r(t = 0)|2〉 and
employing the Einstein relation DT = limt→∞〈[�r(t )]2〉/4t .
�r(t ) represents the position vector of the center of mass
of a tracer at time t . We calculate the rotational dif-
fusion coefficient DR using the mean-squared angular
displacement 〈[�ϕ(t )]2〉 = 〈|ϕ(t ) − ϕ(t = 0)|2〉 and DR =
limt→∞〈[�ϕ(t )]2〉/2t , where ϕ(t ) is the unbounded angle of
the orientational vector �u(t ). We define �u(t ) as the unit vector
which is parallel to the side of each tracer [Figs. 1(b) and 1(c)].
Here, 〈· · · 〉 represents an ensemble average, and we obtain 20
independent trajectories for each condition.

We calculate the four-point correlation function in order
to investigate dynamics of 2D disks [63,83]. First, a time-
dependent order parameter (Q(t )) is defined as follows:

Q(t ) ≡
N∑
i

N∑
j

w(|�ri(0) − �r j (t )|), (3)

where w(r) = 1 for r � 0.3 or w(r) = 0 for r > 0.3. �r j (t ) is
the position vector of the jth disk at time t . Q(t ) measures the
number of disks that overlap between two configurations of
the time t and t = 0. Then the dynamic susceptibility [χ4(t )]
is obtained by using χ4(t ) ≡ (L2/N2)[〈Q(t )2〉 − 〈Q(t )〉2].

χ4(t ) could be expressed in terms of four-point density
correlation function g4(r, t ), i.e., χ4(t ) = ∫

dr2πrg4(r, t ). For
a given temperature, χ4(t ) has a peak at t = τh, at which the
dynamic heterogeneity is the most significant [Fig. 3(a)]. The
first peak position of χ4(t ) at the lowest temperature is close
to the time when the plateau of the self part of intermediate
scattering function appears after the fast relaxation (β relax-
ation).

The pair correlation of overlapping particles, gol
4 (r, t ), is

defined as

gol
4 (r, t ) = 1

Nρ

〈∑
i jkl

δ[�r − �rk (0) + �ri(0)]

× w[�ri(0) − �r j (t )]w[�rk (0) − �rl (t )]

〉
. (4)
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(a) (b)

FIG. 3. (a) The dynamic susceptibilities χ4(t ) in 2DPC of � =
16%. (b) The four-point structure factor (Sol

4 ) in 2DPC of � = 16%.
Symbols are simulation results for Sol

4 at various temperatures T and
lines are fits to the Ornstein-Zernike equation to estimate the dynamic
correlation length ξ4.

We estimate the dynamic correlation length (ξ4) by fitting
Sol

4 (q, t ) [the Fourier transform of the self-part of gol
4 (r, t = τh)

with i = j and l = k] to the Ornstein-Zernike equation with a
fitting parameter S0, i.e.,

Sol
4 (q, τh) = S0

1 + (ξ4q)2
. (5)

III. RESULTS AND DISCUSSION

A. Disorderedness and diffusion of 2D colloidal liquids

The structure of 2D colloidal liquids depends on both the
size distribution of colloidal disks and the temperature (T ).
Not surprisingly, as either T decreases or the size distribu-
tion becomes narrower, 2D colloids pack more efficiently.
As shown in Fig. 4, when the polydispersity (�) of 2DPC
decreases to 0 or the size ratio (	) of 2DBC decreases to 1,
the overall disorderedness (ω) of liquids decreases to 0. As T
decreases from 2 to 0.2, the colloids pack efficiently and ω

decreases (except for 2DBC of large 	). The glass transition
temperatures (Tg) are Tg ≈ 0.2 and 0.1 for 2DPC of � = 16%
and 2DBC of 	 = 1.4, respectively. Note that the range of ω

of 2DPC liquids is comparable to that of 2DBC liquids in this
study.

Depending on T and the size distribution (� or 	), the 2D
colloidal liquids stay in different states. In order to discuss the
colloidal dynamics for ranges of T and the size distribution,

FIG. 4. The overall disorderedness (ω) as a function of T and the
size distribution (� or 	) for (a) 2DPC liquids and (b) 2DBC liquids.
� ranges from 0% to 16% while 	 ranges from 1 to 1.4. The area
fraction is fixed at φ ≈ 0.7 for 2DPC and 2DBC liquids.

