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Orientational memory of active particles in multistate non-Markovian processes
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The orientational memory of particles can serve as an effective measure of diffusivity, spreading, and
search efficiency in complex stochastic processes. We develop a theoretical framework to describe the decay
of directional correlations in a generic class of stochastic active processes consisting of distinct states of
motion characterized by their persistence and switching probabilities between the states. For exponentially
distributed sojourn times, the orientation autocorrelation is analytically derived and the characteristic times of its
crossovers are obtained in terms of the persistence of each state and the switching probabilities. We show how
nonexponential sojourn-time distributions of interest, such as Gaussian and power-law distributions, can result
from history-dependent transitions between the states. The relaxation behavior of the correlation function in
such non-Markovian processes is governed by the history dependence of the switching probabilities and cannot
be solely determined by the mean sojourn times of the states.
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I. INTRODUCTION

Transport processes with distinct states of motion are
ubiquitous in nature. Examples range from simple combina-
tions of passive motility modes—as, e.g., in chromatography
or transport in amorphous materials—to more general mix-
tures of active and passive dynamics as frequently observed
in living systems. Active dynamics of many biological agents
consists of more than one motility mode. Migrating cells [1,2],
swimming bacteria [3,4], molecular motors along cytoskeletal
filaments [5], and DNA-binding proteins [6,7] are examples
of agents that experience frequent transitions between two
states of motion. Although a full mathematical description of
such multistate processes is challenging in general, a useful
concept to describe the particle dynamics is the orientational
memory, reflected, e.g., in the velocity autocorrelations [8].
The orientational correlation carries vital information about
the diffusivity of the particle which affects its taxis, search,
and transport efficiency [9–11].

In order to handle multistate dynamics problems, the states
are often approximated as simple stochastic processes, e.g.,
normal diffusion or ballistic motion, due to difficulties in
analytical treatment of the full process. Although such sim-
ple mixtures have been broadly employed and succeeded
in capturing some of the specific features of these systems
[12–21], they are generally inadequate to accurately describe
the dynamics of a combination of active states with arbitrary
persistencies. For instance, the run-and-tumble dynamics of
bacteria is often modeled by ballistic runs and diffusion peri-
ods or random reorientation events [22–24]. However, partial
disruption of flagellar bundles in the tumble state results in
an active swimming with a weak persistence rather than a
pure diffusive dynamics [4,25]. Moreover, ballistic motion in
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the run state is a very rough assumption since the run tra-
jectories can be extremely curved and the persistence, speed,
and duration of the run state vary in response to environmen-
tal conditions and bacterial structure [3,4,26]. Thus, a full
description of the bacterial dynamics requires a technically
challenging combination of two processes with arbitrary self-
propulsions [27].

The stochastic transitions between the states are often sup-
posed to occur with constant probabilities, which leads to
exponential sojourn-time distributions (as observed, e.g., for
the run-and-tumble dynamics of Escherichia coli [28,29]).
However, there is growing interest in nonexponential sojourn-
time distributions. For instance, the run time of swarming
bacteria [30] or the switching time of the rotation direction of
flagellar motors [31,32] follow power-law distributions. These
observations evidence age-dependent transitions between the
states [2,33,34], which call for a detailed study of the effects of
the history dependence of switching probabilities on sojourn-
time distributions and particle dynamics. To design optimal
navigation and taxis in non-Markovian active processes, a
quantitative understanding of the influence of such memory
effects on the orientational correlations is still lacking.

Here we develop a theoretical framework to quantify the
orientational memory in multistate stochastic processes. Our
approach allows us to calculate the orientational correlation
function for arbitrary combinations of active and/or passive
states and identify the timescales for crossovers of the cor-
relation function. We verify how the exponential decay of
correlations in processes with constant switching probabilities
between the states depends on the persistence of the individual
states and the switching probabilities. Moreover, we introduce
specific history-dependent switching probabilities that lead to
nonexponential sojourn-time distributions of interest, namely,
Gaussian and power-law forms. Our numerical results show
that the tail behavior of the correlation function deviates from
the exponential behavior; the temporal scale of the orien-
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FIG. 1. A sample trajectory of the persistent random walker with
two states of motion. Each state is characterized by its turning-
angle distribution fi (θ ), speed distribution hi (v), and mean sojourn
time 〈τ 〉i .

tational memory changes in these non-Markovian processes
with history-dependent transitions between the states.

