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Hunting active Brownian particles: Learning optimal behavior
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We numerically study active Brownian particles that can respond to environmental cues through a small set
of actions (switching their motility and turning left or right with respect to some direction) which are motivated
by recent experiments with colloidal self-propelled Janus particles. We employ reinforcement learning to find
optimal mappings between the state of particles and these actions. Specifically, we first consider a predator-
prey situation in which prey particles try to avoid a predator. Using as reward the squared distance from the
predator, we discuss the merits of three state-action sets and show that turning away from the predator is the
most successful strategy. We then remove the predator and employ as collective reward the local concentration
of signaling molecules exuded by all particles and show that aligning with the concentration gradient leads to
chemotactic collapse into a single cluster. Our results illustrate a promising route to obtain local interaction rules
and design collective states in active matter.
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I. INTRODUCTION

The defining feature of microscopic active particles is their
persistent motion: in contrast to passive diffusion they carry an
orientation along which displacements are more likely. Such
persistent motion is exhibited by bacteria propelled by flag-
ella [1] and synthetic colloidal particles that exploit phoretic
mechanisms to propel themselves through self-generated gra-
dients [2]. The interplay of this self-propulsion with excluded
volume and particle shape leads to a range of collective dy-
namic states [3] such as dense clusters, swarms, and flocks
[4]. Given the wealth of possible collective states emerging
already from minimal models, data-driven modeling has at-
tracted interest recently [5,6].

What sets living active matter apart from synthetic active
matter is the intrinsic ability to respond to external stimuli
beyond the direct physical forces generated by gradients. Bac-
teria and other microorganisms can sense their environment
and, inter alia, adapt their motility [7]. For example, some
bacteria organize into biofilms [8] through quorum sensing
[9]; i.e., they respond to the concentration of certain signaling
molecules exuded by all members of the population. Trans-
ferring similar capabilities to synthetic active matter opens
the route to program novel collective behavior with the out-
look to perform useful tasks [10–12]. Ultimately, this requires
internal degrees of freedom computing a response [13,14].
As an intermediate step to elucidate the basic principles, this
computation could be performed by an external agent which
then acts back on the system.

Recent advances of feedback techniques have demon-
strated exquisite control over self-propelled colloidal particles
allowing us to implement interaction rules that go beyond
steric volume exclusion and phoretic and hydrodynamic
coupling. Janus particles propelled through the local phase
separation of a binary solvent can be addressed individually to
implement motility switching [15–17] and perception-based
interactions [18]. Active dimers can adapt the propulsion

speed depending on their orientation [19]. Local heating of a
colloidal particle can be exploited for steering [20,21], pattern
formation [22], motility control [23], and recently has been
combined with reinforcement learning to guide a single parti-
cle toward a target side [24]. Reinforcement learning together
with computer simulations has been employed to navigate
flows [25–27], to control shape deformations of microswim-
mers [28,29], to induce flocking of active particles [30,31],
and to steer a single active particle through an external poten-
tial [32,33].

In this work, we further explore reinforcement learning
[34] to determine optimal single-particle actions in response
to “states” representing the information that is available to the
particle. The policy which maximizes the reward is identified
as the optimal behavior. We consider a small set of actions that
have been implemented experimentally for colloidal Janus
particles: turning motility on or off [16], and exerting a torque
that makes the particle turn left or right [35]. The particle
dynamics is that of active Brownian particles with propul-
sion speed and torque depending on the chosen action. As a
concrete illustration, we study a simple predator-prey system
[36,37] with an absorbing boundary (the “predator”), which
induces a particle current. Avoiding a predator is comple-
mentary to optimal search (and foraging) strategies, which
have received intensive theoretical scrutiny [38–42]. Using as
reward the distance to the predator, we evaluate three state-
action sets leading to different currents. Finally, we apply
reinforcement learning to an interacting suspension of active
Brownian particles, demonstrating that it leads to chemotactic
collapse for sufficiently large torques overcoming rotational
diffusion [43,44].

