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Connectedness percolation of fractal liquids
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We apply connectedness percolation theory to fractal liquids of hard particles, and make use of a Percus-
Yevick liquid state theory combined with a geometric connectivity criterion. We find that in fractal dimensions
the percolation threshold interpolates continuously between integer-dimensional values, and that it decreases
monotonically with increasing (fractal) dimension. The influence of hard-core interactions is significant only
for dimensions below three. Finally, our theory incorrectly suggests that a percolation threshold is absent below
about two dimensions, which we attribute to the breakdown of the connectedness Percus-Yevick closure.
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I. INTRODUCTION

Recently, Heinen et al. introduced fractal liquids in which
both the particles and the embedding space are treated as
objects of the same fractal dimension [1]. Such liquids are
therefore fractal at all length scales. This contrasts with the
more familiar case of fluids confined in porous media, which
are often thought to represent a fractal geometry. In liquid-
state theory, the local structure of the confining medium is in
that case usually modeled as a sphere, cylinder, or slit [2,3],
and any connection to the fractal background lost. Excep-
tions are so-called quenched-annealed liquids of which the
constituent model particles share the volume with confining
obstacles the distribution of which is fixed in space [4–6].

Confinement is known to have a significant impact on
thermal phase transitions, e.g., by shifting the critical point,
changing the order of the phase transition, or even causing
a phase transition to be absent altogether [7–12]. This is
mirrored, on the one hand, in theoretical studies of phase
transitions in cylinders [13–15] and slits [12,14–16], and, on
the other hand, by those that effectively describe the actual
structure of a porous medium. In the latter, the fractal ge-
ometry is either inscribed explicitly in a lattice [17,18] or
treated implicitly by a random disorder field in continuum
field theories [19–22].

In the theory of fractal liquids, however, the porosity of the
confining medium is described by a single (fractal) dimension,
so without any reference to a Euclidean embedding space,
and specific interactions with the confining walls are ignored
[1]. The predictions of Heinen et al. for the microscopic
fluid structure, obtained using a generalized Percus-Yevick
approach, agree very well with results from their Monte Carlo
simulations [1]. Actual realizations of this model may perhaps
be found in binary microphase-separated liquids in porous
media if the characteristic size of the (macroscopic) liquid
droplets is very much larger than the porosity length scale.
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As far as we are aware, phase transitions in fractal liquids
have not yet been investigated. Hence, in this article, we focus
attention on the geometric percolation transition in fractal
liquids, which belongs to a particular class of (second-order)
phase transition [23]. The percolation phase transition de-
scribes the transition from a locally to a globally connected
network of particles and so involves a diverging cluster size.
It differs from the aforementioned thermal phase transitions
by the introduction of an additional “connectedness” pa-
rameter that describe particle-particle connections [24]. This
parameter does not influence the equilibrium thermodynamic
properties of the material itself and is often modeled by a
simple distance criterion. It is, however, an intrinsic property
of a physical system and its actual value relies on, e.g., the
properties of the host medium and the mode of transport. In
the case of electrical tunneling percolation, it is related to the
effective tunneling length of charge carriers [25,26].

We are particularly interested in the influence of the fractal
dimension D on the percolation threshold, defined as the filler
fraction at which a material-spanning cluster emerges, and the
critical exponent γ , associated with the mean cluster size.
To calculate these quantities, we make use of the Percus-
Yevick integral equation theory for fractal liquids of Heinen
and collaborators [1] and apply it to geometrical percolation
where connectivity is defined by a distance criterion. In our
so-called cherry-pit model, the particles have an impenetrable
core of diameter σ and direct connections are identified by
this distance criterion λ. In principle, both the percolation
threshold and the critical exponent γ depend on the ratio σ/λ.
As far as we are aware, connectedness Percus-Yevick theory
within the cherry-pit model has been analyzed only in D = 3
[27], and our analysis extends to both integer and noninteger
dimensions between one and six.

Both the thermal Percus-Yevick (PY) and the connect-
edness Percus-Yevick (cPY) theory are approximate integral
equation theories based on the exact Ornstein-Zernike for-
malism [24,28]. PY theory is commonly used to predict the
equilibrium structure and correlations in simple liquids of par-
ticle characterized by strongly repulsive interactions, where
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it is well known to be very accurate at low to intermediate
densities [28]. At high densities, however, this is less so as it
does not predict a liquid-solid transition and can even yield
unphysical results, such as a locally negatively valued pair
correlation function [28,29]. Interestingly, it turns out to be an
exact theory for hard rods in one dimension [30]. cPY theory
is derived from PY theory and so is based on the same set of
approximations, and is known to be less accurate in predicting
percolation properties than PY theory is in predicting thermo-
dynamic properties. This is caused by fortuitous cancellation
of errors occurring to a lesser extend in cPY theory compared
to PY theory [27,31].

