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By using Monte Carlo numerical simulation, this work investigates the phase behavior of systems of hard
infinitesimally thin circular arcs, from an aperture angle © — 0O to an aperture angle © — 27, in the two-
dimensional Euclidean space. Except in the isotropic phase at lower density and in the (quasi)nematic phase,
in the other phases that form, including the isotropic phase at higher density, hard infinitesimally thin circular

arcs autoassemble to form clusters. These clusters are either filamentous, for smaller values of 0, or roundish,
for larger values of 0. Provided the density is sufficiently high, the filaments lengthen, merge, and straighten
to finally produce a filamentary phase while the roundels compact and dispose themselves with their centers of
mass at the sites of a triangular lattice to finally produce a cluster hexagonal phase.
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I. INTRODUCTION AND MOTIVATION

Many aspects of the physics of [(soft-)condensed] states of
matter [1] can be fruitfully investigated by resorting to basic
simple systems of hard particles [2]. Such particles interact
between them solely via infinitely repulsive short-range inter-
actions preventing them from intersecting. Thus, entropy is,
on varying the number density p, the sole physical magnitude
that determines the phase behavior of such systems. Yet the
infinitely repulsive short-range interactions provenly suffice
for causing multiple fluid and solid states of matter to occur in
systems of particles interacting via them. This fact, together
with their omnipresence across length scales, justifies the
interest in systems of hard particles.

The hard sphere is basic to broad condensed matter and
statistical physics. Systems of hard spheres have been ex-
tensively investigated with different composition and under a
variety of conditions: A vast literature has been accumulated
[2].

In the course of the past 50 years, the investigation has been
progressively expanded to systems of hard nonspherical par-
ticles [2]. They form more complex instances of the fluid and
solid states of matter that systems of hard spheres already ex-
hibit [1,2] along with genuinely new plastic-crystalline [2,3]
and liquid-crystalline [1,2,4-6] states of matter. The investi-
gation on this progressively expanding variety of systems of
hard nonspherical particles has actually shown how finely the
hard-particle shape may determine the system phase behavior
[2].

The majority of these hard nonspherical particles are con-
vex [2]. If nonsphericity causes genuinely new states of matter
to occur, nonconvexity might promote special instances of
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fluid and solid states of matter. These states of matter might
be difficult to achieve or entirely precluded in systems of hard
convex (yet dexterously shaped) particles.

Out of the minority of hard concave particles that have been
considered thus far [7], one is the hard spherical cap(sid) [8].
It consists of that portion of a spherical surface in the three-
dimensional Euclidean space R? any arc of which subtends
an angle 0 € [0, 27t] [Fig. 1(a)]. These hard infinitesimally
thin curved particles interpolate between the hard infinitesi-
mally thin disk, corresponding to 6 = 0, and the hard sphere,
corresponding to 8 = 27t. In the preceding decade, systems
of hard spherical caps with 0 € [0, 1] were investigated [8].
Their phase behavior features purely entropy-driven cluster
columnar and cluster isotropic phases. Since similar, contact-
lens-like, colloidal particles have been synthesized [9], these
theoretical predictions could be experimentally tested.

Before complementing the investigation on systems of hard
spherical caps [8] by investigating systems of hard spheri-
cal capsids with 6 € (7, 271], it seems opportune to dedicate
the present investigation to the analogous two-dimensional
problem: The complete phase behavior of systems of hard
infinitesimally thin circular arcs in the two-dimensional Eu-
clidean space R? that subtend an angle 0 € [0, 27t] [Fig. 1(b)].
This class of hard curved particles interpolates between the
hard segment, corresponding to 6 = 0, and the hard circle,
corresponding to © = 271; it can be divided into the subclass
of hard infinitesimally thin minor circular arcs, from 6 = 0 up
to 0 = 7, and the subclass of hard infinitesimally thin major
circular arcs, from 6 = 7t up to 6 = 27t (Fig. 2).

In addition to the utility of addressing the same type of
physical problem across different dimensions, there is an-
other motivation to investigate the complete phase behavior
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FIG. 1. (a) In three dimensions, given a spherical surface (shaded
lighter gray), a spherical cap(sid) (shaded darker gray) is a portion of
it any arc of which subtends an angle 6. (b) In two dimensions, given
a circumference (dashed line), an arc (solid line) is a portion of it that
subtends an angle 0.

of systems of hard infinitesimally thin circular arcs. It is the
desire of exploring whether the recently constructed densest
known packings of hard infinitesimally thin major circular
arcs [10] or suboptimal versions of them can spontaneously
form. These densest known packings consist of compact cir-
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FIG. 2. Examples of circular arcs. They have the same length and
different subtended angle 6. Those in the top row are minor: (a) 6 =
0, (b) 0 = 7, and (c) 0 = 7t. Those in the bottom row are major:
(d) 6 =3m (e) 0 = 3m, and (f) 6 = 2.

cular clusters that comprise [11]
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(counter)clockwise intertwining, hard infinitesimally thin ma-
jor circular arcs and dispose themselves with their centers
of mass at the sites of a triangular lattice [10]. It should be
probed whether a similar cluster phase will finally emerge out
of a competition with the other phases that systems of hard
infinitesimally thin circular arcs form.

To characterize these phases, a set of order parameters
and correlation functions is considered (Sec. ITA). These
structural descriptors are calculated by statistically analyzing
the configurations that are saved and stored in the course
of isobaric(-isothermal) Monte Carlo numerical simulations
[12—14] (Sec. II B). One of the phases that the resulting phase
diagram features is that cluster phase. Provided p is suffi-
ciently high, it forms in systems of hard infinitesimally thin
(quasi)major circular arcs. This phase constitutes the spon-
taneous, though suboptimal, version of the densest known
packings that have been recently determined [10] (Sec. III).
While sketching this phase diagram, a few traits of the phases
that it features and of the transitions between them emerge that
would require as many dedicated theoretical investigations.
It is hoped that the present results stimulate these theoreti-
cal investigations along with the preparation of colloidal or
granular thin-circular-arc—shaped particles and the ensuing
experimental investigation of systems of them (Sec. IV).

II. METHODS
A. Order parameters and correlation functions

Certain order parameters and correlation functions are
ordinary and prefigurable based on the nonsphericity and
(generally' D) symmetry of the present hard particles and
the abundant previous work on systems of hard (non)spherical
particles [2].