II. PREDATOR-PREY SYSTEM

We first consider an ideal gas of N noninteracting particles
moving in two dimensions in the presence of a single “preda-
tor.” To conserve density, whenever a “prey” particle comes

2470-0045/2021/104(5)/054614(7) 054614-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6357-1180
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.054614&domain=pdf&date_stamp=2021-11-30
https://doi.org/10.1103/PhysRevE.104.054614


GERHARD, JAYARAM, FISCHER, AND SPECK PHYSICAL REVIEW E 104, 054614 (2021)

within distance a of the predator it is removed and placed at
a random position within the system. This corresponds to an
absorbing circular boundary at r = a inducing a total current
J leaving the system. The accessible area is A = L2 − πa2

excluding the disk around the predator with global density
ρ̄ = N/A. In the simulations, we employ a square box with
edge length L employing periodic boundaries, whereas in the
analytical calculations we place the predator at the origin. All
numerical results are reported employing the length parameter
σ as unit of length and σ 2/D0 as unit of time with bare
diffusion coefficient D0. For noninteracting particles, σ still
determines the effective particle size. Throughout, the radius
of the absorbing circular boundary is a = 1.66σ .

A. Passive diffusion

As reference, we first consider passive diffusion of prey
particles with diffusion coefficient D0. The current is j =
−D∇ρ, where ρ is the number density of prey particles. Here
we have shifted coordinates so that in the following the preda-
tor is at the origin and its diffusive motion enters through the
(dimensionless) effective diffusion coefficient D = 1 + Dpred.
In steady state, j = j(r)er with r the distance from the preda-
tor and er the radial unit vector. The total current leaving the
system is J = 2πa j(a) < 0. The diffusion equation becomes
D∇2ρ + s = 0 with s = −J/A > 0 the uniform rate at which
removed particles respawn. The solution reads

ρ(r) = b ln(r/a) − s

4D
(r2 − a2) (1)

with boundary condition ρ(a) = 0 and integration constant
b ∝ ρ̄ determined by the conservation of the total number
of prey particles. The radial current is j(r) = −Dρ ′(r) =
−Db/r + sr/2, whereby the prime denotes the derivative with
respect to r. The total current for passive diffusion thus be-
comes

J0 = −2πDb

(
1 + πa2

A

)−1

. (2)

Since s ∝ D is proportional to the current and thus to the
diffusion coefficient, the density profile Eq. (1) is independent
of D. In Fig. 1(a), we show the numerically obtained den-
sity profile ρ(r) in a square system with periodic boundaries
together with Eq. (1). To this end, the equations of motion
are integrated with time step δ = 1.5 × 10−5 employing the
Euler-Maruyama scheme. The negative current −J0/D > 0 is
plotted in Fig. 1(b) and shows the expected linear increase
with the global density.

B. Free active diffusion

In the next step, we consider prey particles undergoing
directed motion with propulsion speed v0,

ṙk = v0ek +
√

2D0ξk, ϕ̇k =
√

2/τrηk, (3)

where the ξk, ηk are zero mean and unit-variance Gaus-
sian white noise. Each particle has an orientation ek =
(cos ϕk, sin ϕk )T described by the angle ϕk with the x axis,
which undergoes free rotational diffusion with correlation
time τr. Again, the effective diffusion coefficient in the frame
of reference of the predator is D. The orientational correlation

FIG. 1. Passive diffusion (L = 70). (a) Density profile ρ(r) away
from the predator with absorbing boundary at r = a (dashed line) for
effective diffusion coefficient D = 1 in a square system. (b) Current
−J0 (corresponding to the prey caught per time) as a function of
global density ρ̄ for several diffusion coefficients D (see legend for
values). The dashed line is the prediction Eq. (2) for −J0/D.

time is related through the no-slip boundary condition to the
translational diffusion, 1/τr = 3D0/σ

2
eff, with effective parti-

cle diameter σeff � 1.10688σ .
In Fig. 2(a) we show numerical density profiles for dif-

ferent speeds. Clearly, increasing the speed leads to a flatter
density profile that sharply declines as the absorbing boundary
at r = a is approached. The effect of self-propulsion can thus
not be captured by an elevated diffusion coefficient alone (as
for the mean-square displacement of a free particle [45]).
Indeed, Fig. 2(b) shows that the density profile for active
particles depends on the value of D in contrast to the passive
case.