II. MODEL

First, we describe the stochastic discrete process that we
use to model the active dynamics. The process consists of
n distinct states of motility, each characterized by the proba-
bility distributions hi (v) and fi (θ ) for the local speed v and the
directional change θ between successive steps of the random
walk, respectively (i∈{1, . . ., n}). We quantify the tendency to
preserve the current direction of motion with a generalized
self-propulsion parameter pi = ∫ π

−π
dθ eiθ fi(θ ). For a turning-

angle distribution f (θ ) which is symmetric with respect to the
arrival direction [e.g., walking with left-right symmetry in two
dimensions (2D)], the self-propulsion reduces to p = 〈cos θ〉,
i.e., a real number within [−1, 1]. However, for the general
case of an asymmetric f (θ ), p has a nonzero imaginary

part as well, leading to spiral trajectories [35]. p is related
to the anomalous exponent β (describing the time evolution
of the mean square displacement) via β = 1+ ln(1+p)/ ln 2
[36]; thus, the value of p reflects the diffusive regime of
the particle dynamics: For a persistent random walk, f (θ )
is peaked around θ=0 (i.e., near forward directions) leading
to a positive p (0 < p < 1) and an anomalous exponent β>1
(superdiffusive dynamics). In the extreme case of a ballistic
motion, one obtains p=1 and β=2. In contrast, f (θ ) in an
antipersistent random walk is peaked around θ=π (i.e., near
backward directions); thus, p is negative (−1<p<0) and β<1
(subdiffusive dynamics). A pure localization happens when
the walker hopes back and forth forever, which leads to p=−1
and β=0. In case of normal diffusion, f (θ )= 1

2π
is isotropic

which results in p=0 and β=1. Stochastic transitions between
the states occur with asymmetric probabilities qi→j . When a
switching occurs, the walker instantly adopts the distributions
hi (v) and fi (θ ) of the new state.

We consider an active motion in 2D in the following for
brevity (extension to three dimensions is straightforward; see,
e.g., the treatment of a single-state persistent random walk in
Ref. [35]). As shown in the schematic Fig. 1, the orientation
of the walker at successive time steps t−�t and t is denoted
with angles φ and γ , respectively, and the directional change
θ during these two steps is given by θ=γ−φ. By introducing

the orientation unit vectors ût−�t =[
cos φ

sin φ
] and ût =[

cos γ

sin γ
]

and the probability density functions St−�t ,i (φ) and St ,i (γ ) to
find the walker in state i with the given orientation, the orien-
tational state of the system at successive time steps t−�t and

t can be represented as St−�t=(
St−�t ,1 (φ)

...

St−�t ,n (φ)
) and St=(

St ,1 (γ )
...

St ,n (γ )
).

The following set of master equations describe the temporal
evolution of the stochastic process,

St = M St−�t , (1)

with M being the transition matrix given by

M=
∫ π

−π

dφ

⎡⎢⎢⎢⎣
(1− ∑

j �=1
q1→j ) f1 (θ ) q2→1 f1 (θ ) · · · qn→1 f1 (θ )

...
. . .

...

q1→n fn (θ ) q2→n fn (θ ) · · · (1− ∑
j �=n

qn→j ) fn (θ )

⎤⎥⎥⎥⎦. (2)

An off-diagonal element Mi j represents the possibility of
switching from state j to i with probability qj→i whereas
the diagonal element Mii takes into account the possibility
of remaining in state i with probability 1 − ∑

j �=i qi→j . The
orientational change θ from any arbitrary direction φ to the
new direction γ is deduced from the turning-angle distribution
fi (θ ) via the integral

∫ π

−π
dφ fi (γ−φ) over all possibilities

of φ. In case of a two-state process the transition matrix
reduces to

M=
∫ π

−π

dφ

[
(1−qI→II ) fI (θ ) qII→I fI (θ )

qI→II fII (θ ) (1−qII→I ) fII (θ )

]
. (3)

III. CONSTANT SWITCHING PROBABILITIES

The transitions between the states with constant
probabilities qi→j lead to exponential distributions
Pi (τ ) ∼ exp[ln(1− ∑

j �=i
qi→jτ ] for the sojourn-time τ in

each state with the mean sojourn times 〈τ 〉i=1/
∑
j �=i

qi→j .