The most basic correlation function is the positional pair-
correlation function which, in a uniform (or treated as if it
were such) system of N particles is usually indicated as g(r).
It can be defined as

11T LY
g(r) = ﬁ<5226<|rj—ri| —r>>, )
i=1 j#i
with () signifying a mean over configurations, 6( ) the usual
delta function, and r; the position of the centroid of particle
i; presently, this centroid coincides with the vertex of the
circular arc i (Fig. 3).

One order parameter that the symmetry of the present hard

particles simply suggests is the polar order parameter S;. It

can be defined as
_! (3)
=5 ,

1 <
S ==
N\ |4
with @; = (cos @;, sin ¢;) the unit vector along the symmetry

N N
> e
i=1

axis of the circular arc i (Fig. 3).

P

i=1

'Except for @ = 2, in which case it is O(2).
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FIG. 3. Example of a circular arc i (solid line) in a Cartesian
(x, y) reference frame with several quantities that define its mechan-
ical state and enter the definition of order parameters and correlation
functions: r;, the vector of the position of its vertex; @, the unit vector
of its orientation, which lies in the direction joining the center of its
parent circle with its vertex and forms an angle ¢; with the x axis;
and ¢;, the vector of the position of the center of its parent circle
(dashed line) whose radius is R.

The nonsphericity of the present hard particles suggests
the calculation of the nematic order parameter S,. It can be
defined as

S—l
Z_N.

N
E £2®i
i=1

1 N
J— - 0. .7 2 —
> = <N ?21 (2(; - 72) 1]>, “4)

with 71 the nematic director, i.e., the direction along which the
orientation of a circular arc more probably aligns [15].

The two order parameters S and S, would serve to estab-
lish whether and of which type a phase possesses orientational
order. In actuality, associated with each of these order param-
eters is an orientational pair-correlation function that provides
significantly more information. The two respective correlation
functions G, (r) and G, (r) are defined as

610 — <Zﬁil Y8 — x| = Plu(r) ﬁj<rj)]> s
1 S S =i =) ’
Gur) — <Z?’=1 YN 8= =) (20 (r,) - ﬁ,~<rj)]2—1}>
’ S T S(Ie =i =) .

(6)

Not only would the values of S| and S, be obtainable from
the r — oo limit of, respectively, G (r) and G,(r) but also the
calculation of orientational pair-correlation functions allows
one to more profoundly characterize the orientational order
of a phase. In fact, the possible tendency of two particles to
mutually align can be characterized for any distance separat-
ing them and the way by which that long-distance limit is
approached can be probed.”

2Higher-order orientational pair-correlation functions and their as-
sociated order parameters could be considered but, based on the

FIG. 4. Schematic illustration of a configuration of an idealized
prototypical version of the filamentary phase in a system of hard
infinitesimally thin minor circular arcs with, e.g., 6 = 1.

The possible formation of anisotropic phases suggests the
definition of additional orientational pair-correlation functions
whose argument is the interparticle distance vector that is re-
solved along a certain specific direction. In particular, one can
consider the orientational pair-correlation function g{{ ()
defined as

gfl’l(’l)
_ va:I Z_I,Y#,- d(Irj — ri—(rj—r;) - ;0| — r)[0;(r;) - G;(r;)]
Z?]:1 ZIJL,- S(Jrj—ri—(r;—r;) - G;ly;|—r1) '

(7

It probes the polar orientational correlations between two par-
ticles separated by a distance vector that is resolved along the
direction perpendicular to the orientation of one of them.

The particular nature of the present hard particles and the
fact that systems of them may form, in addition to the isotropic
and (quasi)nematic® phases, distinctive phases suggest special
order parameters and correlation functions.

The particular nature of the present hard particles suggests
probing the positional correlation between a pair of them in
terms of the centers of their parent circles. The definition of
the corresponding pair-correlation function G(c) parallels that
of g(r) in Eq. (2),

1 1N N
Gc) = N<5 DY ade — el - c)>, ®)

i=1 j#i

experience that was acquired with systems of hard spherical caps [8],
those of order 1 and 2 were considered sufficient. In addition, more
general orientational pair-correlation functions that depend not only
on the modulus but also on the direction of the interparticle distance
vector could be profitably considered.

3The prefix (quasi) is added to indicate that, in a two-dimensional
system, a proper long-range nematic ordering, like any other proper
long-range ordering, would not exist.
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FIG. 5. Schematic illustration of a configuration of an idealized
prototypical version of a cluster hexagonal phase in a system of
hard infinitesimally thin major circular arcs with, e.g., 6 = 1.3t =
4.084 . ... Roundish clusters of hard infinitesimally thin major cir-
cular arcs dispose themselves with their centers of mass at the sites
of a triangular lattice. The hard infinitesimally thin major circular
arcs are with, e.g., 0 = 1.3t = 4.084 . . ., so each roundish cluster is
composed of a maximum of n = 6 of them (see Eq. (1) and [11]).
The hard infinitesimally thin major circular arcs are purposely struc-
turally organized in an expanded configuration to aid the appreciation
of their (counter)clockwise vortical structural organization. Towards
the densest known packings, each roundish cluster progressively con-
tracts and the triangular-lattice spacing consequently decreases up to
a point that hard infinitesimally thin major circular arcs essentially
are on the same circumference and the triangular-lattice spacing is
equal to 2R.

with ¢; the position of the center of the parent circle of particle
i (Fig. 3).4

In analogy with the phase behavior of hard spherical caps
with 0 € [0, 7] [8(b)], systems of hard infinitesimally thin
minor circular arcs may form a filamentary phase (Fig. 4). In
a filament of this phase, the hard infinitesimally thin minor
circular arcs tend to organize on the same semicircumfer-
ence with the centers of the parent circles that subsequently
and randomly file; a single filament is thus polar. Different
filaments of this phase may dispose themselves in a row
along a direction approximately perpendicular to the filament
axis, separated by a distance approximately equal to 2R and
oriented (anti)parallel to adjacent filaments; the filamentary
phase is (more probably) nonpolar. If particularly preceded
by a (quasi)nematic phase, the formation of this phase can be
revealed by a decrease in the values of S,. More generally, its
formation can be revealed by the appearance of oscillations in
the Q}A‘, | (r1) and a sequence of equispaced peaks in the g(r)
and G(¢).