C. Learning optimal behavior

We now assume that each prey particle has limited compu-
tational capabilities that allow it to determine a state sk ∈ S
and to perform an action ak ∈ A. Both the possible states
S and the actions A are discrete sets of a few possibilities,
which are related through a Q matrix with entries Qsa. Instead
of integrating Eq. (3), particles now evolve according to the
following scheme with time step δt :

(1) determine the state sk of each particle;
(2) determine the action ak that maximizes Qskak ;

FIG. 2. Active diffusion (L = 70). Density profiles ρ(r) away
from the predator for (a) different speeds v0 at D = 1 [the black line
shows the passive result Eq. (1)] and (b) different D at speed v0 = 10.
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(3) translate all particles positions

rk (t + δt ) = rk (t ) + v(ak )δtek +
√

2D0δtξk (4)

and orientations

ϕk (t + δt ) = ϕk (t ) + ω(ak )δt +
√

2δt/τrηk, (5)

which is repeated. The action a thus determines the propulsion
speed v(a) and the torque ω(a).

To proceed, we need to determine the Q matrix relating
state to action. We break the learning into several episodes,
and each episode is divided into multiple steps. Each episode
represents a simulation, where at the beginning all prey par-
ticles are initialized randomly. The predator remains located
in the center of the simulation box throughout the learning
process. After 10 000 time steps δt , we determine the states
sk and each prey particle receives a reward Rk . Then the prey
particles choose new actions, which are applied for the next
learning step. The action policy is based upon the current Q
matrix according to an ε-greedy exploration scheme,

ak =
{

argmax Qska, with probability 1 − εn,

random action, with probability εn.
(6)

At the beginning of the learning process, we start with ε0 = 1
and decrease its value according to εn = 0.995n with ris-
ing experience of the prey, where n enumerates the learning
episodes.

The Q matrix is initialized with all entries set to 1. The
entry for each state-action pair (s, a) is then updated after each
step by the rule

Qskak ← Qskak + αn
[
Rk + γ max

a
Qs′

ka − Qskak

]
, (7)

where s′
k is the new state after advancing the simulation with

ak . The future reward discount factor is set to γ = 0.99. The
learning rate αn = 0.8/(0.8 + n) depends on the episode n
and decreases.

As a first example, we assume that prey particles can
somehow estimate their distance to the predator (e.g., through
sensing a chemical signal exuded by the predator [36]). The
discrete state sk = �(rk − rp)/λ	 then measures the distance
to the position rp of the predator with spacing λ and floor
function �·	. The reward is calculated as

Rk = |rk − rp|2. (8)

The learning process is performed in a square box with edge
L = 50 and N = 150 prey particles over 1000 episodes, each
with 20 learning steps. The actions are restricted to switching
the motility on/off,

v(a) =
{

0 (a = 1),
v0 (a = 2), (9)

where v0 = 20. During the learning process, we measure the
success through the average reward at the end of each episode.
The reward progress is shown in Fig. 3(a). At the beginning
of the learning process, the particles are uniformly distributed
over the entire box. In this case, the mean-square distance
between prey and predator located in the center is

〈Rk〉hom = 1

A

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy (x2 + y2) ≈ L2

6
, (10)

FIG. 3. Reinforcement learning. (a) Performance of the N = 150
prey particles as learning progresses. Plotted is the average reward
per particle

∑
k Rk/N at the end of each episode as a function of

episodes. Speed of active particles is v0 = 20. The gray dashed
line indicates the average reward 〈Rk〉hom ≈ 416 for a homogeneous
system. (b) Representation of the Q matrix, whereby each concentric
ring corresponds to one discrete state. Particles in the red rings move
actively (v = v0), while particles in the outer green rings diffuse
passively (v = 0).

which corresponds to a reward of about 416. It reaches a
plateau after about 500 episodes at an average value of about
500, which corresponds to an average distance of about 22
to the predator. The resulting policy for five discrete states
is shown in Fig. 3(b), where particles in the red area move
actively with speed v0 while particles in the area highlighted
in green only undergo diffusive motion. The radius R∗ of
the active region is a nontrivial function of system size L,
discretization, and speed v0. Due to the periodic boundaries,
to maximize the reward the passive region needs to be suf-
ficiently large otherwise prey particles return to the active
region too fast.

