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Second-virial theory for shape-persistent living polymers templated by disks
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Living polymers composed of noncovalently bonded building blocks with weak backbone flexibility may
self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer
assembly and phase behavior can be controlled by the addition of (nonadsorbing) rigid colloidal disks which
act as an entropic reorienting “template” onto the supramolecular polymers. Using a particle-based second-virial
theory that correlates the various entropies associated with the polymers and disks, we demonstrate that small
fractions of discotic additives promote the formation of a polymer nematic phase. At larger disk concentrations,
however, the phase is disrupted by collective disk alignment in favor of a discotic nematic fluid in which the
polymers are dispersed antinematically. We show that the antinematic arrangement of the polymers generates a
nonexponential molecular-weight distribution and stimulates the formation of oligomeric species. At sufficient
concentrations the disks facilitate a liquid-liquid phase separation which can be brought into simultaneously
coexistence with the two fractionated nematic phases, providing evidence for a four-fluid coexistence in
reversible shape-dissimilar hard-core mixtures without cohesive interparticle forces. We stipulate the conditions
under which such a phenomenon could be found in experiment.
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I. INTRODUCTION

Supramolecular “living” polymers are composed of aggre-
gating building blocks that are joined together via noncovalent
bonds. The polymers can break and recombine reversibly as
the typical attraction energy between monomers is compa-
rable to the thermal energy [1,2]. Elementary (Boltzmann)
statistical mechanics then tells us that the polymers must
be in equilibrium with their molecular weight distribution
which emerges from a balance between the association en-
ergy and mixing entropy of the polymers. This results in a
wide range of different polymeric species with an exponential
size distribution whose shape is governed primarily by tem-
perature and monomer concentration. Reversible polymers
are thus distinctly different from usual “quenched” polymers
whose molecular weight distribution is fixed by the conditions
present during the synthesis process.

Reversible association is ubiquitous in soft matter. Ex-
amples include the formation of various types of micel-
lar structures from block copolymers [3,4], hierarchical
self-assembly of short-fragment DNA [5,6], chromonic
mesophases [7,8] composed of noncovalently stacked sheet-
like macromolecules, and the assembly of amyloid fibrils
from individual proteins [9]. Microtubules, actin and other
biofilaments provide essential mechanical functions in the cell
and consist of dynamically organizing molecular units that
self-organize into highly interconnected structures [10].

A particularly interesting case arises when the monomers
associate into shape-persistent, directed polymers [11]. In-
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terpolymer correlations then become strongly orientation-
dependent and may drive the formation of liquid crystals.
Spontaneous formation of lyotropic liquid crystals has been
observed, for example, in long wormlike micelles under shear
[12], oligomeric DNA [13], and chromonics [7]. When the
monomer concentration exceeds a critical value, the polymers
grow into strongly elongated aggregates and an (isotropic)
fluid of randomly oriented polymers may spontaneously align
into, for instance, a nematic liquid crystal characterized by
long-range orientational correlations without structural peri-
odicity [14]. While aggregation-driven nematization has been
contemplated also for thermotropic systems [15], our current
focus is on lyotropic systems composed of rigid polymers sus-
pended in a fluid host medium, where the isotropic-nematic
phase transition can be rationalized on purely entropic
grounds in terms of a gain of volume-exclusion entropy upon
alignment at the expense of orientational entropy [16–18].
However, this argument becomes more convoluted in the case
of directed, reversible polymers where the trade-off between
these two entropic contributions is connected to a simulta-
neous maximization of the mixing entropy and the number
of monomer-monomer linkages. In particular, the coupling
between orientational order and polymer growth turns out to
be a very important one; collective alignment leads to longer
polymers, which tend to align even more strongly thus stim-
ulating even further growth [19]. Recent simulation studies
have basically corroborated this scenario [20–22].

An intriguing question in relation to the above is the
following: Can the hierarchical organization of reversible
polymers be controlled by the addition of nonadsorbing
shape-dissimilar components that affect the way they align?
Indeed, for chromonics it is known that the presence of
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FIG. 1. Schematic representation of the various liquid crystal phases emerging for disks mixed with polymerizing rods. (a), (b) Principal
angles describing the orientation û of a single rod monomer and disk with respect to the molecular director n̂ with θ denoting the polar angle,
ϕ the azimuthal angle, and ψ = π

2 − θ the meridional angle. (c) Isotropic phase; (d) polymer uniaxial nematic phase N+; (e) discotic uniaxial
nematic phase N− in which the reversibly polymerizing rods are dispersed antinematically.