The structure of the densest known packings of hard in-
finitesimally thin major arcs [10] suggests a suitably modified
hexatic bond-orientational order parameter. These densest
known packings and the corresponding cluster hexagonal
phase have a two-level structural organization (Fig. 5). On
the first level, a maximum of n (see Eq. (1) and [11]) hard
infinitesimally thin major circular arcs form roundish clus-
ters that are reminiscent of a vortex. On the second level,

“Orientational pair-correlation functions similar to Egs. (5) and (6)
could be defined in terms of the centers of the parent circles, but their
calculation was omitted.

these roundish clusters organize in configurations that are
reminiscent of the densest configuration of hard circles [16].
This second-level structural organization suggests a hexatic
bond-orientational order parameter . It is defined as

1
Pe = </T/ > &)

with A/ the number of roundish clusters; n.i.; the number
of vicinal roundish clusters j of a certain roundish cluster i,
defined as those roundish clusters j whose centers of mass
are within a prefixed distance from the center of mass of the
roundish cluster i; and @;; the angle that the fictitious “bond”
between the roundish clusters i and j forms with an arbitrary
fixed axis. The application of this order parameter naturally
presupposes that sufficiently compact and numerous roundish
clusters are at least incipient. This can be detected by G(c)
via a peak at ¢ = 0. Further growth of this peak, together with
the growth of the peak at ¢ = 2R and the progressive split of
the peak at ¢ >~ 4R, reveals that the processes of formation of
roundish clusters and of their hexagonal structural organiza-
tion are consolidating.

N 1 Nyicj

2

i=1 VICI

ei6(Pif

j=1

B. Monte Carlo numerical simulations

Systems of hard infinitesimally thin circular arcs were in-
vestigated by the Monte Carlo (MC) [12-14] method in the
isobaric(-isothermal) (NPT) [13,14] ensemble. The number
of particles usually was N = 600, although larger values of N
were also considered such as N = 5400 for various values of
0 and occasionally N = 6400 in the limit & — 0. The N hard
infinitesimally thin circular arcs were placed in an either rect-
angular or parallelogrammatic variable container. The usual
periodic boundary conditions were applied. The pressure P
was measured in units of kg7 ¢~2, with kg the Boltzmann
constant, 7 the absolute (thermodynamic) temperature, and
£ = OR the length of a circular arc. For any value of 0 that
was investigated, many values of the dimensionless pressure
P* = P¢?/(kgT) were considered. For any value of these, the
initial configuration was either a (dis)ordered configuration
that was constructed ad hoc or a configuration that was pre-
viously generated in a MC calculation at a nearby value of
0 or P*. From the initial configuration, the MC calculations
(sequentially) proceeded. Successive changes were attempted.
Each of them was randomly chosen among 2N + 1 possibil-
ities: With probability N/(2N + 1), a random translation of
the centroid of a randomly selected particle; with probability
N/(2N + 1), a random rotation of the symmetry axis of a
randomly selected particle; and with probability 1/(2N + 1),
a modification of one randomly selected side of the container.
The (pseudo)random number generator that was employed
was one that implements the Mersenne Twister mt 19937 algo-
rithm [17]. These changes were accepted if no overlap resulted
or rejected otherwise. The acceptance of a change in the shape
and size of the container was further subject to the Metropolis-
like criterion that characterizes the MC method in the NPT
ensemble [13,14]. For any specific values of 6 and P*, the
maximal amounts of change were adjusted so that 20-30%
of each type of change could be accepted; these adjustments
were carried out in the course of exploratory MC calculations;
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the maximal amounts of change were not altered in the course
of subsequent MC calculations that were conducted at those
specific values of 6 and P*. To improve on the efficiency of
the MC calculations, neighbor lists or linked-cell lists were
employed (see [14], particularly [14(a)]). In both cases, the
operative parameter was 7y = 4R sin(0/4), which is the min-
imal distance at which two hard infinitesimally thin circular
arcs do not overlap, irrespective of their mutual orientation. In
the case of neighbor lists, the list of neighbors of a particle i
comprised those particles j whose distance from the centroid
of i was smaller than rey + Fskin; 7skin Was that distance that
had been selected in the course of exploratory MC calcula-
tions as the one that provided the largest efficiency. Neighbor
lists were automatically updated as soon as [Fgin — 2dmax K <
Feut(1 — K); dimax Was the maximum among the particle dis-
placements since the last update of the neighbor lists; k was
the ratio between the new and old values of the length of the
modified side of the container. In the case of linked-cell lists,
generally rectangular cells were constructed whose minor side
was at least equal to r.y so that the largest possible number of
cells could be obtained. Linked-cell lists were automatically
updated as soon as, following a change in the side of the
container, either the minor side of a cell became smaller than
reut and thus a smaller number of cells had to be considered
or it became sufficiently larger than ry, to allow for more
cells to be considered. For any specific values of 0 and P*,
exploratory MC calculations were conducted to decide which
type of lists led to the largest efficiency; neighbor (linked-cell)
lists were usually more efficient at higher (lower) density,
where the particle mobility was relatively small (large). It
was also attempted to combine neighbor lists with linked-cell
lists but to no avail: Efficiency did not significantly improve
with respect to separately considering the sole neighbor lists
or linked-cell lists. The MC calculations were organized in
cycles, each of these comprising 2N + 1 attempts of a change.
For any specific values of 6 and P*, the MC calculations
were subdivided into an equilibration run and a production
run. Usually, an equilibration run lasted 107 cycles, while
the subsequent production run lasted as many cycles. In the
course of the production runs, one of every 10* configurations
was saved and stored for the subsequent statistical analysis.
This statistical analysis comprised the calculation of the mean
number density (p), p being measured in units £2 so that
the dimensionless number density is p* = p¢? and its mean
(p*) = (p)£? and the calculation of the order parameters and
correlation functions that are described in Sec. II A; the er-
rors in (p*) and in the order parameters were estimated by a
habitual blocking method [18].