(a) (b)

(c) (d)

FIG. 5. The mean-square displacements (�r(t ))2 and the dy-
namic structure factors Fs(k, t ) of colloidal disks at different limiting
cases for 2DPC [(a), (b)] and 2DBC [(c), (d)] liquids. See the text for
the description of ML, PL, BL, MH, PG, and BG.

we consider four limiting states for 2DPC liquids: (1) the
monodisperse liquid state (ML), (2) the polydisperse liquid
state (PL), (3) the monodisperse hexatic state (MH), and (4)
the polydisperse glass state (PG). Similarly, in case of 2DBC
liquids, we choose four limiting states, too: (1) the ML state,
(2) the binary liquid state (BL), (3) the MH state, and (4) the
binary glass state (BG). Those limiting state points are marked
in Fig. 4.

2D colloidal liquids exhibit very different transport behav-
iors at four different states as expected. Figure 5 depicts the
mean-square displacement (�r(t ))2 and the dynamic struc-
ture factor Fs(k, t ) of colloidal disks at different limiting
states. In the MH state of both 2DPC and 2DBC, (�r(t ))2

shows a long plateau during more than three orders of mag-
nitude of time t . This indicates that the disks in the MH
state hardly diffuse during the intermediate timescales and
may diffuse only at long times after the hexagonal structure
around the disks may be disturbed by the defects. It has been
well known that the defects are inevitable in monodisperse
hexatic solid phases and should be the origin for the diffusion
of disks at long timescales [84,85]. On the other hand, in the
liquid states of ML, PL, and BL states, (�r(t ))2 reaches a
Fickian regime quickly, i.e., (�r(t ))2 ∼ t1, regardless of the
size distribution. In case of PG and BG states, (�r(t ))2 of
both 2DPC and 2DBC systems shows subdiffusive behaviors
at relatively short timescales but reaches a Fickian regime at
later times in our simulations.

Such characteristic transport behaviors of 2D colloidal liq-
uids in different states are well reflected in Fs(k, t ) [Figs. 5(b)
and 5(d)]. We employ the value of 2π/k that corresponds to
the first peak of the radial distribution function of colloidal
disks g(r). Fs(k, t ) decays quickly for liquid states of ML, PL,
and BL states. In the case of MH states, Fs(k, t )’s do not decay
readily in our simulation times. On the other hand, Fs(k, t )’s
for glass states (PG and BG) do decay within our simulation

054615-4



TRANSLATION-ROTATION DECOUPLING OF TRACERS … PHYSICAL REVIEW E 104, 054615 (2021)

FIG. 6. The overall disorderedness (ω) of 2D colloidal liquids for
three sets of comparisons in this study. The set I: 2DPC of � = 16%
and 2DBC of 	 = 1.4. The set II: 2DPC of � = 16% and 2DBC of
	 = 1.3. The set III: 2DPC of � = 5% and 2DBC of 	 = 1.1.

times but show shoulders at intermediate times, which are the
signatures of glassy dynamics.

B. Three sets of comparisons between 2DPC and 2DBC

In this work we consider three sets of comparisons between
2DPC and 2DBC liquids as we decrease T . The values of
the overall disorderedness (ω) of 2DPC and 2DBC liquids in
each comparison set are close to each other. The first set of
comparisons is made between 2DPC of � = 16% and 2DBC
of 	 = 1.4 (the set I). For those 2D colloidal liquids, ω ≈ 7
for both 2DPC and 2DBC liquids at high temperatures around
T = 2 (Fig. 6). In the set I, ω of 2DPC liquids decreases with a
decrease in T such that the hexatic structural order grows. On
the other hand, ω of 2DBC liquids (of 	 = 1.4) increases with
a decrease in T , especially at low temperatures. This indicates
that 2DBC liquids of 	 = 1.4 become more disordered at low
temperatures.

In the second set of comparisons (set II), we compare
2DPC liquids of � = 16% with 2DBC liquids of 	 = 1.3.
The disorderedness (ω) of two different types of liquids
changes similarly with temperature. ω’s for both 2D col-
loidal liquids decrease from 7 to 6 as T decreases from 2
to 0.2 (Fig. 6). In the third set of comparisons (set III), we
compare 2DPC liquids and 2DBC liquids that undergo the
liquid-to-hexatic phase transitions. In set III, � = 5% for
2DPC and 	 = 1.1 for 2DBC such that those 2D colloidal
disks are almost monodisperse. ω’s of both colloidal systems
decrease quickly to 0 at low temperatures (Fig. 6). Note that
at low temperatures, sets I and II correspond to the 2D col-
loidal glasses while the systems in set III form hexatic solid
phases.