According to our findings, the geometric percolation
threshold of fractal liquids of hard particles interpolates in
a continuous manner between those of integer-dimensional
fluids of isometric particles, and decreases monotonically with
increasing fractal dimension. The critical exponent γ also
decreases with increasing dimensionality and approaches the
mean-field value of unity already in five dimensions. This
is below the accepted upper critical dimension of six [23].
Surprisingly, our calculations indicate that connectedness PY
theory breaks down approaching two dimensions from above:
the critical exponent γ diverges for D ↓ 2, and in that case
we fail to find a system-spanning cluster at finite densities.
Interestingly, we find that the value of σ/λ either weakly
impacts upon our findings or not at all.

The remainder of this paper is structured as follows. In
Sec. II we introduce the theory of fractal liquids, and we
generalize connectedness percolation theory accordingly. In
Sec. III we present our results on the percolation threshold
and the mean cluster size critical exponent. We discuss the
effects of the fractal dimension and the hard core fraction σ/λ

on both the percolation threshold and the critical exponent.
Finally, we present our conclusions in Sec. IV.

II. THEORY AND METHODS

Before going into the details of our calculations, we first
introduce two concepts that are relevant in the context of the
fractal nature of our particles and the space they live in. The
first point we need to address is that the relevant distance mea-
sure is not the Euclidean but the so-called chemical distance,
where the distance between two points is measured along
the fractal embedding space [1]. In lattice terminology, this
translates to the shortest connected path between two sites [1].
Further, the relevant (fractal) dimension in the model iden-
tified by Heinen and co-workers is the spreading dimension
dl . It is related to the chemical distance by the scaling of the
number of sites (or “mass”) N that are within the chemical
distance lchem from any site via N ∼ ldl

chem [1]. In integer
dimensions, where the chemical distance coincides with the
Euclidean distance, the spreading dimension coincides with
the spatial dimension.

With these definitions, we can now generalize our cherry-
pit particle model to fractal dimensions. In lattice terminology,
we define the fractal dimensional equivalent of a hard core
particle with “diameter” σ , as all nodes that lie within a chem-
ical distance of σ/2 removed from the center node. Moreover,
the fractal particles have a connectivity shell of diameter λ

around this hard core. If the chemical distance between the

centers of two particles is less than λ, yet larger than σ , we
define the particles to be connected. Due to the hard core
repulsion, the centers of two particles cannot be within a
chemical distance of σ .

Our theoretical description of geometric percolation is
based on connectedness Ornstein-Zernike (cOZ) theory [24].
Within this formalism, the cluster size is given by S = 1 +
ρ limq→0 P̂(q), where ρ is the number density and P̂(q) is the
Fourier transform of the so-called pair connectedness function
P(r). The pair connectedness function describes the probabil-
ity that two particles, separated by a center-to-center distance
r = |r|, are connected. It is connected to the function C+(r)
known as the direct connectedness function, via the cOZ
equation P(r) = C+(r) + ρ

∫
dDr′P(r′)C+(|r − r′|), with D

again the spreading dimension, C+(r) encoding the specific
subset of connections between pairs of particle that remain
connected upon removal of any other particle connected to
these two [24].

Obviously, since C+(r) is unknown a priori, the cOZ
equation needs to be supplemented by a closure relation.
We employ the connectedness PY or cPY closure, defined
by the conditions P(r � λ) = g(r), and C+(r > λ) = 0 [27].
The latter imposes the presumed short-distance nature of the
direct connectedness function. That the former is sensible
follows from the fact that the radial distribution function g(r)
describes the probability to find a particle at r around a test
particle that is placed at the origin. Our motivation for us-
ing the cPY closure is that it is relatively straightforwardly
generalized to fractal liquids, devoid of any adjustable pa-
rameters, and because analytical results are known for certain
cases, we can directly evaluate the accuracy of our methods
[32].