III. RESULTS

A. Description

By combining the equation of state and the set of order
parameters and correlations functions (Sec. I A) and with the
aid of the visual inspection of configurations, four (distinctive)
phases have been identified. On varying p and 6, in addition to
(1) a (quasi)nematic phase, systems of hard infinitesimally thin
circular arcs can form (ii) a (cluster) isotropic phase where, if
p is sufficiently high, either filamentous or roundish clusters of

0.2 —
0.15 4 I
1 8 isotropic L
- T [
~=0.1 g P
~ & 7T i -
: ; __: i 777777 i cluster hexagonal : .." :
0.05 L | g
filamentary i i B
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FIG. 6. Phase diagram of systems of hard infinitesimally thin
circular arcs in the plane aperture angle 0 versus the inverse of
the dimensionless number density 1/p*. Black circles correspond to
the original data that have been acquired from the MC numerical
simulations, while the solid lines that transverse them are guides
to the eye. The gray region on the left is the coexistence region
that separates the filamentary phase from either the isotropic phase
or the cluster hexagonal phase. The hatched regions on the right
are those regions that are effectively or theoretically prohibited as
they correspond to values of number density that are higher than
the values of number density of the effective or theoretical densest
(known) packings: The uppermost monotonic curve that transverses
the relevant black circles and delimits the extra region that is hatched
with oblique lines from top-left to bottom-right corresponds to the
effectively densest packings whose number density has been ac-
quired from the MC numerical simulations; the lower zigzagging
curve that delimits the region that is hatched with oblique lines from
bottom-left to top-right corresponds to the theoretical densest known
packings [10,11]. The two dotted lines towards the hard-circle limits
indicate the two possible scenarios of the isotropic-cluster hexagonal
phase transition line while approaching that limit. The three dashed
rectangles enclose the most delicate regions of the phase diagram.

hard infinitesimally thin circular arcs are recognizable; (iii) a
filamentary phase as schematically depicted in Fig. 4; and (iv)
a cluster hexagonal phase as schematically depicted in Fig. 5.
The regions that the four phases occupy in the © versus 1/p*
plane, together with the curves that delimit them, configure
the phase diagram in Fig. 6. In describing this phase diagram,
it is convenient to subdivide it into four 8-dependent sections:
MHOLBST. DT S0<m(3)0~mand(4)0 > .

L Section0 <0< %

The left-handed side of this section corresponds to the
phase behavior of systems of hard segments. The numerical
simulation data for this basic reference system were usually
interpreted as inconsistent with a second-order isotropic-
nematic phase transition that the application of a second-virial
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(Onsager [19]) density functional theory would predict [20].
They were usually interpreted as consistent with the exis-
tence of an isotropic-(quasi)nematic phase transition of the
Berezinskii—Kosterlitz-Thouless [21-24] type [25-27]. One
interpretation that essentially maintains both of these, usually
mutually exclusive, interpretations was also proposed [28]. In
an infinite periodic system, the S-shaped curve of S, versus p
is suggestive of an isotropic-nematic phase transition. In three
dimensions, it would be indeed taken as a signature of such
a phase transition. In two dimensions, it is instead considered
insufficient. This insufficiency is based on assuming that basic
analytic results for specific two-dimensional systems [29,30]
have to also preclude a proper long-range nematic ordering in
a two-dimensional system, even though those analytic results
were found inapplicable to a two-dimensional nematic phase
that is formed in a realistic system of particles interacting
via nonseparable interactions as hard particles are [31]. Based
on that paradigm, S, of an infinite (thermodynamic) system
would be equal to zero at all values of p. For this reason,
one should turn to explicitly considering G,(r) and its long-
distance behavior. The latter distinguishes the two phases at
either side of a phase transition of the Berezinskii—Kosterlitz-
Thouless type: In the isotropic phase, G,>(r) decays to zero
exponentially; in the (quasi)nematic phase, G,(r) decays to
zero algebraically. Even though past and present numerical
simulation data seem to be consistent with this scenario, the
limited size of the systems that are considered in these numer-
ical simulations cannot afford to clearly and unambiguously
discern the characteristics of the long-distance decay. It is
difficult to extrapolate to a very long distance the behavior
of a correlation function that is known up to a decade of
distance units. Based on this modest distance interval, it is
difficult to affirm what the best-fitting function is overall. It
seems that, for sufficiently large values of p, an algebraic
fitting function outperforms an exponential fitting function.
However, other fitting functions could perform even better;
e.g., a stretched-exponential function fares at least as well as
an algebraic function.

Based on these considerations, the attitude of this work is
very pragmatic. In analogy to previous works [25,26], G»(r)
has been fitted to either an exponential or algebraic function.
The value of p at which the latter fitting function seems to
outperform the former fitting function is taken as the value
that delimits the isotropic phase and the (quasi)nematic phase.
This is done without claiming it as objectively supporting a
phase transition of the Berezinskii—Kosterlitz-Thouless type
while conceding the present impossibility to more profoundly
investigate the nature of the two-dimensional nematic phase
and of the transition that separates it from the isotropic
phase.

In a system of hard infinitesimally thin minor circular arcs
with 8 = 0.25, the isotropic and (quasi)nematic phases are the
sole phases that have been observed in the interval of values
of P that has been presently investigated. Hard infinitesimally
thin minor circular arcs with 8 = 0.5 are instead sufficiently
curved for another, denser and arguably more interesting,
phase to succeed the (quasi)nematic phase already in the
interval of values of P that has been presently investigated.
This phase transition is revealed by a bent in the equation of
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FIG. 7. (a) Equation of state P* versus (p*) and (b) nematic
order parameter S, versus (p*) for a system of hard infinitesimally
thin circular arcs with = 0.5. The dashed vertical line on the left
separates the isotropic phase and the (quasi)nematic phase, while the
dashed vertical line on the right separates the (quasi)nematic phase
and the filamentary phase.
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state and a decrease in the values of S, (Fig. 7). These two
signs are accompanied by a significant change in the long-
distance behavior of G,(r). On going from the lower-density
phase to the higher-density phase, the long-distance behavior
of G,(r) seems as if it reverts to that in the isotropic phase:
No remnant of a possible algebraic decay remains [Fig. 8(a)].
One can appreciate that the phase that spontaneously forms at
larger values of p is the filamentary phase [Figs. 8(b)—(d)]. In
fact, this phase is characterized by hard infinitesimally thin
minor circular arcs tending to organize on the same semi-
circumference; in turn, these generated semicircular clusters
file to generate filaments; and in turn these filaments tend to
mutually organize side by side and up side down [Fig. 8(d)].
Consistently, '1‘ | (r1) exhibits a short-distance oscillatory be-
havior with a period approximately equal to 2R [Fig. 8(e)]. It
is conceivable that the filamentary phase also forms in systems
of hard infinitesimally thin minor circular arcs with 6 < 0.5
at increasingly higher density and pressure than those that
have been presently investigated. By the concomitant action
of both the isotropic phase at lower p and the filamentary
phase at higher p, the number density interval in which the
(quasi)nematic phase exists precipitously contracts as 6 in-
creases until this phase disappears at 0 ~ 7.
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FIG. 8. (a) Orientational pair-correlation function G,(r) in the
isotropic phase at P* = 10 (dotted line), (quasi)nematic phase at
P* = 35 (dashed line), and filamentary phase at P* = 45 (solid line).
Also shown are images of a configuration in the (b) isotropic phase
at P* = 10, (c¢) (quasi)nematic phase at P* = 35, and (d) filamentary
phase at P* = 45. (e) Orientational pair-correlation function gf'_ RG]
in the isotropic phase at P* = 10 (dotted line), (quasi)nematic'phase
at P* = 35 (dashed line), and filamentary phase at P* = 45 (solid
line).
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2. Section T S0 <