Figure 7 depicts the probability distribution (P(|ψ j
6 |)) of

the absolute value of ψ
j

6 for various 2D colloidal liquids at
different temperatures. The color code indicates the system
temperature. For all 2D colloidal liquids in the figure, the peak

(a) (b)

(c) (d)

FIG. 7. The probability distribution P(|ψ j
6 |) of the absolute value

of ψ
j

6 at different temperatures for (a) 2DPC of � = 16%, (b) 2DBC
of 	 = 1.4, and (c) 2DBC of 	 = 1.3. (d) P(|ψ j

6 |) of those three 2D
colloidal liquids at T = 0.3.

of P(|ψ j
6 |) at |ψ j

6 | ≈ 1 develops as T decreases. In case of
2DBC of 	 = 1.4 [Fig. 7(b)], however, P(|ψ j

6 |) is relatively
insensitive to T compared to 2DPC of � = 16% and 2DBC of
	 = 1.3. As expected from the fact that ω’s of both 2DPC of
� = 16% and 2DBC of 	 = 1.3 are similar to each other for
all temperature ranges (Fig. 6), P(|ψ j

6 |)’s of those two cases
are also similar. But the peak of P(|ψ j

6 |) at |ψ j
6 | ≈ 1 is higher

for 2DPC of � = 16% than for 2DBC of 	 = 1.3, especially
at low temperatures [Fig. 7(d)]. This indicates that at low
temperatures, disks in 2DPC of � = 16% form hexagonal
local structures more significantly than 2DBC of 	 = 1.3.

Even though the overall disorderedness (ω) and P(|ψ j
6 |)

of 2DPC of � = 16% and 2DBC of 	 = 1.3 (the set II)
are similar to each other, the correlation between disks of
|ψ j

6 | ≈ 1 is different. Figures 8(a) and 8(b) depict representa-
tive snapshots of 2DPC of � = 16% and 2DBC of 	 = 1.3,
respectively. The different colors indicate disks of different
values of |ψ j

6 |. Note that in these snapshots we remove any
tracer and perform simulations. In case of 2DPC of � = 16%
[Fig. 8(a)], disks of |ψ j

6 | ≈ 1 are likely to gather together and

(a) (b)

FIG. 8. The representative simulation snapshots at T = 0.3 of
(a) 2DPC of � = 16% and (b) 2DBC of 	 = 1.3. The different
colors of disks represent the corresponding values of |ψ j

6 |’s. Note
that in this set of simulations, we do not introduce any tracer.
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(a) (b)

(c) (d)

FIG. 9. The representative simulation snapshots at T = 0.2 of
(a) 2DPC of � = 16% with a diamond tracer, (b) 2DPC of � = 16%
with a square tracer, (c) 2DBC of 	 = 1.4 with a diamond tracer,
and (d) 2DBC of 	 = 1.4 with a square tracer. Tracers are colored
in red. The different colors of 2D colloidal disks represent their
corresponding local disorderedness (ω j).

form clusters. In case of 2DBC of 	 = 1.3, however, disks of
|ψ j

6 | ≈ 1 are scattered [Fig. 8(b)].

C. Tracer transport in the comparison set I:
2DPC of � = 16% vs 2DBC of � = 1.4

We introduce a tracer (either a square or a diamond) into
2DPC of � = 16% and 2DBC of 	 = 1.4. Note that the
disorderedness (ω) of 2DPC of � = 16% decreases with a
decrease in T , while ω of 2DBC of 	 = 1.4 increases (Fig. 6).
Figure 9 depicts representative simulation snapshots of 2D
colloidal liquids with tracers at low temperature. Tracers are
colored in red. 2D colloidal disks are colored with different
colors depending on the values of ω j . When a particular
disk has a local hexagonal ordering and ω j ≈ 0, the disk
is colored in black. On the other hand, when a disk has
a disordered local structure, the disk is colored in bright
yellow.