For constant switching probabilities, we solve Eq. (1) in
Fourier space, which enables us to calculate the orientational
correlations. Although the formalism is developed for
multistate processes in general, hereafter we consider a
two-state dynamics as the most frequent multistate process
in natural systems (Fig. 1). Using the Fourier transform

054613-2



ORIENTATIONAL MEMORY OF ACTIVE PARTICLES IN … PHYSICAL REVIEW E 104, 054613 (2021)

St ,i (m)= ∫ π

−π
dγ eimγ St ,i (γ ), the master equation (1)

leads to

St (m) = M̃ St−�t (m)

≡
[

(1−qI→II ) fI (m) qII→I fI (m)
qI→II fII (m) (1−qII→I ) fII (m)

]
St−�t (m), (4)

with St−�t (m)=(St−�t ,I (m)
St−�t ,II (m) ), St (m)=(St ,I (m)

St ,II (m) ), and fi (m) be-

ing the Fourier transform of fi (θ ). Equation (4) can be
recursively solved to obtain St (m) = M̃

t
S0(m). Alternatively,

a combined Fourier-z-transform approach [37] can be fol-
lowed to reach the same result.

The orientational correlation function after time t can be
calculated as

〈ût ·û0〉 = 〈cos(γt −γ0 )〉

=
∫ π

−π

dγ

∫ π

−π

dγ ′ cos(γ−γ ′)S(γ , t ; γ ′, 0), (5)

where S(γ , t ; γ ′, 0) is the joint probability distribution of hav-
ing the orientation γ and γ ′ at times t and 0, respectively.
Assuming an initial state S0(γ ′) = δ(γ ′−γ0 ), the joint proba-
bility can be written as

S(γ , t ; γ ′, 0) = S(γ , t |γ ′, 0) δ(γ ′−γ0 ). (6)

We obtain, after some algebra, the following exact closed
expression for the orientational correlation function,

〈ût ·û0〉 =
(

1

2
+ L

2H

)
e−t/tc+ +

(
1

2
− L

2H

)
e−t/tc− , (7)

with L= ∑
i∈{I,II} [(1−λi )(2S0,i−1)+2S0,i qi→j pj ],H=√

(λII−λI )2+C, C=∏
i∈{I,II} 2qi→j pj , and λi=1−pi (1−qi→j ).

The initial condition S0,i —i.e., the probability of initially
starting in state i—influences the orientational correlation
function through the prefactors of the exponential terms.
In the following, we choose an initially equilibrated
system with steady probabilities S st

I
= qII→I

qI→II +qII→I
and

S st
II

= qI→II
qI→II +qII→I

. Note that starting from an arbitrary S0,i ,

the Markov process of switching between the two states
exponentially approaches the steady state with the relaxation
time t= −1/ ln |1−qI→II−qII→I | [38]. Nevertheless, the
characteristic times tc± in Eq. (7) are independent of the
initial conditions and given by

tc±=−1

/
ln

∣∣∣∣A±√
A2−4pI pII (1−qI→II−qII→I )

2

∣∣∣∣, (8)

with A = ∑
i∈{I,II} pi (1−qi→j ). The temporal scale of orienta-

tional correlations, set by tc± , can vary by several orders of
magnitude by changing the self-propulsions pi and switching
probabilities qi→j as shown in Fig. 2.