After learning the Q matrix at one speed v0 and diffusion
coefficient D, we perform further simulations with the final
Q matrix for different v0 and D. These simulations integrate
the same Eqs. (4) and (5) of motion but the action is deter-
mined deterministically through the rule ak = argmax Qska. In
Fig. 4(a), we show numerical density profiles ρ(r) at speed
v0 = 5 and global density ρ̄0 = 0.2 for different diffusion
coefficients D. For low diffusion coefficients, we see a den-
sity discontinuity at the threshold between active and passive
particles since the passive particles accumulate in the outer
regions of the box, but there is always a certain amount of
motile particles in the active region. The higher the diffu-
sion coefficient, and therefore also the rotational diffusion,
the narrower the gap becomes, which disappears above about
D = 7 and the system is dominated by diffusion. In Fig. 4(b),
we show for two densities that the current −J through the
absorbing boundary increases with v0 and is always larger
than the passive current. On first glance this seems counter-
intuitive since the prey particles accumulate away from the
predator, but the self-propulsion also leads to an increased
probability to encounter the predator. Tentatively replacing the
passive diffusion coefficient D in Eq. (2) by an elevated active
diffusion leads to the expression

−J = −J0 + v2
0

2D

1

c1 + c2(v0/D)2
ρ̄, (11)
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FIG. 4. Distance-based strategy. (a) Numerical density profiles
ρ(r) away from the predator for ρ̄ = 0.2 and different diffusion
coefficients D employing the Q matrix with speed v0 = 5 (different
from the learning speed). The dashed line indicates the transition
radius R∗ ≈ 21.2 between passive and active regions; cf. Fig. 3(b).
(b) Reduced current −J/(ρ̄D) through the absorbing boundary for
two global densities and several diffusion coefficients and speeds.
The full line shows Eq. (11).

where we assume that for large speeds the current satu-
rates (trajectories through the active region become basically
straight lines with a fixed probability to hit the predator).
Figure 4(b) demonstrates that this expression describes the
measured current very well with fit parameters c1 � 1.75 and
c2 � 0.042. Hence, even though the prey successfully accu-
mulate away from the predator, the goal of not getting caught
(on average) is not achieved.

III. NAVIGATING CHEMICAL GRADIENTS

A. External gradient

How can prey particles improve their chances? As already
mentioned, one means of communication at the microscale is
the release and sensing of signaling molecules, which diffuse
quickly and create a gradient. Specifically, let us assume that
the predator exudes these signaling molecules with rate γc and
diffusion coefficient Dc. In principle, predator and prey move
much slower than molecules diffuse. In this quasistatic limit,
the prey particles effectively move in a concentration field

c(r) = γc

4πDc

e−|r−rp|/λ

|r − rp| (12)

that is parametrized by the position rp of the predator alone.
Here we assume that the predator and prey move diffusively
in two dimensions close to a substrate, and the concentration
profile is that within the semispace above the substrate. A
decay of signaling molecules leads to the exponential factor
with decay length λ. In the following, we set γc/Dc = 1 and
λ = 10. Importantly, through the concentration gradient prey
particles can now respond to the orientation of the predator
rather than just distance.