In this section the isotropic and filamentary are the sole
phases that are observed. These two phases are separated by
a first-order phase transition whose strength increases with
increasing 0. This is revealed by the behavior of the equa-
tion of state [Fig. 9(a)]. The S, concurs to reveal this phase
transition: S, exhibits a surge in correspondence to the values
of p at which the phase transition occurs; the values that this
order parameter takes in the filamentary phase are signifi-
cantly smaller than those typical of a (quasi)nematic phase
[Fig. 9(b)]. In fact, in an idealized prototypical filamentary
phase as schematically depicted in Fig. 4, the S, would take
a value equal to S"'éef;"). The structural differences that occur
on going from the isotropic phase to the filamentary phase are
revealed by the various pair-correlation functions (Fig. 10).
In particular, G(c) peaks at ¢ = 2R and 4R [cf. Figs. 10(a)
and 10(b)], while gf{  (r1) becomes oscillatory with a period
equal to 4R [cf. Figs. 10(e) and 10(f)]. On increasing 0, as the
transition to the filamentary phase is approached, the isotropic
phase passes from being ordinary to exhibiting clusters. These
clusters are made of hard infinitesimally thin circular arcs that
tend to organize on the same semicircumference and then file
to generate filaments that are of varying length, degree of ram-
ification, and tortuosity [inset in Fig. 10(c)]. The progressive
straightening of the equation of state is a symptom of the
formation of these “supraparticular” structures that precurse
a proper filamentary phase. On increasing 0, in the same
filamentary phase, the filaments tend to be more tortuous and
it is increasingly more frequent to observe ramifications and
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FIG. 9. (a) Equation of state P* versus (p*) and (b) nematic
order parameter S, versus (p*) for a system of hard infinitesimally
thin circular arcs with © = 1.8. In both panels, closed circles cor-
respond to data that were obtained by progressively compressing
the system from an initial dilute and disordered configuration, while
open circles correspond to data that were obtained by progressively
decompressing the system from an initial filamentary configuration
like that schematically depicted in Fig. 4. The two dashed vertical
lines separate the isotropic phase and the filamentary phase.

ruptures. These ramifications and ruptures are provoked by
hard infinitesimally thin circular arcs that tend to dispose in
an antiparallel configuration [inset in Fig. 10(d)].

3. Section © ~ 1

In this section, a new, arguably most interesting, phase
appears in between the isotropic phase and the filamentary
phase: the cluster hexagonal phase. In the isotropic phase, the
tendency that filamentous clusters have to break and close
up increases up to conducing to the formation of roundish
clusters. This occurs up to a point that the roundish clusters
become sufficiently compact and numerous and their num-
ber sufficiently large to organize in a triangular lattice. The
formation of this cluster hexagonal phase, which prevents
the spontaneous formation of the filamentary phase, can be
revealed by examining the equation of state: It corresponds to
a tenuous surge in its graph that is recognizable at values of
p* >~ 20 [Fig. 11(a)]. While S, is unable to reveal this phase
transition [Fig. 11(b)], better evidence of a transition between
the isotropic phase and the cluster hexagonal phase is nonethe-
less acquired by examining the dependence of \g on p: This
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FIG. 10. Shown for a system of hard infinitesimally thin cir-
cular arcs with 8 = 1.8 in the isotropic phase at P* =40 and in
the filamentary phase at P* = 53, respectively, are (a) and (b) the
positional pair-correlation function G(c), (c¢) and (d) the orienta-
tional pair-correlation function G,(r), and (e) and (f) the orientational
pair-correlation function gﬁ 1 (r1). The inset in (c) is an image of a
configuration in the isotropic phase at P* = 40, while the inset in
(d) is an image of a configuration in the filamentary phase at P* = 53.

order parameter exhibits a clear surge in correspondence to
the isotropic-cluster hexagonal phase transition [Fig. 11(c)].
The S, can instead distinguish between the cluster hexagonal
phase and the filamentary phase: Since the roundish clusters
are overall isotropic, S, (effectively) vanishes in the cluster
hexagonal phase as it does in the isotropic phase; since the
structural units of the filamentary phase are formed by a pro-
gressively smaller number of hard infinitesimally thin minor
circular arcs as 0 — 1, S, is increasingly significantly larger
than zero in the filamentary phase [Fig. 11(b)]. The two cluster
phases are separated by a first-order phase transition. The
structural differences among the three phases are revealed by
the various pair-correlation functions and evidenced by the
corresponding images of a configuration (Fig. 12). Based on
these images, one can note the similarity between the struc-
tures of the isotropic phase and of the cluster hexagonal phase
which contrast with the structure of the filamentary phase.
This (dis)similarity among the three phases is reflected in the
graphs of the various pair-correlation functions (Fig. 12).

4. Section 6 > T

The fact that 0 surpasses the intermediate value of 7t is very
consequential. It was already observed that two hard infinites-
imally thin major circular arcs that are disposed on top of one
another cannot be superposed; they can only be superposed
if they are suitably rotated with respect to one another in a
way that, once it is exactly replicated n (see Eq. (1) and [11])
minus two times, conduces to the formation of those compact
circular clusters that characterize the corresponding densest
known packings [10]. This fact significantly destabilizes the
filamentary phase with respect to the cluster hexagonal phase:
The former phase precipitously disappears, leaving the latter
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FIG. 11. (a) Equation of state P* versus (p*), (b) nematic order
parameter S, versus (p*), and (c) hexatic order parameter ¢ versus
(p*) for a system of hard infinitesimally thin circular arcs with 8 = 3.
In (a) and (b) closed circles correspond to data that were obtained
by progressively compressing the system from an initial dilute and
disordered configuration, while open circles correspond to data that
were obtained by progressively decompressing the system from an
initial filamentary configuration like that schematically depicted in
Fig. 4. In the three panels, the vertical dotted line separates the
isotropic phase and the cluster hexagonal phase, while the two
vertical dashed lines separate the cluster hexagonal phase and the
filamentary phase.
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phase as the sole observable phase at sufficiently high p. The
cluster hexagonal phase is separated from the isotropic phase
by a transition whose weakness presently makes it impossible
to assess whether it is either (more probably) first order or
second order. This phase transition is revealed by a visually
recognizable change in the graph of the equation of state
[Fig. 13(a)]. This change may be made clearer by plotting

2
the effective packing fractionn* = npgf@) with respect to the

inverse compressibility factor ¢ = g—: [Fig. 13(b)]. One further
revealer of the formation of a cluster hexagonal phase is again
Pg: It exhibits a surge in correspondence to (p*) ~ 12, the
value of (p*) at which the isotropic-cluster-hexagonal phase
transition occurs [Fig. 14(a)]. In addition, the form of g(r)
and G(c) passes from being fluidlike [Figs. 14(b) and 14(c)]
to being crystallinelike [Figs. 14(d) and 14(e)].