Equation (7) implies that constant transition probabilities
lead to an exponential decay of the orientational memory of
the walker; as a result, the trajectory eventually gets ran-
domized after a crossover time controlled by the longest
characteristic time. The shape of the correlation profiles
strongly depends on the choice of pi and qi→j parameters; see
Fig. 3. If the timescales tc+ and tc− are well separated the

FIG. 2. Characteristic time tc in terms of (a) pI and (b) qI→II for
different values of other key parameters. The solid (dashed) lines
represent tc+ (tc− ) timescales. The dotted gray lines correspond to
tc=1, below which the particle practically carries no orientational
memory.

correlation function possesses two inflection points. For com-
parison of the characteristic timescales, O(tc+/tc− )∼10 (103)
for the purple (red) curve in Fig. 3. An oscillatory dynamics
emerges when, at least, one of the states of motion is strongly
subdiffusive, i.e., has a large negative value of pi. The particle
dynamics in such a state is strongly antipersistent, and the par-
ticle hopes frequently back and forth without a significant net
motion. Since the direction of motion is nearly reversed at ev-
ery time step, the orientational correlation between successive
steps is weak whereas between every two steps is strong. Sim-
ilar oscillations can be observed for other transport properties
of interest, such as the mean square displacement [36,39].
In order to confirm the validity of the analytical predictions
we perform extensive Monte Carlo simulations of the same
stochastic process: A random walker in 2D with two different
modes of self-propulsion is considered, and the walker can
spontaneously change the motility mode at each time step
according to given asymmetric switching probabilities. The
simulation results presented in Fig. 3 are averaged over an

FIG. 3. Orientational correlation function as a function of time
for different values of the key parameters of the model. The symbols
denote simulation results, and the solid lines correspond to analytical
predictions via Eq. (7).
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ensemble of 105 realizations. The analytical predictions are in
perfect agreement with the simulation results.

Equation (7) reduces to e−t/tc with tc= −1/ ln p for a
single-state active motion with self-propulsion p [40]. An-
other example is the exponential decay of correlations in a
run-and-tumble process—consisting of successive periods of
ballistic run (pr=1) and pure diffusion (pt=0)— with a char-
acteristic time which is purely governed by the run-to-tumble
switching probability qr→t as tc= −1

ln(1−qr→t ) . More generally,
Eq. (7) enables one to calculate the orientational correla-
tion function for an arbitrary combination of two anomalous
diffusive dynamics. Assuming an uncorrelated speed and
directional persistence, the velocity autocorrelation can be de-
duced as 〈vt ·v0〉 = 〈v〉2〈ût ·û0〉, where 〈v〉 = Sst

I
〈v〉I+Sst

II
〈v〉II ;

however, one should take into account persistence-speed cor-
relations in general [41–44]. We also note that instead of
the correlation timescale one can, alternatively, represent the
formalism in terms of the correlation length scale, using the
local persistence length �p extracted from cos(θ ) = ev�t/�p

[45,46].

IV. AGE-DEPENDENT SWITCHING PROBABILITIES

Next we consider non-Markovian stochastic processes with
age-dependent transition probabilities qi→j (τ ) between the
states, which result in nonexponential sojourn-time distribu-
tions Pi (τ ), in general. In this class of stochastic processes,
the probability of switching from state i to j at each time
step (and, thus, the probability of remaining in state i) de-
pends on the current residence time τ in state i. Therefore,
we obtain the probability of a sojourn time τ in each state
as Pi (τ ) = 1

N
∏τ−1

t=1 [1−qi→j (t )] with the normalization fac-

tor N = 1+ ∑τ−1
t ′=1

∏t ′
t=1[1−qi→j (t )]. Here we introduce two

types of memory kernels which enhance or reduce the du-
ration of stay at each state and modify Pi (τ ) towards known
nonexponential forms, namely, power-law and Gaussian dis-
tributions. The first example is an inverse dependence of the
switching probability on the age τ of the state [34]. We
assign a maximal probability q◦

i→j
to switch from state i to

another state j if the walker has just switched to state i in
the previous time step. However, if the walker remains in
state i for a longer time, the switching probability to state
j decreases over time according to an age-dependent form

qi→j (τ ) =
q◦

i→j

τα
. (9)

We tune the history dependence via the exponent 0 � α � 1.
A larger α leads to a faster decay of the switching prob-
ability qi→j , i.e., a longer stay in state i. Although α=0
corresponds to a constant switching probability and an expo-
nential sojourn-time distribution Pi (τ ) the limit α=1 results

in Pi (τ ) ∝ 
(τ−q◦
i→j

)


(τ ) with 
(n)=(n−1)! being the γ function.
The tail of the sojourn-time distribution decays as a power-law
Pi (τ ) ∼ τ

−q◦
i→j for which the mean sojourn-time 〈τ 〉i diverges.