We consider two further state-action sets. The first case is
that of motility switching with Eq. (9) but now depending on
whether the predator is in front or behind them; see Fig. 5(a).
Formally, we distinguish these two states through

ek · ∇c|rk =
{
� 0, oriented away from,

> 0, oriented toward,
(13)

(a) (b)

∇c ∇c

e∙
∇c

motile passive

e×
∇c

left right

FIG. 5. Gradient-based strategies. (a) Motility switching based
on the relative orientation with respect to the concentration gradient
∇c (pointing toward the predator). The Q matrix is sketched: to
maximize the distance, prey particles become motile when facing
away and passive when facing toward the predator. (b) Orientation
adaptation. Prey particles are always active and turn away from the
predator.

the predator. We perform the learning process over 1000
episodes, 20 steps each, and with learning parameters α and
γ as described in Sec. II C using as reward again the squared
distance Eq. (8). The outcome policy is that particles which
are facing away from the predator should move actively in
order to increase the distance to the predator. Particles which
are oriented toward the predator should remain passive until
either the motion of the predator or rotational diffusive motion
leads to a change in state.

The second case is an orientation-adaption model, where
particles act by either turning themselves to the right or to the
left according to

ω(a) =
{−ω0 (a = 1),
+ω0 (a = 2), (14)

with torque (angular speed) ω0 = 13.3. The speed v0 in this
model is constant. We consider again two possible states,
which are sketched in Fig. 5(b). The first one is that the preda-
tor is on a particle’s left side; the other one is that the predator
is on its right side. We can express this with the two-
dimensional cross product of the orientation vector and the
gradient,

ek × ∇c
∣∣
rk

=
{
� 0, predator right,
> 0, predator left. (15)

After the learning process, the particles follow the policy
derived from the Q matrix shown in Fig. 5(b), which indicates
that the prey should always turn away from the predator.

As before, we test the quality of the derived policies by
measuring the success of a predator in catching prey particles
that follows those policies [46]. In contrast to the previous
simulations, now the predator not only passively catches par-
ticles that come below a certain distance threshold; it also
follows a fixed chasing strategy: it always focuses on chasing
the nearest prey particle with constant speed vp. The prey
particles are still randomly set back into the box to maintain
a constant density. We use the resulting current induced by
the predator to evaluate both policies. We perform simula-
tions with different speeds v0 of the prey particles while the
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FIG. 6. Normalized current of both gradient-based policies as a
function of the relative speed v0/vp between predator and prey parti-
cles for global density ρ̄ = 0.17. Shown are results for two predator
speeds vp = 10 (open symbols) and vp = 25 (filled symbols). For
prey that outruns the predator (v0 > vp) the current becomes inde-
pendent of the relative speed and drops to zero for the orientation
adaption.

predator moves with speed vp and rotates with torque ωp =
ω0 = 13.3 toward the nearest prey particle.

Figure 6 shows the normalized current J/J0 of the two poli-
cies depending on the relative speed v0/vp at global density
ρ̄ = 0.17. The current is normalized by the current J0 in a
system with only passive prey particles. We observe for both
models that the current decreases up to a relative speed of
about v0 ≈ vp; i.e., prey particles are successful in avoiding
the predator. Above that point, the current reaches a nonzero
plateau in the motility-switch model for fast predators. In the
plateau region, the predator catches only particles that are not
actively moving. In the orientation-adaption model the current
falls to zero; i.e., all prey particles manage to escape as long
as they move faster. The predator is able to catch particles
only shortly after initialization, when the prey have to reorient
away from the predator.

B. Self-generated gradients

So far, we have considered independent prey particles that
react to an external stimulus, here the predator. We now re-
move the predator and assume that the particles both exude
and sense signaling molecules as in quorum sensing [9]. We
aim to find a policy so that particles aggregate into clus-
ters at very low densities. Particles now have an excluded
volume that we model through the repulsive Weeks-Chandler-
Anderson (WCA) pair potential

u(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r/σ < 21/6,

0, r/σ � 21/6,
(16)

with distance r = |ri − r j | between two particles at positions
ri and r j . We employ a potential strength ε = 100kBT , which
implies hard-disk-like particles with an effective diameter
σeff = 1.10688σ [47].