As shown in the representative snapshot, a diamond tracer
in 2DPC of � = 16% is surrounded mostly by ordered disks
with ω j ≈ 0 [Fig. 9(a)]. On the other hand, a square tracer
in 2DPC of � = 16% is surrounded mostly by yellow disor-
dered disks [Fig. 9(b)]. Because the hexagonal local structure
grows significantly in 2DPC of � = 16% and the diamond
tracer is commensurate with the hexagonal local structure, the
diamond tracer is more likely to be surrounded by ordered
disks, which enhances the packing efficiency and reduces ex-
cluded volume and free energy. On the other hand, if a square
tracer were to be inserted in the well-ordered hexagonal en-
vironment, the square tracer would not be packed efficiently,
thus creating a relatively large void around the square tracer
inevitably. Therefore the square tracer is more likely to be
surrounded by the disordered disks. In case of 2DBC of
	 = 1.4, on the other hand, the local structures around both

diamond and square tracers are not very different from each
other [Figs. 9(c) and 9(d)]. This is because a local hexagonal
structure does not grow significantly for 2DBC of 	 = 1.4,
and ω increases with a decreasing temperature.

We calculate the probability distribution P(ω j ) of ω j of
disks around tracers. We decide that a colloidal disk should be
a neighbor of the tracer if the distance between the disk and
the center of mass of the tracer is smaller than 4σ . Delaunay
triangulation may provide a more systematic definition for
neighbor particles, because Delaunay triangulation tessellates
the system into space for each particle. The choice of the cut-
off distance of 4σ seems arbitrary, but our method of choosing
a neighbor particle has a merit that the cut-off distance of 4σ

works equitably for both polydisperse and binary colloidal
systems. When we count the number of neighbor particles
around the tracers, the ratios of neighbor disks to the total
disks are nearly same at around 0.7% in both polydisperse and
binary colloidal systems. This allows us to make a fair com-
parison between 2DPC and 2DBC. Figures 10(a) and 10(b)
depict P(ω j )’s for different tracers in both 2DPC of � = 16%
and 2DBC of 	 = 1.4. In 2DBC of 	 = 1.4, P(ω j )’s of disks
around any type of tracer are very close to P(ω j ) of all disks in
the system (indicated by “Media” in the figure). This indicates
that in 2DBC of 	 = 1.4, tracers of any shape do not prefer
any local structure. On the other hand, in 2DPC of � = 16%,
P(ω j) of disks around a diamond tracer are quite different
from that of all disks in the system. Especially, P(ω j) of disks
around a diamond tracer has quite a large peak at ω j ≈ 0,
suggesting that the diamond tracer is surrounded mostly by
hexagonally ordered disks as shown in Fig. 9(a). P(ω j) of
disks around a square tracer is not different from that of all
disks.

Such a local structure around a tracer affects the
translation-rotation decoupling trend significantly. At high
temperatures, the dynamic heterogeneity of systems is not
significant such that the translation and the rotation of a tracer
couples to each other. Therefore, at T ≈ 1, the ratio (DT /DR)
of translational and rotational diffusion coefficients of a tracer
stays constant [Figs. 10(d), 10(e), and 10(f)]. As T decreases,
the 2D colloidal liquids begin to exhibit glassy dynamics
and the dynamic heterogeneity. This leads to the decoupling
of the translation and the rotation of a tracer. As shown in
Figs. 10(d), 10(e), and 10(f), DT /DR increases quickly from
15 to 30 as T decreases. It is interesting that in the case of
2DBC of 	 = 1.4 where the local hexagonal structure is not
dominant, the decoupling trend (i.e., how DT /DR increases
with a decrease in T ) is not sensitive to the tracer shape.
In the case of 2DPC of � = 16% where the local hexago-
nal structure develops significantly at low temperatures, the
translation-rotation decoupling of a diamond tracer is much
more significant than that of a square tracer. DT /DR increases
beyond 30 for a diamond tracer at low temperatures, while
DT /DR increases up to only about 23 for a square tracer.