The radial distribution function itself can be obtained from
the liquid-state Ornstein-Zernike (OZ) equation g(r) = 1 +
c(r) + ρ

∫
dDr′[g(|r′|) − 1]c(|r − r′|), which also needs to be

closed. As we use the Percus-Yevick closure for the cOZ equa-
tion we invoke the same closure here, implying that for hard
particles we insist on the no-overlap condition g(r � σ ) = 0
and set c(r > σ ) = 0 [28]. We note that for ideal particles
g(r) = 1 for all r � 0, and only the cOZ equation needs to
be solved, which we do numerically, simplifying our calcula-
tions considerably. For cherry-pit particles with σ/λ > 0, we
numerically solve the OZ and cOZ equations consecutively,
and rely on the same method used by Heinen and co-workers,
that is, by exploiting a generalized Hankel transform that can
be dimensionally continued (see Appendix A) [1].

Finally, we pinpoint the particle density at the percolation
threshold ρp, or in dimensionless form ηp, by the condition
S → ∞. This we also do numerically, making use of the
scaling relation for the mean cluster size S ∝ |η − ηp|−γ pre-
sumed to be valid for η → ηp. Here, γ is the appropriate
critical exponent. The quantities ηp and γ we asymptotically
fit in the critical region of the mean cluster size S. We have
tested this procedure and compare it against the exact analyt-
ical results for ideal particles in D = 3 and 5, and find the
error in the percolation threshold ηp to be negligible (less than
10−2%). The error in the critical exponent γ is somewhat
larger, up to 4% from the analytically obtained values. See
Appendix A for a detailed discussion.
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FIG. 1. The mean cluster size S(D) obtained within cPY theory
as function of the scaled density η, defined as the number density
scaled with the volume of a D-dimensional sphere of diameter λ.

III. RESULTS AND DISCUSSION

Starting with our results for ideal, noninteractig frac-
tal particles (σ/λ = 0), Fig. 1 shows how according to
our calculations the mean cluster size S(D) depends on
the scaled density η ≡ 2πD/2(λ/2)Dρ/D�(D/2), for selected
dimensionalities D between 1.9 and 3.0. Here, ρ is the
number density of the ideal particles of “diameter” λ,
and 2πD/2(λ/2)D/D�(D/2) the volume of a D-dimensional
sphere with diameter λ. As the percolation threshold is the
scaled density for which the mean cluster size S diverges, we
deduce from Fig. 1 that within cPY theory this seems not to
occur for D � 2.

For D = 2, the mean cluster size grows exponentially up
to the largest density of 4.6 that in our calculations produce
a convergent cluster size. This, incorrectly, suggests that for
D = 2 it formally diverges at an infinite density. In this con-
text, it is useful to note that this should certainly happen
for D = 1. Indeed, the exact result for the cluster size in
one dimension reads S(1) = 2 exp η − 1. If we compare this
with the prediction of cPY theory, SPY(1) = (1 + η)2, then it
transpires that both remain finite at finite density but differ
considerably in functional form [33]. This calls into question
the validity of cPY theory for D � 2.

The obvious question that now arises is how well cPY fares
for D > 2. Fig. 1 suggests that for D > 2 the mean cluster
size diverges at a finite density. Indeed, the analytical solution
of cPY theory for σ/λ = 0 in the integer dimension D = 3
gives a percolation threshold of η = ηp = 1/2. For D = 5,
we find η = 3/2 − 5/6

√
3. The former overestimates Monte

Carlo simulation results [34] by almost 50%, while the latter
overestimates Monte Carlo results by about 4% [35]. In Fig. 2
we show our numerically obtained percolation threshold for
the cases σ/λ = 0 and 0.5 as function of the (fractal) dimen-
sion D, and compare these with simulation results for integer
dimensions D = 2 − 6. It shows that the presence of a hard
core does not appreciably affect the percolation threshold.

For D < 3, the percolation threshold increases sharply with
decreasing dimension, and appears to diverge upon approach
of D ↓ 2, although we have not been able to extract the per-
colation threshold for D < 2.25. This supports our previous
assessment based on Fig. 1. For integer D � 4, theory and

FIG. 2. The percolation threshold ηp as function of the spatial
dimension D for cherry-pit particles with σ/λ = 0 (black, plus
signs) and σ/λ = 1/2 (blue, crosses). The percolation threshold
is expressed as the number density scaled with the volume of a
D-dimensional sphere of diameter λ. Results obtained from Monte
Carlo simulations for σ/λ = 0 (red) are taken from Ref. [35], and
for σ/λ = 1/2 from Ref. [39,40] (green).

simulations agree almost quantitatively, with the percolation
threshold decreasing with increasing dimension. A decreasing
ηp with increasing D is to be expected if we take the perco-
lation threshold to be inversely proportional to the volume
available for two particles to remain connected [35–37]. To
leading order this gives ηp ∝ 2−D, which becomes exact in
infinite dimensions [37,38].

