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Heating leads to liquid-crystal and crystalline order in a two-temperature active fluid of rods
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We report phase separation and liquid-crystal ordering induced by scalar activity in a system of soft repulsive
spherocylinders (SRSs) of shape anisotropy L/D = 5 using molecular dynamics (MD) simulations. Activity is
introduced by increasing the temperature of half of the SRSs (labeled hot) while maintaining the temperature
of the other half constant at a lower value (labeled cold). The difference between the two temperatures scaled
by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases,
we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles
through a phase transition to a more ordered state and the hot particles to a state of less order compared to the
initial equilibrium state. The cold components of a homogeneous isotropic structure acquire nematic and, at
higher activity, crystalline order. Similarly, the cold zone of a nematic initial state undergoes smectic and crystal
ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles
occupy a larger volume and exert an extra kinetic pressure, confining, compressing, and provoking an ordering
transition of the cold-particle domains.
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I. INTRODUCTION

Active matter [1–3] is characterized by broken detailed
balance, through the conversion of a sustained supply of free
energy into work at the scale of the individual constituents.
This intent of this broad definition is to bring living systems
in to the fold of condensed-matter physics while emphasizing
their nonequilibrium character. The field has advanced dra-
matically through experiments on scales from micrometers to
kilometers highlighting the qualitative difference between ac-
tive and passive systems with the same spatial symmetries and
through theoretical progress uncovering the laws governing
order, fluctuations, and coexistence in active systems [4–22].
Simulations of minimal models are a valuable testing ground
for theories and continue to present new observational puz-
zles [11,15,19,23–25].

Heterogeneous activity is natural: Motility, metabolism,
or the speed of other key enzymatic processes [26] can
vary among the components of a system. Mixtures of motile
and nonmotile [4,23], or more generally active and passive,
particles are another case of interest. In the simplest cases
these situations are well approximated by assigning thermal
baths with different temperatures to different subsets of par-
ticles [26–29]. The resulting internal heat flows make the
system active in a way that is not obviously identical to the
usual prescription of a maintained chemical potential differ-
ence [1,2].

Ganai et al. [26] showed that a two-temperature picture
provided a natural physical origin for chromatin organization
in the nucleus and Joanny and co-workers [27–29] showed
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analytically how phase separation arose in two-temperature
systems. Spontaneous segregation in two-temperature or
active-passive mixtures is widely observed in simulations,
Brownian soft disks [30], polymers [31,32], and binary
Lennard-Jones systems [33] where activity leads to phase sep-
aration and formation of crystalline domains. Moreover, in the
literature, it has been reported that nonreciprocal interactions
yield two different temperatures in dusty plasmas [34,35] and
diffusiophoretic colloids [36].

These studies show the emergence of collective behavior
uniquely associated with activity even when the structure
and dynamics at the particle scale are isotropic. Anisotropy,
however, is ubiquitous in the living world in the form of
the shape and movement of microorganisms, the long per-
sistence lengths of biopolymers [37,38], and the mesogenic
nature of lipids. Liquid-crystalline order [39] was central
to the inception of active-matter research [1]. Activity in
models of liquid-crystalline order generally enters as a self-
propelling force vector [1,2,6,23,40–48] or an active stress
tensor [49–52]; even active isotropic baths as in [53] are
created by persistent vector or tensor processes. We explore
the statistical mechanics of anisotropic particles driven by a
strictly scalar manifestation of activity in a two-temperature
system of soft repulsive spherocylinders (SRSs). We ask the
following questions.

(i) How does the phase behavior of three-dimensional soft
rods depart from its equilibrium form when activity is intro-
duced?

(ii) What distinctive features can be traced specifically to
the two-temperature nature of the system, in which activity
leads to phase separation and resides not in any one of the
particles, but at the interfaces between regions of hot and cold
particles?

In this paper, we answer these questions through molecular
dynamics simulation (MD) of a collection of SRSs of shape
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anisotropy L/D = 5 with a purely repulsive interaction. Ac-
tivity is introduced by connecting half of the particles (labeled
“hot”) to a thermostat of higher temperature, while the rest of
the particles (labeled “cold”) remain connected to a thermostat
of a lower temperature equal to that of the initial equilibrium
system. The difference between the two temperatures scaled
by the lower temperature is taken to be a measure of the
strength χ of the activity. We describe the model and the
simulation protocol in detail in Sec. II.

Our simulation study demonstrates that unlike spherical
colloidal particles, where prominent effects of activity are
found only when the strength of the activity is high, for both
scalar (χ ∼ 30) [27,30] and vector activity (Péclet number
Pe > 50) [19], a variety of interesting phenomena are ob-
served for colloidal rods in a much smaller range of values of
the activity parameter 1 < χ < 4. This observation suggests
that the two-temperature model should be an experimentally
feasible system for studying the effects of scalar activity in
collections of rodlike particles. In this regard, the critical ac-
tivity χc, defined as the value of χ at which macroscopic phase
separation starts to occur, shows a nonmonotonic dependence
on the packing fraction η, decreasing with increasing η in the
liquid regime and increasing again in the crystalline regime.
A detailed analysis of the phase separation can be found in
Sec. III A.