Such a dependence of the decoupling trend on the tracer
shape in 2DPC of � = 16% is attributed to the suppressed
rotational diffusion of diamond tracers at low tempera-
tures. Figure 10(g) depicts the ratio (DR,square/DR,diamond and
DT,sqaure/DT,diamond) of the (both rotational and translational)
diffusion coefficient of square tracers to that of diamond
tracers as a function of 1/T . In case of the translational
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. (a)–(c) The probability distribution functions P(ω j ) of the local disorderedness ω j of colloidal disks around tracers at a low
temperature for (a) 2DPC of � = 16% (T = 0.3), (b) 2DBC of 	 = 1.4 (T = 0.2), and (c) 2DBC of 	 = 1.3 (T = 0.2). Media indicates
P(ω j ) of all colloidal disks without any tracer. (d)–(f) DT /DR of tracers as a function of T in (d) 2DPC of � = 16%, (e) 2DBC of 	 = 1.4,
and (f) 2DBC of 	 = 1.3. (g)–(i) The ratio of (either rotational or translational) diffusion coefficients of the square and the diamond tracers as
a function of 1/T in (g) 2DPC of � = 16%, (h) 2DBC of 	 = 1.4, and (i) 2DBC of 	 = 1.3. Red and blue symbols correspond to the ratios
of the rotational and the translational diffusion coefficients, respectively.

diffusion, DT,sqaure/DT,diamond stays constant over tempera-
ture T . This indicates that the translational diffusion of
tracers is relatively insensitive to the tracer shape. On the
other hand, DR,square/DR,diamond increases significantly with
a decrease in T (or an increase in 1/T ). This is because
the rotational diffusion coefficient (DR,diamond) of a diamond
tracer decreases more quickly than DR,square of a square
tracer.

The rotational diffusion of a diamond tracer is suppressed
more in 2DPC of � = 16% than that of a square tracer be-
cause the diamond tracer is surrounded mostly by hexagonally
ordered disks. If the diamond tracer were to rotate, the tracer
has to break well-ordered hexagonal structure (made by both
the tracer and neighbor disks), which creates a free energy
barrier for the diamond rotation. On the other hand, a square
tracer is surrounded by disordered disks with a relatively
large void such that the free energy barrier for the square
rotation should be relatively small. This makes the rotational
diffusion in 2DPC of � = 16% dependent on the tracer
shape.

The translational diffusion of tracers is insensitive to the
tracer shape even in 2DPC of � = 16% because we can obtain
the translational diffusion constant (DT ) only after tracers
diffuse by more than their own size and the tracer diffusion

enters a Fickian regime. In other words, DT can be obtained
only after the tracers diffuse over various domains of different
mobility and local structure. Therefore DT is relatively insen-
sitive to the local structure and the tracer shape.

Interestingly, in 2DBC of 	 = 1.4 where local hexagonal
structure is not dominant, both DT and DR are insensitive
to the tracer shape [Fig. 10(h)]. Both DR,square/DR,diamond

and DT,sqaure/DT,diamond stay constant over all the temperature
range in this study. This reflects that the local structure of
disks around the tracer is not dependent on the tracer shape.

D. Tracer transport in the comparison set II:
2DPC of � = 16% vs 2DBC of � = 1.3

In this section we compare the transport of tracers in
2DPC of � = 16% and 2DBC of 	 = 1.3. Note that the size
distribution of 2DBC of 	 = 1.3 is shallower than that of
2DBC of 	 = 1.4 in the previous section. Therefore the over-
all disorderedness (ω) of 2DBC of 	 = 1.3 is qualitatively
different from 2DBC of 	 = 1.4. At high temperatures of
T ≈ 2, ω’s of 2DBC of both 	 = 1.3 and 1.4 are close to
each other at around ω ≈ 7. At low temperatures, however, ω

of 2DBC of 	 = 1.3 decreases with a decrease in T while ω

of 2DBC of 	 = 1.4 increases (Fig. 6). Therefore, ω of 2DBC
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of 	 = 1.3 behaves similarly to that of 2DPC of � = 16%,
both quantitatively and qualitatively. This indicates that the
temperature dependence of the overall disorderedness (ω) of
2D colloidal liquids that we compare in this section is similar.
Note, however, that the correlation between disks of large
values of |ψ j

6 | is different between 2DBC of 	 = 1.3 and
2DPC of � = 16% (Fig. 8).

The response of local 2D disks to the introduction of tracers
into 2DPC of � = 16% is different from that of 2DBC of 	 =
1.3. Figure 10(c) depicts the distribution functions P(ω j ) of
the local disorderedness (ω j) of disks that are close to tracers
in 2DBC of 	 = 1.3. Even though the peak of P(ω j ) at ω j ≈
0 develops more prominently around a diamond tracer than
around a square tracer, P(ω j )’s of different types of tracers
are not very different from each other. On the other hand, in
case of 2DPC of � = 16% as in Fig. 10(a), the peak of P(ω j )
at ω j ≈ 0 is much higher for the diamond tracer than for the
square tracer, such that P(ω j ) around the diamond tracer is
qualitatively different from that around the square tracer. This
indicates that the diamond tracer induces the hexagonal local
structure in its neighborhood successfully in 2DPC of � =
16%, while the diamond tracer fails to induce the hexagonal
local structure in 2DBC of 	 = 1.3.