Having discussed our results for the percolation threshold
for ideal particles, we now extend our treatment to cherry-pit
particles. These results are summarized in Fig. 3. Shown in
Fig. 3(a) is the percolation threshold as function of the hard-
core fraction σ/λ for selected dimensions, and we highlight
the influence of the hard-core fraction on the percolation
threshold in Fig. 3(b), where we have scaled the percolation
threshold ηp to its value for σ/λ = 0.

We restrict ourselves to those results for which we can
pinpoint the percolation threshold accurately, that is, for D >

2.25. We notice that, starting at σ/λ = 0, the percolation
threshold decreases with increasing σ/λ albeit that the effect
is larger the smaller the dimensionality of space, which is
especially transparent in Fig. 3(b). However, for D � 2.5, we
find that the percolation threshold increases again, i.e., there
is a well-defined minimum for some value of σ/λ > 0 that
depends on the value of D.

For D = 2 and 3, this nonmonotonic behavior can be ex-
plained in terms of two counteracting many-body effects [41].
The first is connected with that fewer particles are, on average,
required to span a certain distance in the presence of a hard
core, and moreover these configurations are more probable
due to local crowding of particles around that hard core. This
effect decreases the percolation threshold. The second effect
is caused by the connectivity shell becoming smaller with
increasing value of σ/λ. The concomitant decrease in contact
volume increases the percolation threshold. The former ef-
fect predominates more strongly in lower dimensional spaces,
because the available “volume” per particle decreases with
decreasing dimensionality.
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FIG. 3. Left: The percolation threshold ηp, expressed as the number density scaled with the volume of a D-dimensional sphere of diameter
λ, as function of the hard core fraction σ/λ for spatial dimensions D = 2.3 (dots), 2.5 (crosses), 3.0 (triangle up), and 3.5 (triangle down).
Here, σ is the hard core diameter, and λ the diameter of the connectivity shell. The lines are a spline fit through the data as a guide for the eye.
Right: The same data with the percolation threshold scaled via ηp(σ/λ)/ηp(σ/λ = 0). The lines are a spline fit through the data as a guide for
the eye.

Of the findings presented in Fig. 3, only those for D = 3
allow for comparison with Monte Carlo simulations reported
on in the literature [40]. As is well known, cPY predictions
deviate by approximately 46% for σ/λ = 0, but the difference
decreases with increasing σ/λ down to 14% for σ/λ = 0.95.
Incidentally, for σ/λ > 0.95 percolation is preempted then by
a transition to a crystal phase [27,40]. If we stay below the
crystal transition, we expect cPY to be most accurate for small
connectivity ranges for all D > 1, not just D = 3. The reason
is that with increasing σ/λ, the cluster structure becomes
increasingly more tree-like [42]. Nevertheless, the observation
from Fig. 2 that the theory becomes less accurate for D < 3
generalizes for all 0 � σ/λ � 1.

Taking cPY at face value for all D and σ/λ, then both
Fig. 2 and Fig. 3 lead us to the conclusion that the per-
colation threshold must rise substantially upon approaching
two dimensions from above. Associated with this apparent
divergence in the percolation threshold, we find a divergence
of the critical exponent γ . Our most accurate estimate for γ

we obtain for the case σ/λ = 0 and is presented in Fig. 4.
We do not expect that a nonzero σ/λ changes this as the
cherry-pit and ideal models should be in the same universality
class [27,31]. Representative findings for σ/λ > 0, presented
in Appendix B, support this.

As is evident from Fig. 4, the critical exponent interpo-
lates continuously between the known cPY exponent in three
dimensions γ = 2 and the exponent γ = 1 obtained by us
for D = 5 (see Appendix C). It shows the same trend as the
results from Monte Carlo simulations, also indicated, where γ

increases with decreasing value of D. We note that the critical
exponent we find for D = 5 is the mean-field value, yet the
generally accepted upper critical dimension for both lattice
and continuum percolation is D = 6 [23].

The sharp rise of the critical exponent when the dimension-
ality of space drops below three contrasts with the simulation
results. In the inset of Fig. 4 we suggest that γ scales as γ =
2/(D − 2) for 2 < D < 3, which indeed points at γ diverging

for D → 2. Incidentally, a similar divergence is known to
occur in the spherical model of ferromagnetism [43]. This
strengthens our conclusion that cPY theory breaks down near
D = 2.