The segregated zones develop different liquid-crystalline
(LC) structures depending on the level of activity and the
reference equilibrium phase of the system at zero activity.
We observe the cold particles undergoing a phase transition
towards a more ordered state and the hot particles towards a
less ordered state as compared to the initial equilibrium state.
If the system at zero activity is in the isotropic (I) fluid phase,
the cold domains that emerge are nematic (N) and, at higher
activities, crystalline (K), while the hot particles remain in
the isotropic phase with reduced density. Similarly, a homo-
geneous nematic reference configuration shows smectic (Sm)
and crystalline cold domains and isotropic structure in the hot
domain. As a result, the phase boundary of the I-N transition
shifts towards lower density for the cold particles and higher
density for the hot particles. Different LC phases are identified
by calculating the local nematic order parameter and suit-
able pair correlation functions. Finally, we analyze interfacial
properties and find that LC ordering in the lower packing
fractions (starting from I and N phases) is governed by local
balance of pressure across the interface: Higher temperature
induces higher kinetic pressure in the hot zone, which is com-
pensated in the cold zone by increasing virial pressure. Thus
mechanical stability is maintained at the interface. Detailed
analyses of the segregated phases and interfacial properties
are presented in Secs. III B–III D.

The extraordinary nonequilibrium feature that we wish to
highlight is that an enhancement of the temperature of a frac-
tion of the particles gives rise to enhanced LC ordering in the
remaining particles at any packing fraction.

II. MODEL AND SIMULATION DETAILS

We model the system as a collection of SRSs (cylin-
ders with hemispherical caps). The shape anisotropy A is
defined by the ratio of length L and diameter D, A =

FIG. 1. Schematic diagram of SRSs. (a) The line segment join-
ing the centers of the two hemispheres is known as core of the
spherocylinder. (b) Here �u1 and �u2 denote the orientations of sphe-
rocylinders 1 and 2, respectively, r is the distance between their
centers of masses, and dm is the shortest distance that determines
the interaction potential between them. Panel (b) is adapted from
Ref. [67].

L/D (Fig. 1). Spherocylinders interact through the Weeks-
Chandler-Andersen potential (WCA) [54] generalized to
nonspherical bodies [55]

USRS =
{

4ε
[(

D
dm

)12 − (
D
dm

)6] + ε if dm < 21/6D

0 if dm � 21/6D,
(1)

where dm is the shortest distance between two spherocylin-
ders that determines their relative orientation and interacting
force [56–58]. Note that representing spherocylinder by a line
of interacting spheres can also be used to study various LC
phases [59].

We perform MD simulations in the constant number-
pressure-temperature (NPT ) ensemble, using a Verlet al-
gorithm [60] to update the positions and velocities of the
particles and quaternion-based rigid-body dynamics [61–65]
for rotational motion. The temperature and pressure of the
system are maintained using a Berendsen thermostat and
manostat [66] with a temperature relaxation time τT = 0.05
and pressure relaxation time τP = 2.00, respectively. Ther-
modynamic and structural quantities are scaled by system
parameters (i.e., ε and D) and calculated in reduced units:
temperature T ∗ = kBT /ε, pressure P∗ = Pvhsc

kBT , and packing

fraction η = vhscρ, where ρ = N
V and vhsc = πD2( D

6 + L
4 ) is

the volume of the spherocylinder.
We prepare the system initially in a hexagonal-close-

packed crystalline structure. As the constituent particles are
asymmetrical in shape, we choose the numbers nx, ny, and
nz of unit cells in the x, y, and z directions, respectively, in
such a way that the simulation box can be constructed in a
nearly cubic geometry. If nu is the number of spherocylinders
in one unit cell then the total number of spherocylinders N =
nu × nx × ny × nz. The usual periodic boundary condition and
minimum image condition are used. A system of N = 1024
is built by choosing nx = ny = 16 and nz = 4. The ratios of
the dimensions of the simulation box are Lx/Ly = 1.16 and
Lz/Ly = 1.68. Later we increase the system size to N = 4096
to check for finite-size effects.
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FIG. 2. (a) Equation of state and (b) nematic order parameter S vs packing fraction η for the system of soft repulsive spherocylinders with
shape anisotropy L/D = 5.00. Thermodynamic quantities are defined in reduced units: packing fraction η = ρvhsc and pressure P∗ = Pvhsc/kT ,
where vhsc is the volume of the spherocylinder. Here we observe four stable phases: isotropic (I), nematic (N), smectic (Sm), and crystal (K).
The vertical dashed lines indicate coexisting regions near the phase transition points.

After building the system, we equilibrate it at T ∗ = 5.00.
We then establish the equilibrium phase diagram for this
temperature by slowly varying the pressure to melt the system.
We simulate for a range of pressures P∗ from 20 to 0.05 which
spans the crystal to isotropic phases. The ordering transitions
are located by calculating the nematic order parameter and
suitable pair correlation functions. The order parameter for
the nematic phase is a traceless symmetric tensor Q, de-
fined below, which is used to obtain the scalar nematic order
parameter S, which is the largest eigenvalue of Q, and the
corresponding eigendirection, which is the director n. A value
of S consistent with zero defines the isotropic phase. In highly
ordered states, S � 1. Let uα

i be the αth component of the
orientation vector of spherocylinder i. Then we define

Qαβ = 1

N

N∑
i=1

(
3

2
uα

i uβ
i − 1

2
δαβ

)
.

FIG. 3. (a) Equilibrium configuration of N = 1024 soft sphe-
rocylinders at the state point (η = ρv0 = 0.36, T ∗ = 5.00) in the
absence of activity χ = 0.00. Both hot (red) and cold (green) par-
ticles are well mixed at the same temperature. (b) Steady-state
configuration after phase separation at χ = 5.00. It is clearly visible
that cold particles are segregated and ordered, whereas the surround-
ing hot particles are disordered.