In the graphical representation of Fig. 13(b), one can ob-
serve that the cluster-hexagonal-phase branch is, to a good
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FIG. 12. Shown for a system of hard infinitesimally thin circu-
lar arcs with © = 3 in the isotropic phase at P* = 25, the cluster
hexagonal phase at P* = 34, and the filamentary phase at P* = 34
are (a) the positional pair-correlation function g(r); (b) the positional
pair-correlation function G(c); (c)—(e) image of a configuration in the
(c) isotropic phase, (d) cluster hexagonal phase, and (e) filamentary
phase; (f) the orientational pair-correlation function G, (r); (g) the
orientational pair-correlation function G, (r); and (h) the orientational
pair-correlation function gf{ 1 (r1). In (a), (b), and (f)—(h), the dotted,
solid, and dashed lines represent the isotropic, cluster hexagonal, and
filamentary phases, respectively.

approximation, linear. This is consistent with the applicability,
also to the present case, of a suitably adapted version of the
free-volume theory [32]. This theory is known to provide a
good description and interpretation of the equation of state
of a dense solid phase in a system of hard particles [32,33].
In an equilibrium system of hard circles (disks), the linear
extrapolation of the high-density solid-branch curve would
intersect the ordinate axis at a value equal to 1. The lin-
ear extrapolation of the high-density solid-branch curve in a
system of hard infinitesimally thin major circular arcs with
0 = 1.1t =3.455... intersects the ordinate axis at a value
approximately equal to 6.5 [Fig. 13(b)]. This value corre-
sponds to the mean value (n) of the hard infinitesimally thin
major circular arcs with 6 = 1.1t = 3.455... per roundish
cluster. This is confirmed by a more direct calculation of (n).
It ensues from the calculation of the probability distribution
‘P of the number 7 of hard infinitesimally thin major circular
arcs per roundish cluster: P(n) [Fig. 15(a)]. The value of
(n) increases with (p*) in the isotropic phase until it flatly
levels up as the system enters the cluster hexagonal phase
[Fig. 15(b)]. The limit value (n) =~ 6.5 in the cluster hexagonal
phase is smaller than n = 19 (see Eq. (1)] and [11]) [10]. This
means that the cluster hexagonal phase that spontaneously
forms from the isotropic phase is a suboptimal version of
these densest known packings. This is comprehensible as the
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FIG. 13. Equation of state (a) in the representation P* versus (p*)
and (b) in the representation n* versus ( for a system of hard in-
finitesimally thin circular arcs with 8 = 1.17t = 3.455. ... In (a) the
vertical dashed line and in (b) the horizontal dashed line separate the
isotropic phase and the cluster hexagonal phase; in (b) the dotted
line is a linear fit extrapolation of the higher-density part of the
solid-phase branch.

phase transition occurs at a value of (p*) >~ 12 that is still
relatively small [Fig. 15(b)]. Yet the subsequent constancy of
(n) with (p*) [Fig. 15(b)] raises two questions as to whether
the densest known packings could ever spontaneously form on
progressive compression and whether the cluster hexagonal
phase that spontaneously forms from the isotropic phase could
ever be an equilibrium phase. The importance and relevance
of these questions also emerge from investigating systems
of hard infinitesimally thin major circular arcs with a larger
value of 0. In these cases, more than one cluster hexagonal
phase branch can be observed; these are separated by what
would seem to be a first-order phase transition [Fig. 16(a)].
Such a discontinuous phase behavior can be also appreciated
by examining the evolution of p* in the course of a Monte
Carlo numerical simulation: An abrupt jump in the values
of p* is frequently observed [Fig. 16(b)]. This is due to the
roundish clusters that are progressively reorganizing in such a
way that they incorporate, on average, more constituting hard
infinitesimally thin circular arcs: In correspondence to the rise
in the values of p* there is a momentary fall in the values of
V; this suggests a momentary reorganization of the system
that allows the incorporation of more hard infinitesimally thin
circular arcs into the same roundish cluster(s) [Fig. 16(c)]. The
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FIG. 14. Shown for a system of hard infinitesimally thin circular
arcs with 6 = 1.1t = 3.455. .. are (a) the order parameter s as
a function of number density (p*), where the vertical dashed line
separates the isotropic phase and the cluster hexagonal phase, and
(b)—(e) the pair-correlation functions g(r) and G(c) in (b) and (c) the
isotropic phase at P* = 56.7 and (d) and (e) in the cluster hexagonal
phase at P* = 128.4.

lower-density branch directly forms from the isotropic phase
[Fig. 16(a)]. If pressure is sufficiently high, then it transforms
into the higher-density branch after many MC cycles (Fig. 16).
From that value of pressure, the higher-density branch can
be continued up to higher pressure and down to lower pres-
sure [Fig. 16(a)]. One may assess the lower-density branch
in Fig. 16(a) as an enduring metastable branch. However,
the same assessment is applicable to the unique branch that
is observed in Fig. 13 and to the higher-density branch in
Fig. 16(a) with respect to other, hypothesizable, even higher-
density branches that insufficiently lengthy MC numerical
simulations prevent from observing. Continuous incorpora-
tion and release of hard infinitesimally thin circular arcs into
or from roundish clusters are necessary to spontaneously at-
tain and maintain an equilibrium P(n). In a cluster hexagonal
phase, it is conceivable that the mechanisms of incorporation
and release become increasingly less effective as p increases.
Based on Figs. 13, 15, and 16, it is presently unclear how
an equilibrium cluster hexagonal phase should proceed to-
wards the densest known packing limit: either continuously,
via a gradual modification of P(n), or discontinuously, via
a sequence of isostructural first-order phase transitions, each
phase at either side of the phase transition being a cluster
hexagonal phase with its own P(n). The discontinuous be-
havior that is observed may well be an artificial effect due to
the finite size of the systems that are considered in the MC
numerical simulations, which is further exacerbated by the
(always looming) insufficiency of their duration.