It is not clear exactly why cPY theory fails near two di-
mensions. Of course, we cannot exclude the possibility that it
is not cPY theory itself that lies at the root of the problem but
some numerical issue. Still, it should not come as a complete
surprise, because percolation is essentially a high-density
phenomenon as Fig. 2 also shows. For penetrable particles,
the actual fraction of the volume covered by particles at the
percolation threshold is φp = 1 − exp(−ηp) ≈ 0.67 in two
dimensions compared to φp ≈ 0.28 in three dimensions and
to φp ≈ 0.12 in four [23]. It follows that the long-ranged loop

FIG. 4. Main: The critical exponent γ within cPY theory both
numerically (black, plus signs) and theoretically (red, circles), and
from simulations (blue, crosses) [27,44]. Inset: The critical exponent
γ as function of the shifted dimension |D − 2|, where including the
scaling γ ∼ 2/(D − 2) (grey, dotted).
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connections that cPY theory neglects must become increas-
ingly important when lowering the dimensionality of space
[45]. There is no reason to suspect this not also to be true
for hard particles [39]. As is becoming increasingly clear,
closures that are accurate in the context of thermodynamic
liquid-state theory are not necessarily accurate in the context
of percolation, in particular in low-dimensional systems [46],
and that they have to be adapted for that purpose [45].

IV. CONCLUSIONS

In conclusion, we have investigated the geometrical perco-
lation transition in fractal liquids within a cherry-pit model
and applied for that the Percus-Yevick approximation. We
find that the continuum percolation threshold in noninteger
dimensions interpolates continuously between the integer-
dimensional values, and decreases with increasing dimension.
The same conclusion holds for the critical exponent γ , which
within Percus-Yevick theory attains its mean-field value in
five dimensions, below the generally accepted upper crit-
ical dimension of six. Interestingly, hard-core interactions
affect the percolation threshold only marginally, in particular
in higher-dimensional spaces. Below three dimensions, the
percolation threshold ηp as well as the critical exponent γ

diverge as D → 2. This contrasts with the known finite perco-
lation threshold and critical exponent for D = 2, and signifies
the breakdown of connectedness Percus-Yevick theory below
three dimensions.
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APPENDIX A: NUMERICAL SOLUTION STRATEGY

We determine the onset of a material-spanning cluster, i.e.,
the percolation threshold, as the number density ρ where the
mean cluster size

S = 1 + ρ lim
q→0

P̂(q) (A1)

diverges. Here, P̂(q) is the Fourier transform of the pair
connectedness function with q = |q| the magnitude of the
momentum transfer vector. The pair connectedness function
we obtain from the connectedness Ornstein-Zernike (cOZ)
equation

P(r) = C+(r) + ρ

∫
dDr′P(r′)C+(|r − r′|), (A2)

where r = |r| is the magnitude of the separation vector, C+(r)
the direct connectedness function, ρ the number density,
and D the (spreading) dimension. For nonideal particles, we
additionally require the liquid-state Ornstein-Zernike (OZ)
equation in order to obtain the radial distribution function g(r)

g(r) = 1 + c(r) + ρ

∫
dDr′[g(|r|) − 1]c(|r − r′|), (A3)

where c(r) the direct correlation function. For isotropic sys-
tems these equations reduce to algebraic equations in Fourier

space

P̂(q) = Ĉ+(q)

1 − ρĈ+(q)
(A4)

and

ĝ(q) = 1 + ĉ(q)

1 − ρĉ(q)
, (A5)

with q = |q| the magnitude of the momentum transfer vector.
Since the (connectedness) Percus-Yevick closure is im-

plemented in real space, our (iterative) numerical solution
strategy employs a spectral solver, which is based on the
generalized D-dimensional Hankel transform pair

f̂ (q) = (2π )D/2

qD/2−1

∫ ∞

0
drrD/2JD/2−1(qr) f (r), (A6)

f (r) = r1−D/2

(2π )D/2

∫ ∞

0
dqqD/2JD/2−1(qr) f̂ (q), (A7)

valid for a D-dimensional isotropic function f (r). Here,
JD/2−1(x) is the Bessel function of the first kind and order
D/2 − 1, which is analytic with respect to both D � 1 and
q, r > 0. The Hankel transforms are calculated using a sam-
pling technique based on a logarithmic grid [1,47–49], which
is equivalent to the approach by Heinen and co-workers [1].

