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Effect of annealed disorder on phase separation kinetics and aging phenomena in fluid mixtures
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We use state-of-the-art molecular dynamics simulations to study the effects of annealed disorder on the phase-
separating kinetics and aging phenomena of a segregating binary fluid mixture. In the presence of disorder,
we observe a dramatic slowing down in the phase separation dynamics. The domain growth follows the power
law with a disorder-dependent exponent. Due to the energetically favorable positions, the domain boundary
roughens, which modifies the correlation function and structure factor to a non-Porod behavior. The correlation
function and structure factor provide clear evidence that superuniversality does not hold in our system. The role
of annealed disorder on the nonequilibrium aging dynamics is studied qualitatively by computing the two-time
order-parameter autocorrelation function. The decay of the correlation function slows down significantly with
the disorder. This quantity exhibits scaling laws with respect to the ratio of the domain length at the observation
time and the age of the system. We find the scaling laws hold good for the disordered system and are therefore
robust and generic to such segregating fluid mixtures.
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I. INTRODUCTION

The kinetics of phase separation of multicomponent mix-
tures is a complex nonlinear process and has attracted
enormous attention in the field of science [1–5] as well
as for industrial applications [6–8]. When a system of a
homogeneous multicomponent mixture is rendered thermo-
dynamically unstable by a swift quench inside the miscibility
gap, domains with different ordered phases form and expand
with time until the system attains a local equilibrium. The
domain coarsens due to the organization of matter, mostly
dominated by diffusion, and can be seen in almost all phase-
separating systems [9–21].

A single time-dependent characteristic length �(t ) usually
characterizes the domain growth pattern or domain mor-
phology [5]. The same can be obtained by calculating the
two-point equal time correlation function Cψψ (�r, t ), where �r
is the distance between two spatial points and t is the time
after quench. To date, it is well demonstrated that pattern
formation or coarsening of domains is a scaling phenomenon
and exhibits the form Cψψ (�r, t ) = g[r/�(t )] [22] where g(x)
is the scaling function. The average domain size �(t ) follows
the power law �(t ) ∼ tα; α defines the growth exponent. The
value of the exponent depends on the apposite coarsening
mechanism which drives phase separation.

The coarsening mechanism depends on the character of
the system. For instance, in solid-solid mixtures (e.g., metal-
lic alloys), diffusion dominates the domain growth, whereas
hydrodynamic effects contribute significantly in fluid-fluid
mixtures. For the former the growth exponent α = 1/3, which
is attributed to the Lifshitz-Slyozov (LS) law [5,23]. This
diffusive regime is very transient in fluid-fluid mixtures, and
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we experience a prompt crossover from the diffusive to the
hydrodynamic regime. Here α takes two distinct values, α = 1
in the viscous hydrodynamic regime followed by the inertial
hydrodynamic regime with α = 2/3. The above values of
the growth exponent are universal and pertinent to pure and
isotropic systems [10,11].

Another important characteristic of the nonequilibrium
phase separation dynamics is the aging phenomena. The out-
of-equilibrium system changes properties with growing age,
and it has a fundamental importance in the diverse fields
of science and technology. Unlike equilibrium dynamics, the
time translational invariance does not hold here. Aging behav-
ior is best characterized by the two-time correlation function
Cψψ (t, tw ) where t and tw are the observation time and wait-
ing time, respectively. In the nonequilibrium state Cψψ (t, tw )
shows a scaling behavior as Cψψ (t, tw ) ∼ (�/�w )−λ, where �w

is the domain length at time tw. Fisher and Huse [24] intro-
duced the bounds of λ for the nonconserved order-parameter
dynamics of spin glasses as d

2 � λ � d . Later a modified
lower bound of λ was proposed by Yeung, Rao, and Desai [25]
for both conservative and nonconservative order-parameter
dynamics as λ � β+d

2 . The exponent β is defined through the
relation between the structure factor and the wave vector as
S(k, t ) ∼ kβ in the small k limit. For the segregating fluid
mixtures, the scaling function shows a power-law behavior
in the diffusive regime similar to the spin glasses. How-
ever, a crossover from a power-law to exponential behavior
is observed in the viscous hydrodynamic regime [26]. This
exponential decay is attributed to the fast advective field in
the hydrodynamic regime.