The gradual change in Pi (τ ) and 〈τ 〉i with increasing α from
0 to 1, resulting from Eq. (9), is shown in Figs. 4(a) and

FIG. 4. (a) Sojourn-time distribution Pi (τ ) in a log-log scale in a
stochastic process with transition probabilities according to Eq. (9)
for q◦

i→j
= 0.5. The dashed guide line indicates a power-law decay.

The inset: Same plot in a log-lin scale. (b) Mean sojourn time in state
i vs α. The dashed lines denote 〈τ 〉i in the constant-switching process
with the same q◦

i→j
. (c) Pi (τ ) vs τ 2 in a process described by Eq. (10)

for q◦
i→j

= 0 and different values of τc. The inset: Pi (τ ) vs τ in the
log-lin scale.

4(b). There have been examples of power-law sojourn-time
distributions in natural stochastic processes as, for example,
for the run time of swarming bacteria or the switching time of
the rotation direction of flagellar motors [30–32]. Our second
choice of the history dependence is an exponentially saturat-
ing switching probability with the age τ of state i as

qi→j (τ ) = 1 − (1 − q◦
i→j

)exp

[
−τ − 1

τc

]
. (10)

Here, τc is the characteristic age and q◦
i→j

is the minimal
switching probability from states i to j (which applies in
case of a newly started state i). The switching probability
to state j increases with further staying in state i. In the
limit τ→∞, qi→j (τ ) approaches 1, i.e., a transition from
states i to j becomes highly probable. It can be shown that
a gradual increase in the switching probability according to
Eq. (10) results in a Gaussian sojourn-time distribution Pi (τ );
see Fig. 4(c). Note that straight lines in log-lin plots of Pi (τ )
vs τ 2 represent a Gaussian decay. Figure 4(c) also shows that
Pi (τ ) is broader at larger values of τc. A possible realization
for a Gaussian sojourn-time distribution can be a tactic motion
where the changes in the states are prevented by the level of
a chemical in the environment which decreases exponentially
over time.

By introducing the probability density function Sτ
t ,i

(γ ) to
find the walker in state i with age τ and orientation γ at time
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t , the following master equations hold in the general case of
age-dependent switching probabilities:

Sτ

t ,i
(γ ) = [1 − qi→j (τ−1)]

∫
dφ fi (γ−φ)Sτ−1

t−1,i
(φ), τ > 1,

S1
t ,i

(γ ) =
t−1∑
τ ′=1

qj→i (τ
′)

∫
dφ fi (γ − φ)Sτ ′

t−1,j
(φ), τ = 1.

(11)

By recursively solving the Fourier transform of Eq. (11) and
combining them, we obtain

Sτ

t ,i
(m) = f

τ

i
(m)

[
τ−1∏
k=1

[1 − qi→j (k)]

]
t−τ∑
τ ′=1

qj→i (τ
′)Sτ ′

t−τ ,j
(m).

(12)
To numerically obtain the orientational correlation function,
we assume that the walker starts the motion with orientation
γ0 —i.e., an initial state S0 (m)=eimγ0 —with an equal probabil-
ity for being in each state. Using the Fourier transforms fI (m)
and fII (m) of the given turning-angle distributions, we perform
Monte Carlo simulations with the desired forms for the age
dependence of the switching probabilities between the states.
By an ensemble of 106 realizations of a chain of t stochastic
steps, we calculate Sτ

t ,i
(m) and by the inverse Fourier trans-

form extract the joint probability distribution of having the
orientation γ and γ0 at times t and 0, respectively. Then,
following a similar procedure as described in Eqs. (5) and (6),
we numerically obtain the correlation function 〈cos(γt − γ0 )〉.