We numerically solve the set of equations by a modified
Picard iteration, where we improve the stability of our nu-
merical solver using the modified direct inversion of iterative
subspace (MDIIS) approach [50]. To find the percolation
threshold, we initiate our solver for a given dimension D at
a sufficiently low density. Next, we incrementally increase
the density, solving the equations at every increment until
we reach a density where the solver does not converge to a
solution within 200 iterations. It turns out that this density
does not necessarily coincide with the percolation threshold,
and is therefore associated with limited convergence of our
numerical solver at high densities and close to the percolation
threshold. In spite of, we can still accurately extrapolate the
percolation threshold and determine the critical exponent of
the mean cluster size by fitting our numerical solution for the
mean cluster size to the scaling law

S ∼ |η − ηp|−γ , (A8)

with γ a critical exponent, η the scaled density, defined as the
number density scaled with the volume of a D-dimensional
sphere of diameter λ, and ηp the percolation threshold.

The accuracy of our numerical solutions we validate by
comparing our predictions with known analytical solutions of
the connectedness Percus-Yevick equations. Figure 5 shows
the relative error between our numerically obtained mean
cluster size S, and the known analytical results for D = 1, D =
3, and D = 5 for σ/λ = 0. Clearly, away from the percolation
threshold the error is negligible. Only near the percolation
threshold the errors increase sharply. This we associate to the
pair connectedness function P(r) becoming long-ranged near
the percolation threshold. We further note that we have also
compared our numerical results for D = 3 and 1/2 < σ/λ <

1 to the known analytical values, and find the agreement to be
similar as the D = 3, σ/λ = 0 case shown in Fig. 5 (data not
shown).
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FIG. 5. The error in our numerically obtained mean cluster size
S and the known analytic solution to cPY theory, as a function of
the scaled density η/ηm, where for D = 1, ηm is the highest density
our solver converges (ηm = 25), and for D = 3 and D = 5 ηm is the
percolation threshold ηm = ηp = 1/2 and ηm = ηp = 3/2 − 5/6

√
3,

respectively.

The aforementioned extrapolation procedure based on the
scaling relation is particularly relevant in low dimensional
spaces, where we find that distance between the percolation
threshold and the density up to which our solver converges
increases with decreasing dimension, as shown in Fig. 6. Our
extrapolation scheme works well only if we can approach the
percolation threshold sufficiently close. This appears to not be
the case for D < 2.25, where the procedure does not yield a
reliable result, suggesting that we are too far removed from
the percolation threshold for the scaling relation to be valid.

FIG. 6. The percolation threshold ηp as function of the spa-
tial dimension D for ideal particles with σ/λ = 0. The percolation
threshold is expressed as the number density scaled with the volume
of a D-dimensional sphere of diameter λ. Our numerical solutions are
shown in black. For D < 3 we include the convergence boundary of
our numerical solver, i.e., the highest density for which our numerical
solver remains stable and converges to a solution.

FIG. 7. The critical exponent γ within cPY theory as function
of σ/λ for D = 2.5 (cross), D = 3 (triangle-up), D = 3.5 (triangle-
down), D = 4 (plus), and D = 5 (dot).

APPENDIX B: UNIVERSALITY CLASS

The cherry-pit and ideal particle models are generally
assumed to be part of the same universality class within per-
colation theory [23]. Focusing on the mean cluster size critical
exponent γ only, analytical work shows that within cPY the-
ory, the ideal and cherry-pit particles in D = 3 indeed both
yield the same critical exponent [27,31]. We have numerically
extended this analysis to 2.5 < D < 5, the results of which
we summarize in Fig. 7. For D < 2.5, we have not been able
to accurately obtain the critical exponent for σ/λ �= 0. The
values that we find for the critical exponent for the case of
small connectivity range σ/λ > 0.9 we do not include in the
figure for all dimensions D. The reason is we find its value to
suddenly drop considerably, contradicting known analytical
results for D = 3 indicating that in this limit our predictions
might not be reliable.

From Fig. 7, we conclude that the critical exponent is
(nearly) independent of σ/λ, which strongly suggests that
the ideal and cherry-pit particle models are part of the same
universality class. The case for D = 2.5 might suggest that
the critical exponent slightly decreases with σ/λ. We note,
however, that this decrease also manifests itself for D > 2.5,
albeit to a lesser extent. However, since the analytical solu-
tions for the cherry-pit model in D = 3 have shown that the
critical exponent is constant irrespective of σ/λ, we associate
this with a (minor) error in our numerical solution.