We introduce activity by choosing half of the particles
randomly and assigning a higher temperature to them while
keeping the other particles’ temperature fixed at a lower value
equal to that of the initial equilibrium system. Let T ∗

h and
T ∗

c be the temperatures of the hot and cold particles, respec-
tively. Initially we equilibrate the system at T ∗

h = T ∗
c = 5.00

and then increase T ∗
h in steps T ∗

h = 5.00 → 7.50 → 10.00 →
· · · → 30.00 → 50.00, allowing the system to reach a steady
state after each increase in T ∗

h , keeping the volume of the
simulation box constant throughout the simulation. As a result
of heat exchange, the measured values of effective tempera-
tures T eff

h and T eff
c of the two populations, as defined by their

steady-state average kinetic energies, differ from those of their
thermostats:

T ∗
h > T eff

h > T eff
c > T ∗

c . (2)

We parametrize activity by

χ = T ∗
h − T ∗

c

T ∗
c

. (3)

FIG. 4. Density order parameter φ vs activity χ at several pack-
ing fractions η of the system.
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FIG. 5. Distribution of ψ , P(ψ ), at different activities χ for several different packing fractions η. Critical activity χc is defined as the
value of χ at which P(ψ ) develops bimodality. However, we find a plateau region just below the calculated χc which is the signature of the
emergence of phase separation. Therefore, the exact value of χc lies within the following ranges: (a) for η = 0.36, in the initial isotropic phase,
χc = 1.38–2.0; (b) for η = 0.50, in the initial nematic phase, χc = 1.50–2.00; (c) for η = 0.67, in the initial smectic phase; χc = 0.61–1.00;
and (d) for η = 0.80, in the initial crystal phase, χc = 3.50–4.00. Note that, in the crystal phase, bimodality appears from χ = 2.50 to 3.00.
However, we do not consider this the critical activity χc as the higher peak arises at ψ = 0, indicating that most of the particles are mixed. In
contrast, at χ = 3.50–4, both of the peaks occur at a nonzero value of ψ (ψ = −0.8, 0.25). The P(ψ ) for the two limits on χc are shown as
thick lines. The range of χc is represented by a gray band in the phase diagram (Fig. 6). The nonzero weight for |ψ | > 0 arises from the fitting
procedure.

For the active case, i.e., for χ �= 0, we choose the thermo-
stat relaxation time τT = 0.01 for both types of particles.
We run the simulation for 3 × 105 to 4 × 105 integration
time steps to reach steady state and another 105 steps to
calculate thermodynamic and structural quantities. We use
an integration time step δt = 0.001 in units of the natural
timescale D

√
m/ε.

III. RESULTS AND ANALYSIS

We present the equilibrium phase diagram of SRSs for
L/D = 5 at T ∗ = 5 and observe four stable phases: (i) crys-
tal, (ii) smectic A (SmA), (iii) nematic, and (iv) isotropic
(Fig. 2). The critical values of thermodynamic quantities at
phase transition points match well with previous results by
Cuetos et al. [67,68].

A. Activity-induced phase separation

Our system receives a sustained flux of energy which the
hot particles draw from the hot bath and transfer through
collisions to the cold particles, which in turn reject the excess
to the cold bath. At a steady state, the power gained by
the hot particles is equal to the power transferred by the

cold particles keeping the net energy flux into the system
zero. A region occupied predominantly by hot particles

FIG. 6. Phase diagram in the state space χ vs η. The pink-shaded
area indicates the phase-separated region and the nonshaded area
indicates the region of the homogeneous phase where hot and cold
particles are well mixed. The blue and orange lines indicate upper
and lower limits of critical activity χc and the in-between area of
gray shade denotes the range of possible values of χc. Dotted lines
are extrapolations from the calculated data.
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FIG. 7. Segregated structures for the initial isotropic phase (I) η = 0.36: (a) initial configuration in the absence of activity, (b) nematic
(N) ordering in the cold cluster, and (c) and (d) multidomain crystal (DK) in the cold cluster. (e) Packing fractions in the segregated zone
corresponding to the aforementioned activities. The phases in each zone are mentioned for each activity. Here Scold and Shot are the nematic
order parameters of cold and hot particles, respectively, and ηcold and ηhot are the packing fractions in the cold and hot zones, respectively. In
the case of (c) and (d), Scold is much lower than that for usual crystalline ordering as it is calculated by averaging over all the domains with
different orientations of the directors. However, the local ordering in each domain is much higher (Sloc

cold = 0.90), which indicates crystalline
order. The lines drawn in (e) are a guide to the eye.

tends to expand relative to one with cold particles. This
opens up the possibility of phase separation by hot particles
self-consistently sequestering a domain of cold particles. As χ

is increased, we indeed see such an effect, locally at first and
then macroscopically with a well-defined interface (Fig. 3).

The extent of phase separation is quantified from the spatial
distribution of hot and cold particles. To do so, we divide
the simulation box into a number of subboxes Nbox and for
each subbox i we calculate the absolute number difference
of hot (ni

h) and cold (ni
c) particles divided by total number of

particles in that subbox. This quantity is denoted as the order
parameter and is averaged over all the subboxes and also over
a sufficiently large number of steady-state configurations as
given by

φ = 1

Nbox

〈
Nbox∑
i=1

∣∣ni
c − ni

h

∣∣(
ni

c + ni
h

)
〉

ss

, (4)

where 〈· · · 〉ss denotes a steady-state average over a sufficiently
large number of configurations. The selection of the number

of subboxes is arbitrary; we choose it such that (in our case,
Nbox = 43) each box contains enough particles to obtain good
statistics. Ideally, in the absence of activity (at T ∗

c = T ∗
h =

5.00), φ should be zero; however, for a finite system size,
it can be nonzero; hence we offset it by the initial value φ0,
φ → φ − φ0.