The main characteristic of the orientational correlation
function in processes with constant switching probabilities is
the exponential relaxation according to Eq. (7). The behav-
ior is governed by the switching probabilities (equivalently
the mean sojourn times) as well as the persistence of the
states. According to Eqs. (7) and (8), the long-term relaxation
dynamics are dominated by the state with a higher persis-
tence. To better understand the role of age dependence of
the switching probabilities, we consider a two-state process
with high and low persistencies and with constant qII→I but
history-dependent qI→II transitions. Upon increasing α towards
a power-law sojourn-time distribution in the high-persistence
state I, the orientational correlation function deviates from the
exponential behavior and the tail becomes broader as shown
in Fig. 5(a). Nevertheless, the decay is still faster than a
power law even at α = 1 (although it was recently reported
that the relaxation behavior of the stochastic processes with
power-law sojourn times may crossover at longer timescales
[20]). The nonexponential form of the correlation function ev-
idences that the behavior is not controlled by the mean sojourn
times of the states anymore. For comparison, we also plot
the correlation in a constant-switching process with the same
mean sojourn time as in the history-dependent process; the
differences become more pronounced with increasing α; see
dashed lines in Fig. 5(a). In a process with Gaussian sojourn-
time distribution in state I, Fig. 5(b) shows that the correlation
decays faster than exponential (yet slower than Gaussian) for
all choices of the characteristic history relaxation τc. Similar
to the power-law age-dependence case, the behavior is not
solely governed by the mean sojourn times of the states [see
the dashed lines in Fig. 5(b)]; however, the differences with

FIG. 5. Comparison between the orientational correlations in
processes with constant and history-dependent switching probabil-
ities. The solid lines are 〈ût ·û0〉 for a history dependence in state I
according to (a) Eq. (9) or (b) Eq. (10). A constant-switching process
is considered for state II. The dashed lines represent the correspond-
ing results for a constant-switching process in state I with the same
mean sojourn time as in the history-dependent process. pI = 0.96,
pII = 0.5, q◦

I→II
= qII→I = 0.5.

a constant-switching process becomes negligible for τc→∞.
In this section we linked simple nonexponential forms of
sojourn-time distribution (namely, power-law and normal dis-
tributions) to non-Markovian transitions between the states of
motion. More generally, realistic sojourn-time distributions
in multistate natural processes (that do not necessarily fol-
low well-defined mathematical forms) can be also originated
from (and numerically linked to) age-dependent switching
probabilities between the states. Such transitions may lead to
stronger or weaker orientational correlations, depending on
whether the age-dependent switching role encourages or dis-
courages a longer stay in the states. Although the orientational
memory trivially depends on the self-propulsion of the active
agent, our findings verify that the switching statistics between
the states can also dramatically influence the orientational
memory.

V. CONCLUSION

We analytically investigated the temporal evolution of
orientational correlations in multistate active processes and
derived an exact expression for the orientation autocorrelation
in processes with constant-switching probabilities between
the states. Our theoretical approach opens up an avenue to
study a broad range of natural processes with distinct states
of motility. For instance, the formalism can be generalized to
consider stochastic dynamics with correlated persistence and
speed as observed in cell migration [41–44]. It can be also ex-
tended to include the possibility of sharp directional changes
during the switching events, motivated by the nonsmooth
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tumble-to-run transitions commonly observed in bacterial
dynamics [3,4]. Our results for age-dependent transitions be-
tween the states reveal that the orientational memory of the
agent in such non-Markovian processes can be enhanced or
suppressed depending on the introduced history dependence
of the transitions. The approach is broadly applicable to other
classes of non-Markovian stochastic processes with different
functionalities for the age dependence of transition probabil-
ities. The orientational memory of an active agent reflects
its ability to efficiently explore the environment. Thus, our

findings have far-reaching implications particularly for the
design of optimal taxis, navigation, and search strategies in
active systems.