Such a difference in the response of the local 2D disks
leads to a different behavior of the translation-rotation decou-
pling. As expected, both diamond and square tracers show
the translation-rotation decoupling as T decreases in 2DPC
of � = 16% and 2DBC of 	 = 1.3 because the 2D colloidal
liquids become glassy at low temperatures. In the case of
2DBC of 	 = 1.3 [Fig. 10(f)], DT /DR of the diamond tracer
is quite similar to DT /DR of the square tracer such that no
shape dependency is observed in the decoupling behavior.
On the other hand, in 2DPC of � = 16% [Fig. 10(d)], the
translation-rotation decoupling becomes more significant for
the diamond tracer than for the square tracer.

Since different tracers in 2DBC of 	 = 1.3 perturb the
local structure to a similar extent [Fig. 10(c)], the temperature
dependence of DT and DR is similar for different tracers.
Figure 10(i) depicts the ratios of diffusion coefficients of trac-
ers (DT,square/DT,diamond and DR,square/DR,diamond) as functions
of 1/T . Both DT,square/DT,diamond and DR,square/DR,diamond

stay constant over the temperature range. This is why the
translation-rotation decoupling trend is similar for different
tracers in 2DBC of 	 = 1.3. On the other hand, in case
of 2DPC of � = 16%, the rotation of a diamond tracer is
suppressed more significantly than that of a square tracer as
discussed in the previous section. This is attributed to the
observation that the diamond tracer induces local hexagonal
structure in its neighborhood than the square tracer, which
creates a larger free energy barrier for the rotation of the
diamond tracer.

Even if the overall disorderedness (ω) is similar in the com-
parison set II for 2DPC of � = 16% and 2DBC of 	 = 1.3,
the shape dependency of the translation-rotation decoupling
of tracers is very different. This relates to whether a dominant
local hexatic structure would grow with a decrease in T or
not. When the local hexatic structure grows as in 2DPC of
� = 16%, a strong shape-dependency is observed for the
translation-rotation decoupling. On the other hand, in case of
2DBC of 	 = 1.3 where such a local structural order is not

(a) (b)

FIG. 11. The probability distribution functions P(ω j ) of the local
disorderedness ω j of colloidal disks around tracers at T = 0.8 for
(a) 2DPC of � = 5% and (b) 2DBC of 	 = 1.1. Media indicates
P(ω j ) of all colloidal disks without any tracer.

observed, the translation-rotation decoupling is not sensitive
to the tracer shape.

E. Tracer transport in the comparison set III:
2DPC of � = 5% vs 2DBC of � = 1.1

In this section we compare the tracer transport in 2DPC
of � = 5% and 2DBC of 	 = 1.1. Unlike 2D colloidal liq-
uids in previous sections, both 2DPC of � = 5% and 2DBC
of 	 = 1.1 are relatively monodisperse such that they un-
dergo the liquid-to-hexatic phase transition at sufficiently low
temperatures and the susceptibility χ6 diverges at the phase
transition temperature (Fig. 2). The presence of the liquid-
to-hexatic phase transition indicates that the hexatic structure
should be a dominant local structure at low temperatures for
both 2DPC of � = 5% and 2DBC of 	 = 1.1.

When we introduce a diamond tracer (that can be com-
mensurate with the hexatic local structure), the diamond tracer
induces the hexatic local structure around the diamond tracer
in both 2DPC of � = 5% and 2DBC of 	 = 1.1 (Fig. 11).
Such a strong induction of the local hexatic structure does
not occur for a square tracer. The peak of P(ω j ) at ω j ≈ 0
develops strongly near the diamond tracer in both 2DPC of
� = 5% and 2DBC of 	 = 1.1, while the peak does not
develop much around the square tracer.