In Fig. 4 we observe that φ increases monotonically with
χ up to a certain value and then saturates. The reason is that
local separation emerges at lower activities and increases until
a well-defined interface is formed (see the Appendix and Fig.
18 for a detailed calculation of macroscopic phase separation).
The value of χ at which phase separation starts to occur
macroscopically is defined as the critical activity χc. However,
calculating χc from Fig. 4 is difficult as the crossover between
mixed and phase-separated states is not sharp enough. Hence,
we identify χc from the following criteria: We define a quan-
tity ψ that signifies the number difference between hot and
cold particles in each subbox ψ = 〈 nc−nh

nc+nh
〉ss and compute the

distribution P(ψ ) over the subboxes. The activity at which

FIG. 8. Nematic order parameter of (a) cold particles Scold and (b) hot particles Shot vs packing fraction η at different activities χ . The
vertical dashed lines indicate the shift of the I-N phase boundary towards lower packing fraction for cold particles and higher packing fraction
for hot particles. The horizontal dashed line indicates the critical value of the order parameter (S = 0.30) assumed to indicate the isotropic to
nematic transition.
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FIG. 9. Segregated structures in a nematic initial configuration (η = 0.50): (a) initial structure in the absence of activity, (b) smectic
ordering in the cold zone and isotropic structure in the hot zone, and (c) and (d) crystalline ordering in the cold zone and isotropic structure
with reduced density in the hot zone. (e) Packing fractions in the segregated zone corresponding to the aforementioned activities. The phases
in each zone are labeled for each activity. The parameters are the same as in Fig. 7.

P(ψ ) develops bimodality is considered to be the critical
activity χc of the system.

In Fig. 5 we calculate χc from P(ψ ) for different packing
fractions corresponding to the different initial phases. In the
case of lower packing fractions η = 0.36 [Fig. 5(a)], bimodal-
ity appears at a higher value than actual χc. However, we
observe a plateau regime with shifted unimodal peak which
is the signature of the emergence of phase separation. This is
also seen for other packing fractions just below the calculated
χc. Therefore, for each η, we define a range of χ within
which the exact value of χc lies. With these observations, we
present a complete phase diagram in the state space (χ vs
η), showing parametric regions of mixed and phase-separated
states (Fig. 6).

From Fig. 6 we find that χc decreases with the increase of
packing fraction η up to a value of η = 0.67. This can be due
to the fact that the interaction between hot and cold particles
is higher for dense systems, which causes fast dissipation
of hot particles’ energy. Beyond η = 0.67, crystalline order
emerges and χc increases again as a function of η [Fig. 5(d)].
The possible reasons are (i) in an extremely dense system
many hot particles are stuck in the cold zone, which requires
a larger amount of energy to overcome the barrier, or (ii)
the relaxation is very slow in the crystal phase compared to
the liquid-crystal phases. Therefore, it may require a longer
time to undergo phase separation at lower activity. However,
it is interesting to note that critical activity lies in a very

small range 1.0 < χc < 4.0, i.e., a ratio of temperatures 2.0 <

T eff
h /T eff

c < 5.0 for the entire range of η. This observation
indicates that the two-temperature model should be a reliable
system to observe the effect of scalar activity in colloidal rods
experimentally.

B. Activity-induced liquid-crystalline ordering

Hot particles exert an active kinetic pressure along the
hot-cold interfaces, which drives an ordering transition in the
cold particles. The ordered structures in the phase-separated
domains depend on the overall packing fraction η, T ∗, and χ .
Starting from the state points in the equilibrium η-P∗ phase di-
agram corresponding to isotropic, nematic, and other phases,
we observe the cold domains undergoing phase transitions
towards more ordered states and the hot domains towards less
ordered states, as compared to the initial equilibrium state.
The extent of the segregated zone is quantified by the density
profile normal to the interface, which we discuss later (in
Sec. III D). Different phases are characterized by calculating
the local nematic order parameter S and suitable positional
and orientational pair correlation functions.

1. Initial isotropic configuration

In Fig. 7 we show the emergence of various phases in
the hot and cold regions under different activities, starting
from an initial isotropic phase. The critical activity χc for

FIG. 10. Segregated structures in a smectic initial phase (η = 0.67): (a) initial configuration in the absence of activity and (b)–(d) crystal
structures in the cold region and nematic structures in the hot region at different activities. (e) Packing fractions in the segregated zone
corresponding to the aforementioned activities. The phases in each zone are labeled for each activity. The parameters are the same as in Fig. 7.
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FIG. 11. Segregated structures in a crystalline initial state (η = 0.80): (a) initial configuration in the absence of activity and (b) no phase
separation at χ = 2.00, with both hot and cold particles in the crystal phase. (c) and (d) Crystalline structure in the cold region with higher
packing fraction and nematiclike structure in the hot region. This is far from the usual nematic phase as the breakdown of layering reduces the
packing fraction significantly but the nematic order parameter is much higher than that in the equilibrium nematic phase. (e) Packing fractions
in the segregated zone corresponding to the aforementioned activities. The phases in each zone are labeled for each activity. The parameters
are the same as in Fig. 7.