ACKNOWLEDGMENTS

We acknowledge support from the Deutsche Forschungs-
gemeinschaft (DFG) through the collaborative research center
SFB 1027. M.R.S. acknowledges support by Saarland Univer-
sity NanoBioMed initiative Grant No. 7410110401.

[1] M. Chabaud et al., Nat. Commun. 6, 7526 (2015).
[2] J. d’Alessandro, A. P. Solon, Y. Hayakawa, C. Anjard, F.

Detcheverry, J.-P. Rieu, and C. Rivière, Nat. Phys. 13, 999
(2017).

[3] H. C. Berg, E. Coli in Motion (Springer-Verlag, New York,
2004).

[4] J. Najafi, M. R. Shaebani, T. John, F. Altegoer, G. Bange, and
C. Wagner, Sci. Adv. 4, eaar6425 (2018).

[5] S. Klumpp and R. Lipowsky, Phys. Rev. Lett. 95, 268102
(2005).

[6] M. Bauer and R. Metzler, Biophy. J. 102, 2321 (2012).
[7] Y. Meroz, I. Eliazar, and J. Klafter, J. Phys. A: Math. Theor. 42,

434012 (2009).
[8] F. Peruani and L. G. Morelli, Phys. Rev. Lett. 99, 010602

(2007).
[9] F. Bartumeus and S. A. Levin, Proc. Natl. Acad. Sci. USA 105,

19072 (2008).
[10] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev.

Mod. Phys. 83, 81 (2011).
[11] G. H. Wadhams and J. P. Armitage, Nat. Rev. Mol. Cell Biol. 5,

1024 (2004).
[12] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135

(2013).
[13] M. R. Shaebani and H. Rieger, Front. Phys. 7, 120 (2019).
[14] J. Taktikos, H. Stark, and V. Zaburdaev, PLOs One 8, 1

(2013).
[15] R. Jose, L. Santen, and M. R. Shaebani, Biophys. J. 115, 2014

(2018).
[16] I. Pinkoviezky and N. S. Gov, Phys. Rev. E 88, 022714 (2013).
[17] M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, and C. Beta,

Biophys. J. 105, 1915 (2013).
[18] M. R. Shaebani, R. Jose, C. Sand, and L. Santen, Phys. Rev. E

98, 042315 (2018).
[19] N. Watari and R. G. Larson, Biophys. J. 98, 12 (2010).
[20] T. Miyaguchi, T. Uneyama, and T. Akimoto, Phys. Rev. E 100,

012116 (2019).
[21] M. R. Shaebani, P. Aravind, O. Albrecht, and S. Ludger, Sci.

Rep. 6, 30285 (2016).
[22] F. Thiel, L. Schimansky-Geier, and I. M. Sokolov, Phys. Rev. E

86, 021117 (2012).
[23] L. Angelani, R. Di Leonardo, and G. Ruocco, Phys. Rev. Lett.

102, 048104 (2009).

[24] J. Elgeti and G. Gompper, Europhys. Lett. 109, 58003 (2015).
[25] L. Turner, L. Ping, M. Neubauer, and H. C. Berg, Biophys. J.

111, 630 (2016).
[26] A. E. Patteson, A. Gopinath, M. Goulian, and P. E. Arratia, Sci.

Rep. 5, 15761 (2015).
[27] F. Detcheverry, Phys. Rev. E 96, 012415 (2017).
[28] K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, Nat.

Commun. 6, 8776 (2015).
[29] M. Molaei, M. Barry, R. Stocker, and J. Sheng, Phys. Rev. Lett.

113, 068103 (2014).
[30] G. Ariel, A. Rabani, S. Benisty, J. D. Partridge, R. M. Harshey,

and A. Be’er, Nat. Commun. 6, 8396 (2015).
[31] E. Korobkova, T. Emonet, J. M. G. Vilar, T. S. Shimizu, and P.

Cluzel, Nature(London) 428, 574 (2004).
[32] E. A. Korobkova, T. Emonet, H. Park, and P. Cluzel, Phys. Rev.