On progressive compression from the isotropic phase, the
capability that hard infinitesimally thin major circular arcs
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FIG. 15. (a) Probability distribution function P of the number
n of hard infinitesimally thin circular arcs per roundish cluster for
a system of hard infinitesimally thin circular arcs with 6 = 1.1t =
3.455... at P* = 128.4. (b) Mean value (n) of the number of hard
infinitesimally thin circular arcs per roundish cluster as a function of
(p*) for a system of hard infinitesimally thin circular arcs with 6 =
1.1t = 3.455.... The vertical dashed line separates the isotropic
phase and the cluster hexagonal phase.

have to intertwine in roundish clusters persists up to values
of 0 almost equal to 27t: For a value of 0 as large as 1.9 =
5.969. .. a vast majority of dimers are observed. This capabil-
ity should deteriorate as the value of 0 is further increased: In
the very close neighborhood of 8 = 27, a more even mixture
of monomers and dimers is expected, with the former pro-
gressively becoming more abundant as the hard-circle limit
is approached. In the hard-circle limit, the system is clearly
formed by single hard circles. However, it is probable that this
limit should be considered as a singular limit. This hypothesis
relies on the densest known packings being formed by dimers
that dispose themselves with their centers of mass at the sites
of a triangular lattice for any value of © < 27t [10]. In the ther-
modynamic limit at very high density, the stablest structures
should correspond to these densest known packings for any
value of 6 < 27t [10].

B. Discussion

In discussing the phase diagram that has been described,
there are several comparisons to be made and connections to
be established with previous works.

Section 1 resembles the phase diagram of a generalized
planar rotor spin system on a square lattice. In this system,
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FIG. 16. Shown for a system of hard infinitesimally thin circular
arcs with 0 = 1.4t =4.398--. are (a) the equation of state P*
versus (p*) (note that there are two cluster-hexagonal branches),
where the vertical dashed line separates the isotropic phase and the
lower-density cluster-hexagonal phase, the inset on the bottom left is
an image of a configuration taken at P* = 77.4 in the lower-density
cluster-hexagonal branch, and the inset on the top right is an image
of a configuration taken at P* = 232.1 in the higher-density cluster-
hexagonal branch; (b) the evolution of the number density p* at
P* =77.4 as a function of MC cycles; and (c) the evolution of the
order parameter ) at P* = 77.4 as a function of MC cycles.

the interaction of a spin i with its nearest-neighbor spin j
comprises the (ferromagnetic or) polar term, proportional
to cos(@; — @;), and the (generalized) nematic term, pro-
portional to cos[g(¢@; — @;)], with g = 2, 3,4 [34-37]. This
resemblance is made once the low-density isotropic (high-
density filamentary) phase in the present off-lattice systems
is associated with the high-temperature paramagnetic (low-
temperature ferromagnetic) phase in those on-lattice systems.
In both types of systems, a (quasi)nematic phase exists in
between the other two respective phases. Its stability in-
terval diminishes as either 0 increases or the polar term
proportional to cos(¢@; — @;) prevails, respectively. However,
this resemblance may be solely qualitative and a possi-
ble correspondence between the two types of systems may
immediately end. Even though sharing the same rotational
symmetry, investigations on on-lattice systems of spins inter-
acting with a potential energy U of the form

U = —ajcos(@; — @;) —a,cos[qg(@; — @;)],

TABLE 1. First four coefficients of the Fourier series of the
excluded area between two hard infinitesimally thin circular arcs
that subtend an angle 0; note that the coefficients are in units of the
coefficient a,.

0 ai/ay @/a; az/ay as/a;
0 0 1 0 0.2
0.11285 —0.000762 1 —0.000754 0.198
0.56608 —0.0214 1 —0.0196 0.158
1.14391 —0.107 1 —0.0755 0.0873

with g > 2, have shown that the resulting phase diagrams can
significantly depend on g [36]. It is presumable that the same
conclusion holds when other, more general, expressions for
the potential energy of the form

U=— Zaq cos[g(@; — @)]

gzl

are considered [38]. The excluded area could be considered
as the quantity in a two-dimensional off-lattice nonthermal
model that plays a role analogous to the potential energy in
a two-dimensional on-lattice thermal model. In fact, there
has been an investigation of a system of spins on a square
lattice interacting with a potential energy of the same form
as the excluded area between two discorectangles [39]. If one
adapted this exercise to the present case, one would have to
calculate the excluded area between two hard infinitesimally
thin minor circular arcs. The first four terms of the Fourier
series expansion of this excluded area (Table I) would indi-
cate that the effect of progressively curving hard segments
into hard infinitesimally thin minor circular arcs would be
to generally make the effective interactions more isotropic.
These effective interactions would be essentially classifiable
as a composition of an (antiferromagnetic or) antipolar term
with a nematic term (Table I). This would not be entirely
compatible with the observation of a filamentary phase which,
although globally nonpolar, is locally polar. The passage from
an on-lattice model to an off-lattice model does not seem
to be that straightforward: If even maintaining the particles
constrained on a lattice and changing a sole term proportional
to cos[g(@; — @;)] produces qualitatively different phase di-
agrams, then results that may be valid for an on-lattice system
may not apply, especially in low dimensions, to a supposedly
related off-lattice system. Not only are the centroids of the
hard infinitesimally thin circular arcs not constrained on a
lattice, but the interaction between two of them is also non-
separable. This significantly adds to debilitating a possible
association between the filamentary phase in a system of hard
infinitesimally thin minor circular arcs and the ferromagnetic
phase in a system of generalized planar rotor spins: In fact,
even leaving aside the positional structure of the filamentary
phase, its orientational pair-correlation functions are signif-
icantly more complicated than the simple algebraically and
monotonically decaying pair-correlation functions in the fer-
romagnetic phase.