phase separation lies between 1.38 and 2.00. Cold particles
undergo a transition to a nematic phase at lower activities
[Fig. 7(b)] which eventually turns into crystalline order at
higher activities [Figs. 7(c) and 7(d)]. However, hot particles
remain in the isotropic phase with reduced packing fraction.
Hence, the I-N phase boundary shifts towards lower density
for the cold particles and higher density for the hot particles.
In Figs. 8(a) and 8(b) we see a continuous phase transition
from a disordered to an ordered state for active systems, as

is evident from the continuous increase in the nematic order
parameter in contrast to the sudden jump in the order param-
eter for the equilibrium case. We notice a local minimum in
Scold in the range η = 0.36–0.38 [Fig. 8(a)]. To check the
possible effects of the finite system size, we simulated a larger
system with N = 4096 SRSs and observed similar results
(see Fig. 19 for details). The local minimum occurs due to
the formation of multiple domains with different orientations
of the nematic director, which effectively reduces the global

FIG. 12. Pair correlation functions in the segregated zones for a smectic initial phase (η = 0.67) at χ = 9.00: (a) center-of-mass pair
correlation function g(r), (b) orientational pair correlation function g2(r), and projection of g(r) for the distances (c) parallel [g‖(r)] and
(d) perpendicular [g⊥(r)] to the director of the spherocylinders.
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FIG. 13. (a) Packing fraction of cold ηcold and hot ηhot particles
separately and (b) effective packing fraction of the particles present
in each slab (including both hot and cold) in the direction perpendic-
ular to the interface at η = 0.67 and χ = 9.00. Location of the cold,
hot, and interfacial regions are shown in the legend. The dotted lines
indicate the boundary of each zone. (c) Snapshot of the system at
steady state.

nematic order parameter of the cold particles. This is also
verified by calculating orientational and positional pair corre-
lation functions in the cold regions of the respective densities
(Fig. 20). For other densities, we observe a single domain
with a fixed orientation of the director in the cold zone which
increases Scold.

2. Initial nematic configuration

For the initial nematic configuration, phase separation
starts at χc = 1.50–2.00. We find that activity drives the cold
particles to undergo a nematic to smectic transition while
the hot particles exhibit a nematic to isotropic transition as
shown in Fig. 9. In Fig. 9(b) we can see that at χ = 2.00,
the nematic order parameter in the cold zone is Scold = 0.97
and the packing fraction is ηcold = 0.73. These values are
consistent with the equilibrium smectic phase for SRSs with
a shape anisotropy L/D = 5 (Fig. 2). On the other hand, the
hot particles develop isotropic structure with Shot = 0.10 and
η = 0.38. A further increase of χ turns the cold zone into a
close-packed crystal structure as shown in Figs. 9(c) and 9(d).

3. Initial smectic configuration

In the case of an initial smectic configuration, the system
starts to phase separate at very low activity: χc = 0.61–1.00.
A small amount of temperature difference drives the cold zone
into a close-packed crystal structure while the hot zone under-
goes a transition to the nematic phase, as shown in Fig. 10.
For χ = 9.0, the local nematic order parameters and packing

fractions in the segregated regions are as follows: In the hot
region, S = 0.58 and η = 0.50, which is consistent with the
equilibrium nematic phase, and in the cold region, S = 0.98
and η = 0.87, which is consistent with the equilibrium crystal
phase (Fig. 2). The observed phases are further verified by
calculating suitable pair correlation functions as discussed in
detail in Sec. III C.

4. Initial crystal configuration

In the case of an initial crystal configuration, we surpris-
ingly find χc to be very high (χc = 3.50–4.00) compared
to the values at liquid phases. The reason is that many hot
particles are stuck in the cold zone and these particles require
a larger amount of energy to overcome the potential barrier
for demixing. Another reason is that the relaxation in the
crystal phase is very slow compared to that in liquid-crystal
phases. Therefore, a longer time may be required to phase
separate at smaller activity. After phase separation, the layered
structure in the hot zone starts to break up into a nematiclike
structure that appears to be a far-from-equilibrium nematic
phase [Figs. 11(c) and 11(d)]. The local ordering is much
higher compared to that in the usual nematic phase; however,
the breakdown of the layered structure causes a significant
decrease in the packing fraction: Shot = 0.92 and ηhot = 0.62
at χ = 9.00. Another important point to note is that, while
melting, the hot particles do not go through a smectic phase.
This differentiates the melting transition in the active subsys-
tem from the equilibrium one.

C. Pair correlation functions

The local ordering in segregated zones is further character-
ized by calculating relevant pair correlation functions [69,70].
Apart from the radial distribution function g(r), we also cal-
culate the orientational pair correlation function g2(r), which
is relevant for quantifying nematic order. Here g2(r) is defined
as the second-order Legendre polynomial associated with the
orientation vectors �ui and �u j of two spherocylinders i and j
separated by distance r: g2(r) = 〈P2(�ui · �u j )〉. We further cal-
culate the vectorial pair correlation functions g‖(r) and g⊥(r),
which are the projections of the radial distribution function
g(r) in the directions parallel and perpendicular to the nematic
director, respectively. Periodic oscillations in g‖(r) indicate
the presence of layering and thus differentiate between ne-
matic and smectic phases. The g⊥(r) indicates the presence
of in-layer periodicity and thus differentiates between smectic
and crystal phases.