Based on the above discussion we can conclude that the ki-
netics of phase separation for pure systems is well understood.
However, real experimental systems are not free from impu-
rity, and this makes the subject more challenging. The disorder
strongly influences the kinetics and the domain morphology
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in a nontrivial manner. Generally, the disorder we find in
experimental systems is mainly of two types: (1) quenched,
frozen-in, or immobile impurities and (2) annealed or mobile
impurities. Quenched disorder acts as a background random
potential for fluctuating degrees of freedom. On the other
hand, annealed disorder is an additional degree of freedom in
the system which is ergodic. In soft matter, disorder impurities
can rearrange themselves, and, therefore, annealed disorder is
more prevalent in soft systems. Numerous studies have been
performed so far to understand the diffusion-driven coars-
ening in Ising systems with quenched disorder [27–41]. But
the phase-separation kinetics with annealed disorder is still in
its infancy. To the best of our knowledge, no theoretical and
computation study has been reported on the phase separation
of fluids with annealed disorder. The presence of impurity in
the fluid systems plays an important role in domain growth
and morphology, which is a subject of interest in science and
industry. These systems carry new perspectives pertaining to
their experimental importance.

In this paper, we undertake an extensive numerical study of
domain growth dynamics of an immiscible symmetric binary
fluid mixture in the presence of annealed disorder. The main
aim of this work is to investigate the effect of disorder on the
phase separation kinetics and aging phenomena of the fluid.
The particular nature of the disorder used in our system is
discussed in Sec. II. We observe a dramatic slowing down
in the growth dynamics of the domains in the presence of
impurity particles. This is quantified in terms of the length
scale �(t ), computed from the correlation function Cψψ (�r, t ).
An algebraic domain growth is observed with the scaling
exponent strongly dependent on disorder. We also explore
the effect of impurities on the aging dynamics of our system
by computing the two-time order-parameter autocorrelation
function Cψψ (t, tw ). The scaling laws of these correlation
functions are verified for the disordered system.

The paper is organized as follows. In the next section,
we outline the model and the numerical method to study the
phase separation kinetics of a segregating liquid mixture with
annealed disorder. The results of the domain growth dynamics
and the aging behavior are presented in Sec. III. Finally, in
Sec. IV we offer a summary and a discussion of the results
presented in this paper.

II. NUMERICAL MODEL AND METHOD

A. The basic model for binary liquid

For our present analysis, we perform a three-dimensional
(3D) molecular dynamics (MD) simulation on a binary liquid
in the NVT ensemble. We consider a 50:50 mixture of A and
B particles at high density ρ = N/V = 1, where N and V
represent the number of particles and volume of the system,
respectively. The two species interact via a Lennard-Jones
(LJ) potential

Uαβ (r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6]
, (1)

where r = |�ri − �r j | and α, β ∈ A, B. To ensure energetically
favorable phase separation, the parameters in the LJ poten-
tial are chosen as follows: σAA = σBB = σAB = 1.0 and εAA =
εBB = 1.0, εAB = 0.5. The choice of our interaction strength

corresponds to the critical temperature Tc = 1.42, outlying
the possible liquid-solid and gas-liquid transition point [42].
The temperature is measured in units of ε/kB, where kB is
Boltzmann’s constant. Length is measured in units of σ . For
simplicity we set the mass m0 of A and B particles and kB

equal to unity. For the sake of computational efficiency, the
interaction potential is truncated to zero at rc = 2.5σ . A peri-
odic boundary condition is applied in all three directions.

B. Modeling annealed disorder

To incorporate annealed disorder in our system, we choose
a small fraction of A-type particles and replace them with
marked particles denoted by P. Therefore, the mixture com-
prises A, B, and P types of particles, all interacting via the LJ
potential. We stress here that we are not trying to replicate
a particular experimental system, but rather understand the
effect of a particular choice of annealed disorder on phase
separation kinetics. Of course, we can choose the impurity
particles in many ways. For example, the choice of the energy
parameters εPP, εPA, εPB could be different, as well as the cor-
responding interaction length scales. Other possibilities could
be multibody interactions, angle-dependent interactions, etc.
For concreteness, in our present analysis, we choose the same
energy or length-scale parameters for P as the A particles.
The only change made is the mass of the P particles that
reduces their mobility. The presence of the P particles acts
as an impediment and influences the dynamics of the whole
system.