The translation-rotation decoupling is more significant for
the diamond tracer in both 2DPC of � = 5% and 2DBC
of 	 = 1.1 than for the square tracer. Figure 12 depicts the
ratio (DT /DR) of the translational and rotational diffusion
coefficients of tracers. At high temperatures, DT /DR stays

(a) (b)

FIG. 12. DT /DR of tracers as a function of T in (a) 2DPC of
� = 5% and (b) 2DBC of 	 = 1.1.
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FIG. 13. The self-part of van Hove angular correlation func-
tion [Gs(θ, t = 4800)] of diamond and square tracers at T = 0.8 in
(a) 2DPC of � = 5% and (b) 2DBC of 	 = 1.1.

constant. At the low temperatures, DT /DR of the diamond
tracer increases up to 100 for 2DPC of � = 5% and 200
for 2DBC of 	 = 1.1. We find that such a strong decoupling
arises due to the suppressed rotation of the diamond tracer at
low temperatures compared to the translation.

At low temperatures in both 2DPC of � = 5% and 2DBC
of 	 = 1.1, 2D colloidal disks form hexatic phases. Such
hexatic structure is commensurate well with a diamond tracer.
In order for the diamond tracer to undergo the rotational
diffusion, the local hexatic structure should be broken to some
extent, which becomes a relatively large free energy barrier
for the rotation. In this hexatic phase, the diamond tracer has
to undergo rotational hopping motion due to the large free
energy barrier. We calculate the self-part of van Hove an-
gular correlation function Gs(θ, t ) ≡ 〈δ{θ − |θ (t ) − θ (0)|}〉
to scrutinize the rotational dynamics of tracers at T = 0.8.
Here, θ is the unbound rotational angle of the vector �u of the
tracer (Fig. 1). Gs(θ, t ) indicates how much the tracer would
rotate during time t . Figure 13 depicts Gs(θ, t = 4800) of
diamond and square tracers in 2DPC of � = 5% and 2DBC
of 	 = 1.1. Gs(θ, t )’s of the diamond and square tracer are
qualitatively different from each other. In case of a diamond
tracer, Gs(θ, t = 4800) has multiple peaks at the multiples
of θ = π/3, which indicates the rotational hopping motions
of the diamond tracer. In the case of a square tracer, on the
other hand, Gs(θ, t ) is Gaussian, as expected for the normal
rotational diffusion.

F. The shape-dependency parameter of the decoupling

The dynamic correlation length (ξ4) increases sharply as
T decreases toward either the glass transition temperature
(for 2DPC of � = 16%, 2DBC of 	 = 1.4 and 1.3) or the
liquid-to-hexatic phase transition temperature (for 2DPC of
� = 5% and 2DBC of 	 = 1.1), thus indicating the slow and
heterogeneous dynamics at low temperatures. Note that ac-
cording to the previous studies [28,63,68], while ξ4 increases
sharply for both polydisperse and binary 2D colloids, the local
hexatic structural order grows along with ξ4 only for the poly-
disperse 2D colloidal (2DPC) glasses. The hexatic structural
order is not a dominant one for binary 2D colloidal (2DBC)
glasses.

As discussed in previous sections, we find that the extent
of the translation-rotation decoupling of tracers (which arises
due to the dynamic heterogeneity) should be sensitive to the
local structural order. Especially when the shape of a tracer is

(a) (b)

(c) (d)

FIG. 14. (a), (c) The dynamic correlation length (ξ4) of various
types of 2D colloidal liquids as a function of 1/T . (b), (d) The shape-
dependency parameter (�) of various types of 2D colloidal liquids as
a function of ξ4.

similar to the local structural order of liquids (like a diamond
tracer in 2DPC of � = 16%), the rotation of the tracer is
suppressed significantly such that DT /DR increases sharply
as T decreases. On the other hand, when the dominant local
structural order does not grow (like in 2DBC of 	 = 1.4 and
1.3), the decoupling trend is not sensitive to the tracer shape.