In Fig. 12 we plot the pair correlation functions for a sys-
tem starting from a smectic phase at η = 0.67 and χ = 9.00.
The correlation functions are calculated in the hot and cold
zones separately over a sphere of diameter 16D to quan-
tify both short- and long-range correlations. As shown in
Sec. III B 3, this system shows crystalline structure (S = 0.99)
in the cold zone and nematic structure in the hot zone (S =
0.63) at this activity. From the pair correlation function g(r)
shown in Fig. 12(a), we observe a significant increase of
the height of the first and second peaks in the cold zone
compared to the nonactive case and the emergence of a third
peak. This is a signature of high positional correlation among
the cold particles. In contrast, in the hot zone, we observe
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FIG. 14. (a) Effective packing fraction η, (b) temperature T ∗
eff , and (c) pressure P profile in the direction perpendicular to the interface

for different activities χ at η = 0.36. The region between black vertical dashed lines indicates the location of the interface for χ = 5. Red
horizontal dashed lines in (b) indicate the temperatures imposed on hot and cold particles at χ = 5.00. In (c) we decompose the total pressure
of the active system into kinetic and virial parts. It is clearly visible that the kinetic pressure is decreasing and the virial pressure is increasing
from the hot to the cold zone. The 0 is the position of the slab located at half of the box length in the direction perpendicular to the interfacial
plane.

that the height of the first peak decreases significantly and
the second peak vanishes. However, orientational correlations
[Fig. 12(b)] still exist, which identify the phase as nematic.
Periodic oscillations in g‖(r) indicate the presence of a layered
structure in the cold zone. The distance between two succes-
sive peaks is around 6.00, which is the end to end distance of
a spherocylinder (L/D + 1). Multiple peaks at equal distance
in g⊥(r) signify high translational ordering within the layer,
which confirms the emergence of local crystalline structure in
the cold particles’ cluster.

D. Interfacial properties

To obtain interfacial properties, we divide the simulation
box into a number of slabs Nslabs. Here Nslabs is chosen such
that each slab contains enough particles (in our case, about 50)
to get stable statistics. The effective density and temperature
of the ith slab are calculated as

η(i) = n(i)

v(i)
vhsc, (5)

5 × 1

2
kBTeff (i) = 1

n(i)

n(i)∑
j=1

(
1

2
mv2

j + 1

2
Iω2

j

)
. (6)

Here n(i) and v(i) are the number of particles and volume of
the ith slab, respectively; v j and ω j indicate the translational
and rotational velocities of the SRS j, respectively. In Eq. (6),
the term 5 appears on the left-hand side as the total number
of degrees of freedom for a rigid spherocylinder is 5, arising
from 3 translational and 2 rotational motions. We identify the
locations of the phase-separated zones and the interface by
calculating the local packing fractions of hot (ηhot) and cold
particles (ηcold) as shown in Fig. 13(a). We observe that the
effective packing fraction of each slab η (including both hot
and cold particles) decreases in the hot zone and increases
in the cold zone compared to the initial equilibrium system
[Fig. 13(b)]. The region where η changes sharply from one
zone to another is defined as the interface. Analyzing the
values of ψ for each subbox as defined in Sec. III A and the
snapshots of the phase-separated systems shown in Figs. 3
and 7, 9–11 indicate that the interface preferentially lies in
a plane parallel to one of the sides of the simulation box.
Our system exhibits two interfaces due to the effect of the
periodic boundary condition. The interface occupies a finite
region of the simulation box and the width of the interface
does not show any significant dependence on the system size,
as shown in Fig. 21. In Fig. 14(a) we plot the effective η at

FIG. 15. (a) Effective packing fraction η and (b) pressure P profile in the direction perpendicular to the interface for χ = 0.00 and 5.00
at different densities corresponding to the different initial phases: η = 0.36 for the initial isotropic phase, η = 0.50 for the initial nematic
phase, η = 0.67 for the initial smectic phase, and η = 0.80 for the initial crystal phase. The pressure is roughly constant within error bars
for lower-density phases (I and N) but it decreases continuously from the hot to the cold zone for higher-density phases (SmA and K). The
equilibrium packing fraction corresponding to each solid line is labeled. The 0 is the position of the slab located at half of the box length in the
direction perpendicular to the interfacial plane.
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FIG. 16. (a) Pressure anisotropy A as a function of distance x in the direction perpendicular to the interface for different packing fractions
at χ = 0.00, 5.00. (b) Plot of A(x) in the initial crystal phase (η = 0.80) for χ = 7.00. Here A(x) is decomposed into kinetic and virial parts.
The pressure anisotropy is dominated by the kinetic part in the hot zone and the virial part in the cold zone. The 0 is the position of the slab
located at half of the box length in the direction perpendicular to the interfacial plane.

different activities and find that the spatial inhomogeneity in
η increases with the increase of activity.