The interaction parameters between the P particles and
with the rest of the system are as follows: σPP = σPA = σPB =
1.0, εPP = 1.0, and εPA = εPB = 0.5. The interaction poten-
tial for the P particles is truncated at rc = 2

1
6 σ to exclude

any attractive force and avoid clustering. The mobility of
the impurity is varied by changing their mass mP. The sim-
ulation is performed with four different choice of masses,
mP = 1, 10 000, 100 000, and ∞. The two limits mP = 1 and
mP = ∞ correspond to the pure system free from any disorder
and the system with immobile quenched disorder.

We performed the MD simulations using the velocity Ver-
let algorithm [43] over a total of 262 144 (= 643) particles
for two different impurity concentrations. The density of the
impurity particles is chosen such that ρP � ρ0 where ρP

and ρ0 are the densities of the impurity and the rest of the
particles, respectively, with ρ = ρP + ρ0. With low impurity
concentration we ensure that the original composition of the
binary liquid is preserved. The mass mP is varied with the
choice mentioned above. The mP = ∞ case is replicated by
not allowing the P particles to participate in the dynam-
ics and stay frozen in their respective positions. We begin
our simulation by preparing a well-equilibrated homogeneous
mixture at high temperature T = 10.0 followed by a quench
to T = 0.77Tc at t = 0. Here the reduced unit of time is
taken as σ

√
m/ε. Temperature is controlled by a Nose-Hoover

thermostat (NHT), which preserves the hydrodynamic effect
[44]. Finally, the system is allowed to evolve to the thermody-
namically favored state until the complete phase separation is
achieved. The ensemble average of all the statistical quantities
is obtained from 20 independent runs at 0.77Tc starting from
completely different initial configurations.
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FIG. 1. Typical snapshots of our phase-separating system for
ρP = 0.0 and 0.02 at time t = 2000 (LJ units) are shown in the
upper panel. The A, B, and P particles are marked as orange, green,
and red, respectively. A two-dimensional cross-sectional area of the
configurations with B particles is shown in the lower panel.

C. Correlation function and structure factor

To characterize the domain morphology and study the
domain growth we introduce the two-point equal time corre-
lation function Cψψ (�r, t ) as follows:

Cψψ (�r, t ) = 〈ψ (0, t )ψ (�r, t )〉/〈ψ (0, t )〉2, (2)

where the order parameter ψ (�r, t ) is obtained as follows: we
compute the local density difference δρ = ρA − ρB between
the two species A and B, calculated over a box of size (2σ )3

located at �r. The ψ (�r, t ) is assigned a value +1 when δρ > 0,
and −1 otherwise. The angular brackets indicate the statistical
averaging. We also compute the structure factor S(�k, t ) by
taking the Fourier transform of the correlation function given
by

S(�k, t ) =
∫

d�r exp(i�k · �r) Cψψ (�r, t ). (3)

To study the aging dynamics we consider the so-called two-
time order-parameter correlation function Cψψ (�r, t, tw ) as
follows:

Cψψ (�r, t, tw ) = 〈ψ (�r, t )ψ (�r, tw )〉 − 〈ψ (�r, t )〉〈ψ (�r, tw )〉,
(4)

where t is the observation time and tw is the waiting time or
the age of the system after quench.

Finally for the isotropic system, spherically averaged
Cψψ (r, t ), S(k, t ), and Cψψ (r, t, tw ) are computed.

III. NUMERICAL RESULTS

A. Domain morphology and growth dynamics

The effect of annealed disorder on the phase separation
dynamics is depicted in Fig. 1. Here we show the 3D config-
urations obtained from our simulation for three different mp

at the impurity concentration ρP = 0.02 at time t = 2000. We
observe bicontinuous A-rich and B-rich domains. It is appar-
ent from the snapshots that the same species cluster sizes get
smaller with an increase in mP at a given time. Therefore, the
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FIG. 2. The scaling plots of Cψψ (r, t ) vs r/�(t ) are shown for
(a) ρP = 0.01 and (b) ρP = 0.02 at mP = 10 000.

kinetics of ordering slows down with a decrease in mobility
of the impurity particles. The same effect is observed with
disorder concentration ρP = 0.01 also. This will be quantified
in detail in terms of the domain length scale �(t ) later.