In order to quantify such a shape dependency of the de-
coupling, we define the shape-dependency parameter (�) as
� ≡ |(DT /DR)Diamond − (DT /DR)Square|. Figure 14(b) depicts
� as a function of ξ4 for both polydisperse and binary col-
loidal glasses. In case of 2DPC of � = 16% where the local
hexatic structural order should be a characteristic one, � in-
creases along with ξ4. In the case of 2DBC of 	 = 1.3 and 1.4
where there is no characteristic local structural order, � does
not grow with ξ4. This indicates clearly that the translation-
rotation decoupling of tracers reflects the local structural order
of glasses. Similarly, for monodisperse 2D colloidal liquids
where the liquid-to-hexatic transition occurs at sufficiently
low temperatures, � increases even more sharply with ξ4

because the 2D colloids form the hexatic solid phases and the
rotation of the diamond tracers is suppressed significantly in
the hexatic phases. This suggests that if one were to design and
introduce tracers of various shape (which is possible thanks
to a modern nanotechnology) into colloidal glasses, one may
observe the extent of the translation-rotation decoupling of
those tracers and glean information on the local structures of
the glasses.

IV. SUMMARY AND CONCLUSIONS

We perform molecular dynamics simulations and investi-
gate the translational and rotational diffusion of a tracer in
2D colloidal systems. 2D colloidal suspensions have been
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considered a good testbed to study the structure and the
dynamics of glasses and supercooled liquids. We consider
two different types of 2D colloids: 2D polydisperse colloids
(2DPC) and 2D binary colloids (2DBC). The diameter of each
disk in 2DPC liquids is sampled from the Gaussian distri-
bution. The coefficient of variation (�) of the disk diameter
is employed to represent the polydispersity of 2DPC. On the
other hand, 2DBC consists of two types of colloidal disks. The
size ratio (	) of those two different disks is tuned in this study.
Depending on the size distribution (� or 	) and temperature,
2D colloidal systems can be simple liquids, glasses, and hex-
atic solids. It has been well known that the hexatic structural
order grows significantly in the glasses of 2DPC while the
hexatic structural order does not grow much in the glasses
of 2DBC. We find that the translation-rotation decoupling of
a tracer can reflect the presence of such a hexatic structural
order in 2D glasses.

We estimate the disorderedness (ω) of both 2DBC and
2DPC. We compare 2DBC and 2DPC with similar values of
ω. When we introduce a diamond tracer (that is commensurate
with the hexatic local structure) in 2DPC glasses, the diamond
tracer induces the hexatic local structure around itself, which
creates a free energy barrier for the rotation of the diamond
tracer. On the other hand, when we introduce a square tracer
(that is dissimilar in any local structure of 2D glasses), the
square tracer does not induce the hexatic local structure.
Such a different response of 2DPC glasses to the introduction
of the different tracers leads to a strong dependence of the
translation-rotation decoupling on the tracer shape: The extent
of the translation-rotation decoupling is more significant for
the diamond tracer than for the square tracer.

In the case of 2DBC glasses where the hexatic structural
order does not grow significantly, on the other hand, the
translation-rotation decoupling is not dependent on the tracer
shape. Both diamond and square tracers do not induce the
hexatic local structure much around themselves. We define the
shape-dependency parameter (�) of the translation-rotation
decoupling of tracers. In case of 2DPC glasses where the hex-

atic structural order grows along with the dynamic correlation
length (ξ4), � also correlates with ξ4 significantly because the
translation-rotation decoupling is strongly dependent on
the hexatic structural order. In the case of 2DBC glasses
where the hexatic structural order is not significant, on the
other hand, � does not correlate much with ξ4 because the
translation-rotation decoupling is not dependent on the hexatic
structural order. This study illustrates that one may interrogate
the local structure of glasses, if any, by introducing a tracer of
a certain shape and investigating the dynamic heterogeneity
and the translation-rotation decoupling of the tracer.

One caveat in our study is that there would be long-wave
fluctuations known as Mermin-Wagner fluctuations. Previ-
ous studies showed that Mermin-Wagner fluctuations were
found in 2D glassy systems and might blur the original
glassy dynamics [86–89]. In particular, the transient localiza-
tion, the signature of glassy dynamics, might be absent in
2D glassy systems. In addition, the translational relaxation
and the bond orientational relaxation could be decoupled
[88]. And, it should be interesting to investigate the tracer
transport in three-dimensional (3D) colloidal systems. The
medium-range crystalline order of 3D polydisperse colloids
(3DPC) has hcp-like bond orientational order rather than
icosahedral order [28,90]. On the other hand, any crystalline
structure may not stand for the local structure of 3D binary
colloids (3DBC) [38,91]. We may construct hcp-shaped (or
icosahedron-shaped) tracers and insert them in both polydis-
perse and binary colloids. Then we would be able to compare
the translation and rotation of those tracers in both 3DPC and
3DBC systems in future studies.
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