APPENDIX C: ANALYTICAL SOLUTION

We are able to obtain the mean cluster size S for ideal
particles in five dimensions within cPY theory, using the
known connection between the isothermal compressibility for
hard particles and the mean cluster size for ideal particles
[51]. This result has, to our knowledge, not yet been reported
in literature. Starting from the analytical expression for the
compressibility derived in Ref. [52], we find the mean cluster
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size in five dimensions to obey the expression

S(D = 5) = 9(1 + η)6

f (η)(2 − 3η + √
f (η))

2 , (C1)

with f (η) = (1 − 18η + 6η2). The smallest real root of this
expression yields the percolation threshold and is given by

η = ηp = 3/2 − 5/6
√

3. We obtain the critical exponent γ

by expanding the mean cluster size S near the percolation
threshold, the lowest order term of this expansion yields

S(η → ηp) = 125(7
√

3 − 12)

72(η − ηp)
, (C2)

from which we conclude that γ = 1 in five dimensions.
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[12] E. C. Oğuz, M. Marechal, F. Ramiro-Manzano, I. Rodriguez, R.

Messina, F. J. Meseguer, and H. Löwen, Phys. Rev. Lett. 109,
218301 (2012).

[13] M. W. Maddox and K. E. Gubbins, J. Chem. Phys. 107, 9659
(1997).

[14] L. D. Gelb, K. Gubbins, R. Radhakrishnan, and M. Sliwinska-
Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

[15] C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.
Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, J.
Phys.: Condens. Matter 18, R15 (2006).

[16] D. de las Heras, E. Velasco, and L. Mederos, Phys. Rev. Lett.
94, 017801 (2005).

[17] Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Lett.
45, 855 (1980); Y. Gefen, A. Aharony, and B. B. Mandelbrot, J.
Phys. A: Math. Gen. 16, 1267 (1983); Y. Gefen, A. Aharony, Y.
Shapir, and B. B. Mandelbrot, ibid. 17, 435 (1984); Y. Gefen,
A. Aharony, and B. B. Mandelbrot, ibid. 17, 1277 (1984).

[18] A. L. Windus and H. J. Jensen, Physica A 388, 3107 (2009).
[19] V. Popa-Nita and S. Romano, Chem. Phys. 264, 91 (2001).
[20] L. Radzihovsky and J. Toner, Phys. Rev. B 60, 206 (1999).
[21] D. E. Feldman, Phys. Rev. Lett. 84, 4886 (2000).
[22] M. Hvozd, T. Patsahan, and M. Holovko, J. Phys. Chem. B 122,

5534 (2018).
[23] S. Torquato, Random Heterogeneous Materials: Microstructure

and Macroscopic Properties, Interdisciplinary Applied Mathe-
matics, Vol. 16 (Springer, New York, 2002).

[24] A. Coniglio, U. D. Angelis, and A. Forlani, J. Phys. A: Math.
Gen. 10, 1123 (1977).

[25] I. Balberg, J. Phys. D 42, 064003 (2009).

[26] G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani,
and P. Ryser, Phys. Rev. B 81, 155434 (2010).

[27] T. DeSimone, S. Demoulini, and R. M. Stratt, J. Chem. Phys.
85, 391 (1986).

[28] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids: With
Applications to Soft Matter, 4th ed. (Academic Press, Oxford,
2013).

[29] E. Katzav, R. Berdichevsky, and M. Schwartz, Phys. Rev. E 99,
012146 (2019).

[30] J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
[31] Y. C. Chiew and E. D. Glandt, J. Phys. A: Math. Gen. 16, 2599

(1983).
[32] Moreover, barring series-expansion-type closures, as far as we

are aware, all closures that predict a percolation threshold
reasonably well are of the Percus-Yevick-type, in which the
short-ranged restriction on C+(r) is modified [53]. It remains
unclear how to correctly extend this to arbitrary dimensions
without relying on ad hoc adjustable parameters.

[33] A. Drory, Phys. Rev. E 55, 3878 (1997).
[34] C. D. Lorenz and R. M. Ziff, J. Chem. Phys. 114, 3659 (2001).
[35] S. Torquato and Y. Jiao, J. Chem. Phys. 137, 074106 (2012).
[36] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys.

Rev. B 30, 3933 (1984).
[37] S. Torquato, J. Chem. Phys. 136, 054106 (2012).
[38] C. Grimaldi, Phys. Rev. E 92, 012126 (2015).
[39] S. B. Lee and S. Torquato, Phys. Rev. A 41, 5338 (1990).
[40] M. A. Miller, J. Chem. Phys. 131, 066101 (2009).
[41] A. L. R. Bug, S. A. Safran, G. S. Grest, and I. Webman, Phys.