The filamentary phase is the same phase that was observed
in numerical simulations on systems of hard bow-shaped
particles formed by three suitably disposed hard segments
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[40(a)]. In that work, this phase was referred to as a modu-
lated nematic phase. In a subsequent work that attempted to
reproduce these numerical simulation data with second-virial
(Onsager [19]) density-functional theory analytic calcula-
tions, this phase was interpreted as a splay-bend nematic
phase [40(b)]. Irrespective of whether it could be qualified
as generically modulated or particularly a splay-bend phase,
it is actually the application of the adjective nematic to this
phase that is unconvincing. One constitutive feature of a
nematic phase is its positional uniformity. The filamentary
phase, even in those versions that are very rippled with ramifi-
cations, ruptures, and tortuosity, is not positionally uniform;
e.g., the probability density to find a particle intrafilament
is not the same as that to find a particle interfilament. One
more constitutive feature of a nematic phase is its fluidity.
One would expect that particles travel along the modulation
in a modulated nematic phase as fast as they do along the
nematic director in an ordinary nematic phase. This is what
happens in the screwlike nematic phase that forms in systems
of helical particles [41]. Preliminary results on the mechanism
of diffusion in the filamentary phase that forms in systems
of hard infinitesimally thin circular arcs indicate that this is
not the case [42]: Hard infinitesimally thin circular arcs in-
trude from one filament into an adjacent filament in a steplike
manner while retaining their orientation and rapidly return to
the original filament or advance to the subsequent filament,
a mechanism of diffusion that is reminiscent of the one op-
erative in a smectic-A phase [43]. These considerations are
consistent with what was ultimately observed in systems of
hard arched particles in three dimensions. Initially, numerical
simulations and experiments on systems of hard or colloidal
arched particles claimed that these systems form a splay-bend
nematic phase [44(a,b)]. Subsequently, this conclusion was
rectified: That modulated phase is not positionally uniform;
it is not nematic but smecticlike [44(c)].

Rather, the concavity and polarity of the present hard par-
ticles induce the recognition of another resemblance, between
the cluster isotropic phase and the filamentary phase that are
observed in section 2 of the present phase diagram and the
“living polymeric” phase that was observed in systems of
dipolar hard circles (disks) [45]. In both present and previous
systems, filaments or chains form which are tortuous and
occasionally ramify and close up to produce roundish clusters
or irregular rings.

Sections 1 and 2 of the phase diagram of systems of hard
infinitesimally thin circular arcs constitute (nothing but) the
two-dimensional version of the phase diagram of systems of
hard spherical caps with subtended angle 0 € [0, 7] [8]. In
particular, the present filamentary phase is (nothing but) the
two-dimensional version of that cluster columnar phase that
was observed in three-dimensional systems of hard spherical
caps. Consistently to its lower dimension, the filamentary
phase is subject to stronger fluctuations that should conduce
to a more extensive tortuosity as well as to more ramifications
and ruptures. Yet the same autoassembly phenomenology is
essentially observed in both two and three dimensions. In par-
ticular, it causes the isotropic phase to exhibit, at sufficiently
high p, the formation of clusters that progressively pass from
being filamentous or lacy to being roundish or globular as 0
increases. The principal difference between what is observed

in two dimensions and what is observed in three dimensions
is the capability of the two-dimensional roundish clusters to
organize in a triangular lattice, i.e., the formation of a cluster
hexagonal phase in two dimensions.

Though already incipient in section 3, this cluster hexag-
onal phase completely characterizes section 4 of the phase
diagram of Fig. 6. Consistently with the recent determination
of the corresponding densest known packings [10], it con-
stitutes the truly new phase that is observed in the present
work. It forms in two dimensions, while in three dimensions
an analogous phase has not been observed and will probably
be not observable. It forms due to the capability that hard
infinitesimally thin particularly major, circular arcs have to
intertwine without intersecting. This capability cannot be re-
tained on going from two to three dimensions.

Similarly to what has already been commented apropos
of the phase behavior of systems of hard spherical caps [8],
the autoassembly phenomenology that is observed in systems
of hard infinitesimally thin circular arcs resembles what is
observed in molecular systems that form micelles [46,47]:
These supramolecular structural units can be cylindrical or
globular, which can then autoassemble to form a variety of
complex phases including columnar and crystalline phases
[46,47]. There, at the origin of the complex phase behavior,
are complex molecules that interact between them via com-
plicated attractive and repulsive intermolecular interactions.
Here, this complex phase behavior occurs in systems of rela-
tively simple hard particles and thus is purely entropy driven.

IV. CONCLUSION AND PERSPECTIVE

This work consists in an investigation on the phase be-
havior of systems of hard infinitesimally thin circular arcs in
the two-dimensional Euclidean space R?. Depending on the
subtended angle 8 and the number density p, several purely
entropy-driven phases have been observed in the course of
Monte Carlo numerical simulations [12—14].

Leaving aside the (quasi)nematic phase that is solely ob-
served for sufficiently small values of © and at intermediate
values of p, more interesting are the other phases that have
been observed. The isotropic phase is one such example:
Provided p is sufficiently high, it becomes no ordinary in that
it exhibits clusters which pass from being filamentous to being
roundish as © progressively increases. Provided p is even
higher, these two types of clusters produce a filamentary phase
for © < 7t and a hexagonal phase for 0 2 7, respectively. Both
these phases are characterized by a supraparticular structural
organization: The actual structural units are formed by a num-
ber of suitably disposed hard particles. Particularly interesting
is the cluster hexagonal phase. It offers examples of (soft)
porous crystalloid materials (if a view is naturally taken in
the direction that is perpendicular to R?) [48] whose porosity
could be regulated by compression. The autoassembly phe-
nomenology in systems of hard infinitesimally thin circular
arcs, as well as that in systems of hard spherical caps [8], inter-
estingly resembles that which occurs in micellizing molecular
systems [46,47].

Despite the extensive Monte Carlo numerical simulations,
there are several issues that still need clarification. Leaving
aside the persistent issue of the nature of the nematic phase
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in a realistic two-dimensional system [31], it is the structure
of the three cluster phases that would require a more detailed
characterization. This should center on a detailed statistical
analysis of the shape and size of respective clusters. Specif-
ically in systems of hard infinitesimally thin minor circular
arcs, it should address the persistence length of the filaments
and the number of their ramifications and ruptures.’ Specif-
ically in systems of hard infinitesimally thin major circular
arcs, it should ascertain whether, on progressive compression,
a single hexagonal phase forms or multiple hexagonal phases

31t is not clear whether these ramifications and ruptures should be
considered as defects or are instead inherent to the very nature of
these phases.

form in the (long) way towards the corresponding densest
known packings [10]. The clarification of these pending issues
requires consideration of systems of a significantly larger
size and more improved computational resources and tech-
niques than those presently available. Under these conditions,
it would be very beneficial to have experimental systems of
colloidal or granular thin-circular-arc—shaped particles [49]. It
could be used to first test the present predictions on the com-
plete phase behavior and then address and aid the resolution
of those pending issues.
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