The slowing down of kinetics can be contemplated in the
following way. In the course of phase separation, the same
species domains form and grow with time. The cross-species
interactions are weaker, and the impurity particles interact
via repulsive force to avoid clustering. Therefore, the domain
boundaries become the energetically favorable position for
them. Careful visual inspections of our simulation data reveal
that indeed the majority of the impurity P-type particles are
located across these domain boundaries all the time. This is
evident from the two-dimensional cross-sectional plot of the
configurations shown in Fig. 1. As a result, they localize the
domain walls in energetically favorable positions. However,
this is overcome by the thermal energy due to sufficiently
high temperature. It is worth noting in Fig. 1 that the domain
boundaries become rough with impurity. The implications of
the modified domain boundary will be discussed shortly in
terms of the correlation function and structure factor.

To gain a qualitative understanding of the domain evolution
for a disordered system we compute the correlation function
Cψψ (r, t ) given by Eq. (2). In Fig. 2 we show the scaling plot
for Cψψ (r, t ) vs r/�(t ) for ρP = 0.01 and 0.02 at mP = 10 000,
where �(t ) is the average domain size. There are quite a few
ways to quantify the �(t ), e.g., first zero crossing of Cψψ (r, t ),
half-crossing of Cψψ (r, t ), and inverse of the first moment of
S(k, t ). We have used the first method to calculate �(t ). An
excellent data collapse is observed for different times. We
repeated the same exercise with other values of mP and found
the quality of overlap to be the same. This suggests that even
in the presence of disorder (fixed ρP), the system belongs
to the same dynamical universality class [23]. However, the
correlation functions corresponding to different mP for a given
impurity concentration do not overlap with each other when
plotted at a fixed time t . This is shown in Fig. 3. For the pure
system Cψψ (r, t ) shows a linear behavior at small r following
the Porod law, C(r, t ) ∼ 1 − ar. However, in the presence of
impurity, a nonlinear or cusp nature is observed, which can
be attributed to the scattering from the rough domain bound-
ary [45]. Therefore, the annealed disorder results in breaking
down the Porod law in the correlation function [46].

The evolution morphology is best realized in terms of the
domain size �(t ). In Fig. 4 we show the time dependence of
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FIG. 3. Scaled correlation function Cψψ vs r/� plot for (a) ρP =
0.01 and (b) ρP = 0.02 at time t = 6000 for different mP.

�(t ) for different impurity concentrations. Our simulation is
able to access the viscous hydrodynamic regime after an initial
transient period. For the pure system (ρP = 0) we expect here
a linear behavior of �(t ). The slight deviation from this can be
attributed to the nonzero offsets at the crossovers, which can
be subtracted from �(t ) to recover the proper linear behavior
[47]. In the presence of impurity the growth rate slows down
and the total time taken for the system to be completely
phase-separated increases significantly with disorder. This is
consistent with the observations in Fig. 1. The slowest growth
for the system under consideration (ρP = 0.02 and mP = ∞)
corresponds to α ∼ 1/3.

In the presence of disorder, the relaxation mechanism
changes from a pure energy lowering to thermally activated
process, due to the creation of energy barriers. The presence
of the energy barrier impedes the relaxation process. An im-
portant issue in this regard is the so-called superuniversality
(SU), i.e., whether the disorder-dependent spatial autocorre-
lation function scales to a master curve when the length is
rescaled with respect to the domain size �(t ) [48,49]. From
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different masses with ρP = 0.01 (solid curve) and 0.02 (dashed
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for the pure system. The double-dashed dotted lines represent the
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FIG. 5. The scaled structure factor S(k)�−3 vs �k is plotted
(points) for various mP with (a) ρP = 0.01 and (b) ρP = 0.02 in the
log-log scale. The straight line is a guide line for the Porod law
S(k) ∼ k−4 and the dashed line for non-Porod behavior S(k) ∼ k−3.5

(see text).

Fig. 3 it is conspicuous that the disordered system does not
fall into the SU class. We also observe an algebraic do-
main growth throughout the phase separation process with a
disorder-dependent exponent. This implies that the barrier size
does not depend on the domain size for a given ρP.

In Fig. 5 we show the scaled structure factor S(k, t )�−3 vs
�k plot for different ρP and mP in log-log scale. Although
the decaying part of the tail for the pure system shows the
Porod law behavior S(k, t ) ∼ k−(d+1) [23], the disordered sys-
tems show a non-Porod behavior, S(k, t ) ∼ k−(d+1+θ ), where
θ 
 −0.5. This value is very close to the results observed in
the 3D random field Ising model [45]. This substantiates the
roughening of the domain interfaces with annealed disorder
and the violation of SU.