Rev. Lett. 55, 1896 (1985).
[42] C. Grimaldi, J. Chem. Phys. 147, 074502 (2017).
[43] R. J. Baxter, Exactly Solved Models in Statistical Mechanics

(Academic Press, London, 1982).
[44] J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Phys. Rev. B

41, 9183 (1990).
[45] F. Coupette, R. de Bruijn, P. Bult, S. Finner, M. A. Miller, P.

van der Schoot, and T. Schilling, Phys. Rev. E 103, 042115
(2021).

[46] F. Coupette, A. Härtel, and T. Schilling, Phys. Rev. E 101,
062126 (2020).

[47] J. D. Talman, J. Comput. Phys. 29, 35 (1978).
[48] A. J. S. Hamilton, Mon. Not. R. Astron. Soc. 312, 257 (2000).
[49] M. Heinen, E. Allahyarov, and H. Löwen, J. Comput. Chem.

35, 275 (2014).
[50] A. Kovalenko, S. Ten-no, and F. Hirata, J. Comput. Chem. 20,

928 (1999).
[51] G. Stell, J. Phys. A: Math. Gen. 17, L855 (1984).
[52] E. Leutheusser, Physica A 127, 667 (1984).
[53] J. A. Given and G. Stell, in On Clusters and Clustering,

Random Materials and Processes, edited by P. J. Reynolds
(North-Holland, Amsterdam, 1993), pp. 357–372.

054605-7

https://doi.org/10.1103/PhysRevLett.115.097801
https://doi.org/10.1038/ncomms12520
https://doi.org/10.1016/j.cplett.2009.07.062
https://doi.org/10.1007/BF01028471
https://doi.org/10.1063/1.463883
https://doi.org/10.1088/0953-8984/17/45/037
https://doi.org/10.1103/PhysRevLett.61.1950
https://doi.org/10.1063/1.464994
https://doi.org/10.1103/PhysRevLett.81.1019
https://doi.org/10.1103/PhysRevLett.71.2595
https://doi.org/10.1103/PhysRevLett.101.187801
https://doi.org/10.1103/PhysRevLett.109.218301
https://doi.org/10.1063/1.475261
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0953-8984/18/6/R01
https://doi.org/10.1103/PhysRevLett.94.017801
https://doi.org/10.1103/PhysRevLett.45.855
https://doi.org/10.1088/0305-4470/16/6/021
https://doi.org/10.1088/0305-4470/17/2/028
https://doi.org/10.1088/0305-4470/17/6/024
https://doi.org/10.1016/j.physa.2009.04.008
https://doi.org/10.1016/S0301-0104(00)00340-2
https://doi.org/10.1103/PhysRevB.60.206
https://doi.org/10.1103/PhysRevLett.84.4886
https://doi.org/10.1021/acs.jpcb.7b11834
https://doi.org/10.1088/0305-4470/10/7/011
https://doi.org/10.1088/0022-3727/42/6/064003
https://doi.org/10.1103/PhysRevB.81.155434
https://doi.org/10.1063/1.451615
https://doi.org/10.1103/PhysRevE.99.012146
https://doi.org/10.1103/RevModPhys.48.587
https://doi.org/10.1088/0305-4470/16/11/026
https://doi.org/10.1103/PhysRevE.55.3878
https://doi.org/10.1063/1.1338506
https://doi.org/10.1063/1.4742750
https://doi.org/10.1103/PhysRevB.30.3933
https://doi.org/10.1063/1.3679861
https://doi.org/10.1103/PhysRevE.92.012126
https://doi.org/10.1103/PhysRevA.41.5338
https://doi.org/10.1063/1.3204483
https://doi.org/10.1103/PhysRevLett.55.1896
https://doi.org/10.1063/1.4991093
https://doi.org/10.1103/PhysRevB.41.9183
https://doi.org/10.1103/PhysRevE.103.042115
https://doi.org/10.1103/PhysRevE.101.062126
https://doi.org/10.1016/0021-9991(78)90107-9
https://doi.org/10.1046/j.1365-8711.2000.03071.x
https://doi.org/10.1002/jcc.23446
https://doi.org/10.1002/(SICI)1096-987X(19990715)20:9<928::AID-JCC4>3.0.CO;2-X
https://doi.org/10.1088/0305-4470/17/15/007
https://doi.org/10.1016/0378-4371(84)90050-5