The effective temperature decreases continuously from the
hot to the cold zone [Fig. 14(b)]. The coexistence of two

FIG. 17. (a) Pressure profile for η = 0.67 at χ = 0.00, 5.00 in the direction perpendicular to the interface. Here the total pressure decreases
continuously from the hot to the cold zone. The anisotropy in pressure is dominated by the kinetic contribution in the hot zone and the virial
contribution (arising from the WCA interaction) in the cold zone. The region between the dotted lines indicates the interface. (b) Spatial
variation of pressure components across the interface. Here Pxx is the normal component and Pyy and Pzz are the tangential components. The
anisotropy of pressure is coming from the Pzz component, which is also the nematic director of the hot zone. (c) Here Pzz is decomposed into
kinetic and virial parts.
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temperatures at the hot-cold interface signifies the nonequi-
librium nature of the system. However, it is surprising that in
the steady state the cold zone has regions where the local tem-
perature is lower than the imposed cold particles’ temperature
T ∗

c and in some regions of the hot zone the local temperature
is much higher than the imposed hot particles’ temperature
T ∗

h . In Fig. 14(b) we see that the maximum temperature in the
hot zone is around 50, which is much higher than T ∗

h = 30. In
the cold zone, the minimum temperature is around 2, which
is lower than T ∗

c = 5. However, the effective temperature
averaged over all the hot particles T eff

h is lower than T ∗
h and

the effective temperature averaged over all the cold particles
T eff

c is higher than T ∗
c due to heat exchange between them as

mentioned in Eq. (2).
We evaluate the pressure profile from diagonal components

of the stress tensor

Pkin(i) = 1

3 × V (i)

n(i)∑
j=1

mv2
j , (7)

Pvir (i) = 1

3 × V (i)

n(i)−1∑
j=1

∑
k> j

�r jk · �f jk, (8)

P(i) = 〈Pkin(i) + Pvir (i)〉ss. (9)

Here P, Pkin, and Pvir designate total, kinetic, and virial pres-
sures, respectively; Pvir arises due to the particles’ interaction,
which is defined as the product of the relative distance �r jk

and interacting force �f jk between the SRSs j and k. We
observe that the local pressure increases with activity and it is
nearly constant within error bars across the hot-cold interface
[Fig. 14(c)]. This is due to the fact that higher temperature
causes higher kinetic pressure in the hot zone that acts at the
hot-cold interface, inducing higher packing and ordering in
the cold zone. This enhances the virial pressure in the cold
zone, resulting in the total pressure being constant across the
interface. This is shown in Fig. 14(c), where we decompose
the total pressure into kinetic and virial parts for the system
with η = 0.36 and χ = 5.00. However, this behavior is found
only for the lower densities (I and N initial phases). In the
case of higher densities (Sm and K initial phases), we observe
that the total pressure decreases continuously from the hot to
the cold zone (Fig. 15). This can be rationalized as follows:
In the case of smectic and crystal initial phases, along with
the kinetic pressure, the virial pressure is also high in the hot
zone due to their high orientational order [as the hot zone
shows nematiclike structure (Figs. 10 and 11)]. As a result,
the total pressure increases in the hot zone, which cannot be
compensated in the cold zone by increasing the virial pressure
only. We calculate the pressure anisotropy A(x), which is
defined as

A(x) = Pn(x) − Pt (x). (10)

Here Pn(x) and Pt (x) are the normal and tangential com-
ponents of the total pressure, respectively, in the directions
perpendicular and parallel to the interface. We designate the
perpendicular direction of the hot-cold interface as x and the
other two directions parallel to the interfacial plane as y and z.
Thus the pressure components are defined as Pn(x) = Pxx(x)
and Pt (x) = [Pyy(x) + Pzz(x)]/2. In equilibrium, the pressure
is isotropic and therefore A(x) = 0. In the active system, we

observe that the anisotropy is close to zero within the error
bars for lower densities (I and N initial phases). However, it
increases for higher densities (Sm and K initial phases) as
shown in Fig. 16(a). To understand this precisely, we plot
different pressure components across the interface as shown
in Fig. 17 and find that the anisotropy in higher densities may
arise due to the effect of the active stress of the hot particles
along their nematic director, which acts parallel to the inter-
facial plane. To understand if the anisotropy in the pressure
tensor is a consequence of the constant-volume simulation
(NV T ), we perform a constant-pressure simulation (NPT )
with an orthorhombic boundary condition and do not find any
significant change in the pressure anisotropy. In Refs. [71–73]
it was reported that for the equilibrium NPT simulation, the
diagonal components of the pressure tensor become unequal
in spatially ordered phases (smectic and crystal) due to main-
taining a constant cubic shape throughout the simulation. In
our case, the NPT simulation is done in orthorhombic bound-
ary conditions; hence this issue is not applicable in our case.

To understand possible system-size effects, we perform a
similar analysis with N = 4096 particles, keeping all other
system parameters and simulation protocol unchanged; we do
not find any significant system size effect. The different results
for two system sizes are compared in Figs. 19, 20, and 21.

IV. CONCLUSION AND OUTLOOK

In summary, we have presented a simple two-temperature
model to study the thermodynamic and structural properties
of active-passive spherocylinders where the level of activity
is modeled by maintaining a temperature difference between
the hot and cold particles. Starting from different initial equi-
librium phases (I , N , and Sm), we showed that our simple
model leads to not only phase separation into hot and cold
regions but also liquid-crystal ordering of the cold particles
and opposite shifts of the phase boundaries for mesophase
formation, with respect to the equilibrium case, in the cold and
hot domains. The extent of phase separation was quantified by
an order parameter based on the local density. We found that
the critical activity for phase separation lies in a small range
1 < χc < 4 for a wide range of densities from the isotropic to
the crystal phase. This interesting observation highlights the
two-temperature model as an experimentally feasible system
for studying the effect of scalar activity in colloidal rods. We
observed that the critical activity decreases with density in
the liquid regime and increases again in the crystal regime.
Based on these observations, a phase diagram was drawn in
the state phase χ vs η, showing the parametric regions of
phase-separated and homogeneously mixed states.