B. Aging dynamics

Now we turn our focus to one of the most important aspects
of nonequilibrium dynamics, namely, the aging phenomena.
As discussed in the introduction, this subject is well studied
for the disorder-free binary mixture systems [26]. Therefore,
we abstain from showing results for pure mixtures. In Fig. 6
we show the variation of Cψψ (r, t, tw ) with t − tw for the
disordered system with maximum chosen impurity. For our
aging-related studies, we always focus on the viscous hydro-
dynamics regime where the effect of impurities is prominent
(as reflected in Fig. 4), and the tw are chosen accordingly.
Clearly, the correlation curves corresponding to different tw
do not overlap, demonstrating the violation of time translation
invariance. Following Fisher and Huse [24] we attempt to
scale the abscissa as t/tw, and a nice data collapse is obtained
as shown in the inset of Fig. 6. Therefore, the Fisher and Huse
scaling law remains vindicated for the systems with annealed
disorder.

The role of impurity in the aging dynamics is further in-
vestigated by computing the Cψψ (r, t, tw ) for the pure and
disordered systems at a fixed tw = 3000. This is shown in
Fig. 7. Clearly, the correlation function decays significantly
slowly with increase in impurity concentration. We checked
and found similar behavior when the heaviness mP of the
impurity particles is changed to other values also. This demon-
strates the slowing down of the dynamics and is consistent
with the observation in Fig. 4.
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FIG. 6. The two-point order-parameter autocorrelation function
Cψψ (r, t, tw ) vs t − tw plot for ρP = 0.02 and mP = 105 at three
different waiting times tw = 5000, 6000, and 7000. In the inset we
show the same data after rescaling the time with tw .

In Fig. 8 we show the Cψψ (r, t, tw ) as a function of l/lw.
An excellent data collapse is found for the pure as well as the
impure system with different degrees of disorder. To tally the
nature of the master curve with the previously found expo-
nential decay in the pure binary LJ system [26], we plot the
data on the semilog scale. The data set appears to be linear,
confirming the exponential nature. Therefore, we find the
scaling law in the hydrodynamic regime is very generic, and
insensitive to the annealed disorder. The exponential decay of
the correlation function is attributed to the advective hydrody-
namic flows under the hydrodynamic effect that causes large
displacement of particles [26].
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a guide for the eye.

IV. SUMMARY AND DISCUSSION

In summary, we have examined the kinetics of phase sepa-
ration in a binary liquid in the presence of annealed disorder.
The disorder was introduced by adding a small concentration
of foreign particles to the system. The key observation is the
dramatic slowing down of the phase separation dynamics in
the presence of the impurity particles. The spatial correlation
function scaled with domain size showed disorder dependence
and non-Porod behavior, which can be attributed to the rough-
ening of domain boundaries. The pure system clearly exhibits
power-law domain growth with exponent unity in the viscous
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hydrodynamic regime. In the presence of disorder, the nature
of growth remains algebraic, but the exponent decreases with
impurity concentration and its mobility. The disorder localizes
the domain wall and creates an energy barrier that is overcome
by the thermal activation process. However, the algebraic do-
main growth conforms to the domain size-independent energy
barrier throughout the phase separation process.

We have also examined the structure factor for our system.
The decaying part of the structure factor gets modified in the
presence of disorder and shows a non-Porod tail. Both the
spatial correlation function and the structure factor do not
obey superuniversality. We have also investigated the effect
of annealed disorder on aging phenomena. The aging dynam-
ics is quantified by computing the two-time order-parameter
autocorrelation function Cψψ (r, t, tw ). We demonstrated that
Cψψ (r, t, tw ) follows the scaling law with respect to t/tw
proposed by Fisher and Huse in the disordered system. But
the aging process slows down significantly as reflected in the
decay of Cψψ (r, t, tw ) with time. We have also examined the

scaling law with respect to �/�w and obtained an excellent
data collapse for all the cases in hand. The scaling function
showed an exponential decay in the hydrodynamic regime.
We, therefore, conclude that the scaling laws are very robust
and generic for the aging dynamics and hold equally well
for the disordered system. We believe that our model and the
results presented here offer a method to control the phase sep-
aration dynamics in real systems by adding annealed disorder
appropriately. Studies following this line of thought will be
presented elsewhere.
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