Lett. 96, 058105 (2006).
[33] C. Liu, K. Martens, and J.-L. Barrat, Phys. Rev. Lett. 120,

028004 (2018).
[34] S. Fedotov and N. Korabel, Phys. Rev. E 95, 030107(R) (2017).
[35] Z. Sadjadi, M. R. Shaebani, H. Rieger, and L. Santen, Phys.

Rev. E 91, 062715 (2015).
[36] M. R. Shaebani, Z. Sadjadi, I. M. Sokolov, H. Rieger, and L.

Santen, Phys. Rev. E 90, 030701(R) (2014).
[37] Z. Sadjadi, M. F. Miri, M. R. Shaebani, and S. Nakhaee, Phys.

Rev. E 78, 031121 (2008).
[38] A. E. Hafner, L. Santen, H. Rieger, and M. R. Shaebani, Sci.

Rep. 6, 37162 (2016).
[39] P. Tierno, F. Sagués, T. H. Johansen, and I. M. Sokolov, Phys.

Rev. Lett. 109, 070601 (2012).
[40] P. Tierno and M. R. Shaebani, Soft Matter 12, 3398 (2016).
[41] P. Maiuri, J.-F. Rupprecht, S. Wieser, V. Ruprecht, O. Bénichou,

N. Carpi, M. Coppey, S. D. Beco, N. Gov, C.-P. Heisenberg
et al., Cell 161, 374 (2015).

[42] E. R. Jerison and S. R. Quake, eLife 9, e53933 (2020).
[43] M. R. Shaebani, R. Jose, L. Santen, L. Stankevicins, and F.

Lautenschläger, Phys. Rev. Lett. 125, 268102 (2020).
[44] P.-H. Wu, A. Giri, S. X. Sun, and D. Wirtz, Proc. Natl. Acad.

Sci. USA 111, 3949 (2014).
[45] L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,

Oxford, 1958).
[46] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

(Oxford University Press, Oxford, 1986).

054613-6

https://doi.org/10.1038/ncomms8526
https://doi.org/10.1038/nphys4180
https://doi.org/10.1126/sciadv.aar6425
https://doi.org/10.1103/PhysRevLett.95.268102
https://doi.org/10.1016/j.bpj.2012.04.008
https://doi.org/10.1088/1751-8113/42/43/434012
https://doi.org/10.1103/PhysRevLett.99.010602
https://doi.org/10.1073/pnas.0801926105
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1038/nrm1524
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.3389/fphy.2019.00120
https://doi.org/10.1371/journal.pone.0081936
https://doi.org/10.1016/j.bpj.2018.09.029
https://doi.org/10.1103/PhysRevE.88.022714
https://doi.org/10.1016/j.bpj.2013.08.047
https://doi.org/10.1103/PhysRevE.98.042315
https://doi.org/10.1016/j.bpj.2009.09.044
https://doi.org/10.1103/PhysRevE.100.012116
https://doi.org/10.1038/srep30285
https://doi.org/10.1103/PhysRevE.86.021117
https://doi.org/10.1103/PhysRevLett.102.048104
https://doi.org/10.1209/0295-5075/109/58003
https://doi.org/10.1016/j.bpj.2016.05.053
https://doi.org/10.1038/srep15761
https://doi.org/10.1103/PhysRevE.96.012415
https://doi.org/10.1038/ncomms9776
https://doi.org/10.1103/PhysRevLett.113.068103
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1038/nature02404
https://doi.org/10.1103/PhysRevLett.96.058105
https://doi.org/10.1103/PhysRevLett.120.028004
https://doi.org/10.1103/PhysRevE.95.030107
https://doi.org/10.1103/PhysRevE.91.062715
https://doi.org/10.1103/PhysRevE.90.030701
https://doi.org/10.1103/PhysRevE.78.031121
https://doi.org/10.1038/srep37162
https://doi.org/10.1103/PhysRevLett.109.070601
https://doi.org/10.1039/C6SM00237D
https://doi.org/10.1016/j.cell.2015.01.056
https://doi.org/10.7554/eLife.53933
https://doi.org/10.1103/PhysRevLett.125.268102
https://doi.org/10.1073/pnas.1318967111