In this model, all particles produce and sense signaling
molecules. In regions of high density there is also a high con-
centration of signaling molecules. We use this concentration

FIG. 7. Concentration field c(r) of signaling molecules produced
by the blue particles (red: high c; blue: low c). The white particle
is sensing the concentration gradient with two possible states: the
higher density is (a) to the left or (b) to the right.

as a proxy for how far a particle is away from regions with
higher density of particles. We define the reward for each
particle as the local concentration

Rk = c(rk ) = γc

4πDc

∑
i �=k

e−|rk−ri|/λ

|rk − ri| (17)

that it senses. Again, we define two different states similar
to the orientation-adaption model, but instead of responding
to an external source of signaling molecules, the particles re-
spond to each other. The two possible states are demonstrated
in Fig. 7. We define the states through the sign of the cross
product between the orientation of a particle and the local
gradient

ek × ∇c
∣∣
rk

=
{
� 0, higher density right,
> 0, higher density left. (18)

Depending on the state, the particle can choose to turn left or
right; see Eq. (14).

The learning process is performed with N = 50 particles
in a square system with L = 40. All parameters of the rein-
forcement learning algorithm are the same as in the previous
examples. We set the active speed to v0 = 20 and learn over
1000 episodes with 20 steps each. The Q matrix results in
a policy in which particles align with the gradient and thus
orient toward higher concentrations. We then employ the
resulting Q matrix to investigate the clustering process de-
pending on the strength of the reaction of the particles to their
self-generated chemical field. While similar to Ref. [44], our
simulations differ in the following points: First, we consider a
torque that is not depending on the actual value of the gradient
but only on the sign of of the gradient. Moreover, we do
not consider a translational diffusiophoretic motion due to the
concentration gradient.

We investigate dilute systems with packing fraction φ =
Nπ (σeff/2)2/(L)2 � 0.05 and simulate a total of N = 255
particles. We choose an active speed v0 = 60 corresponding to
a Péclet number Pe = v̂0/

√
2D0/τr � 27 (with dimensionful

speed v̂0). Figure 8 shows that for small reorientation torque
ω0 the system is an active homogeneous gas while for large ω0

all particles collapse into one single large cluster. We consider
a cluster as an assembly of Nc � 2 particles. A cluster is
determined by all particles that are mutually “bonded” (i.e.,
they are within the cutoff radius of the interaction potential).
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FIG. 8. Average fraction Nc/N of particles in a cluster as a func-
tion of reorienting torque ω0 for a system that was initialized either
randomly in a homogeneous state or in a single cluster.

In the intermediate regime, we study the system from two
initial configurations: either we start the simulation with all
particle positions initialized randomly or we start with a single
cluster. Figure 8 shows that there is considerable hysteresis for
our small system and that the formation of the cluster from
the homogeneous state occurs though nucleation with small
clusters decaying. In contrast, once a large cluster has formed
it is stable down to small values of ω0.

IV. CONCLUSIONS

To summarize, we have extended the model of active
Brownian particles to speeds and torques that depend on some
discrete action ak ∈ A; see Eqs. (4) and (5). This action is

chosen through a Q matrix, the maximal entry of which for
a given state sk ∈ S determines ak . This Q matrix can be
determined through well-established algorithms known as re-
inforcement learning, which require as further input a reward
function that evaluates the “utility” of the current state to the
system. We have verified this approach for two toy models.
First, we have studied prey particles reacting to a predator,
where the reward is given by the distance of the prey from the
predator. Particles do not interact directly but only through
the predator, aggregating into (in a periodic system) domains
away from the predator. Still, we found strong differences
between state-action pairs with respect to the success avoiding
the predator (measured as a current through an absorbing
boundary). These different state-action pairs represent the in-
formation that might be available and possible actions. Here
we have focused on the local concentration of some signaling
molecules, but other cues like light [48], gravity [26,49], vis-
cosity [50,51], etc., leading to the different x taxis might be
used. Alternatively, run-and-tumble bacteria like E. coli might
adopt their tumbling rate. It will also be interesting to consider
the influence of unavoidable concentration fluctuations of the
signaling molecules on optimal search strategies [42]. Second,
we have considered as reward the local concentration gradi-
ent. To achieve aggregation, the reorientation torque needs to
overcome the rotational diffusion. Our framework can easily
be extended to learn the interactions underlying more complex
collective behavior.
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