We found the segregated zones developing different liquid-
crystal structures depending on the activity and initial phase
of the system. For example, an initial isotropic configuration
shows nematic ordering in the cold region, which eventually
turns into crystalline ordering at higher activities. Similarly, an
initial nematic configuration shows smectic or crystal ordering
in the cold zone, depending on the value of χ , and isotropic
structure in the hot zone. As a result, the I-N phase boundary
shifts towards higher density for the hot particles and lower
density for the cold particles. The segregated structures are
identified by calculating the local nematic order parameter
and different pair correlation functions. Finally, we analyzed
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FIG. 18. (a) Density order parameter φ at η = 0.36 for different activities χ in the direction normal to the interface. (b) Fourier components
of φ(x). Here k = 2π/x. In this figure we can see two peaks in φk : The peak at the lowest k value (around k = 0.2 ⇒ x = 31.42, which is
approximately the length of the box L) indicates the occurrence of phase separation on the macroscopic level and the other peak (around
k = 1.5 ⇒ x = 4.2) indicates microscopic phase separation. The amount of phase separation is determined from the height of the first peak in
φk . (c) Magnitude of the Fourier component of φ for the smallest k vs activity χ at several packing fractions η. The trend shown is similar to
that in Fig. 4.

interfacial profiles of various thermodynamic quantities and
concluded that the order-disorder transitions in the segregated
zones are probably governed by a local balance of pressure
across the interface: Higher temperature induces higher ki-
netic pressure in the hot zone, which is compensated in the
cold zone by an increased virial pressure.

Another possible reason for the order-disorder transition
may be an entropic effect. The hot particles compensate for
the loss of entropy due to the ordering transition in the cold
zone by developing a disordered structure. An important com-
ponent of future work will be to examine configurational
entropy and free energy, as well as entropy production and
currents, to shed light on the mechanisms underlying the
nonequilibrium phase transitions we observe. Finally, ana-
lytical theories of two-temperature models so far have been
limited to spherical particles [27–29]. Hence, generalizing
their theoretical approach to make analytical predictions for
two-temperature models with anisotropic particles is an im-
portant challenge.
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APPENDIX: QUANTIFYING MACROSCOPIC
PHASE SEPARATION

To quantify if the phase-separation happens in the macro-
scopic level, we have used the following criterion: We divide

FIG. 19. (a) Average nematic order parameter of cold particles Scold with activity χ for N = 4096 (solid line) compared to the earlier case
with N = 1024 (dashed line) at η = 0.36. (b) Plot of Scold vs η at different χ as given in the legend. Here we also observe local minima for a
certain range of η as it is observed in the earlier case with N = 1024 [Fig. 8(a)]. (c) Density order parameter φ with χ for the larger system size
with N = 4096 at different packing fractions. The density order parameters in the system with N = 1024 particles are designated by dotted
lines at the respective packing fractions. We do not observe any significant system size effect for these cases.
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η = 0.34
η = 0.38
η = 0.41

η = 0.34
η = 0.38
η = 0.41

η = 0.40
η = 0.41
η = 0.43

FIG. 20. Pair correlation functions for χ = 3.50 at the values of η around which we find local minima in Scold for N = 1024 and 4096
as mentioned in Fig. 19(b). The local minima occur at values of η = 0.38 and 0.41 for N = 1024 and 4096, respectively. For both cases, the
orientational correlation g2(r) decreases and saturates at a smaller value at large distances [(b) and (d)]. This is due to the presence of local
domains of different average orientations of the nematic director, which effectively decreases the global ordering of the cold particles. For
other packing fractions, g2(r) saturates at a higher value at large distances. Here we observe a stable single domain of a fixed orientation of the
nematic director in the cold zone. The translational correlation g(r) [(a) and (c)] is nearly independent of η in the range considered.

the simulation box into a number of slabs Nslabs in the di-
rection normal to the interface. Here Nslabs is chosen such
that each slab contains enough particles (in our case, about
50) to get stable statistics. For each slab i, we calculate the
number difference of hot (ni

h) and cold (ni
c) particles divided

by the total number of particles ni
tot in that slab. We then

define

φi =
〈

ni
c − ni

h

ni
c + ni

h

〉
ss

, (A1)

FIG. 21. (a) Effective packing fraction η and (b) temperature T ∗
eff profile in the direction perpendicular to the interface scaled by the box

size for N = 4096 and 1024 at η = 0.36 and χ = 5.00. The black horizontal solid line in (a) indicates the local packing fraction in the absence
of activity. Black vertical dotted lines in (a) and (b) indicate the interfacial region. Red horizontal dashed lines in (b) indicate the temperatures
imposed on hot and cold particles. For both system sizes, the width of the interfacial region is about 5 in units of the diameter D of the SRS.
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where 〈· · · 〉ss represents a steady-state average over a suffi-
ciently large number of configurations. The average of φi over
all slabs will be 0 as φi varies symmetrically from −1 to +1
from the hot-rich to the cold-rich zone. We therefore calculate
the Fourier transformation of φ(x), where x measures the
position of the slab. The magnitude of the first nonvanishing
Fourier component |φk| is the measure of macroscopic phase

separation in our system (Fig. 18). In Fig. 18(b) the first peak
occurs at x = 31.42, which is approximately the length of
our simulation box (L = 32). This indicates the occurrence
of phase separation in a macroscopic scale. In Fig. 18(c) we
plot the magnitude of |φk| for the smallest k as a function of
the activity at several packing fractions, which shows a trend
similar to that in Fig. 4.
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