additives can bring about condensation or reorientation of
the reversible stacks, thereby changing their phase behavior
through subtle modifications of the system entropy [23]. Re-
cent experiments on clay nanosheets mixed with reversibly
polymerizing tubuline rods have demonstrated that these mix-
tures remain stable against flocculation and provide a test bed
for exploring entropy-driven phase behavior of biopolymer-
platelet mixtures [24]. Furthermore, it is well established that
mixing prolate (rod-shaped) colloids with their oblate counter-
parts generates a strong coupling between the orientations of
both components leading to organizations with mixed nematic
and antinematic symmetries. Numerous theoretical studies
starting with the early work of Alben [25] have attempted
to rationalize the intricate isotropic-nematic phase behavior
of these mixtures placing particular emphasis on stabiliz-
ing the highly sought-after biaxial nematic phase in which
both components are aligned along mutually perpendicular
directions thus generating a fluid with an orthorhombic (D2h)
symmetry [26–36]. Similar kinds of antinematic or biaxial
symmetries could arise when dispersing rod-shaped colloids
in a thermotropic liquid crystal under appropriate anchoring
conditions [37,38]. Antinematic order has been shown to nat-
urally emerge in porous smectic structures of shape-persistent
nanorings [39,40] or may be realized with the help of ex-
ternal electromagnetic fields as was demonstrated for clay
nanosheets [41] and for disks in the presence of associating
magnetic beads [42]. In this study we wish to build upon the
preceding concepts and explore hierarchical self-organization
of reversible polymers in the presence of disk-shaped parti-
cles. An example of colloidal disks that could be envisaged
are clay nanosheets that consist of nanometer-thick discotic
particles with a very high diameter-to-thickness ratio. These
particles find widespread use in industrial soft matter and are
at the basis of many colloidal-polymer composite materials
[43,44]. The clay sheets on their own, provided they do no
gelate in crowded conditions, have a natural tendency to align
and form various types of liquid crystals, including nematic
phases [45–48]. When mixed with reversibly polymerizing
components in the absence of strong disk-polymer attractions,
the disks not only induce orientational “templating” of the
supramolecular polymers [49], they also influence the mixing

entropy of the system which must have consequences for
polymer growth and phase behavior [50,51]. It is precisely
these combined entropic effects that we wish to examine more
closely in this work. To this end, we formulate a simple model
(Sec. II) that we subsequently cast into a particle-based theory
(Sec. III) that features reversible association and accounts
for all relevant entropic contributions on the approximate
second-virial level. The orientation degrees of freedom of the
species are treated using a number of simplified variational
approaches that render our theory algebraically manageable.
We stress that our primary attention in this work goes to
mixed-shape nematic phases and we do not consider partially
crystallized states that may become stable at elevated packing
conditions where our theoretical approach is no longer appli-
cable.

Our study broadly falls into two parts. In the first part
(Sec. IV) we explore the molecular weight distribution in
mixtures in which the polymers are organized either nemat-
ically or antinematically. The latter state can be realized at
elevated disk concentrations where correlations between the
disks are strong enough to generate nematic order of the
discotic subsystem which in turn, enforces the supramolec-
ular rods to align perpendicular to the discotic director in
such a way that the overall system retains its uniaxial D∞h

point group symmetry [Fig. 1(e)]. Whereas reversible poly-
mers in a conventional nematic organization are distributed
along a near-exponential form with minor nonexponential
corrections at short lengths [21], we argue that antinematic
living polymers may, under certain conditions, exhibit a strong
nonexponential weight distribution with the most-probable
polymer size being oligomeric rather than monomeric.

In the second part of the paper (Secs. V and VI) we
explore the isotropic-nematic phase behavior of the mixed
systems by focusing on the uniaxial nematic phases, which
seems to be the prevailing nematic symmetry for strongly
shape-dissimilar mixtures [27,31,33,35,52]. Our theoretical
model is generic and should be applicable to a wide range
of different monomer-disk size ratios and temperatures. We
discuss the key features for a few exemplary mixtures.
One of them is a distinct azeotrope that develops for the
isotropic-polymer nematic coexistence, suggesting a strong
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orientational templating effect imparted by volume-excluded
interactions between the polymers and the disks. Furthermore,
under certain disk-monomer size constraints, a remarkable
four-phase equilibria appears involving a simultaneous co-
existence of isotropic gas and liquid phases along with two
fractionated uniaxial nematic phases. In Sec. VII we discuss
our findings in relation to recent colloid-polymer models
where similar multiphase equilibria have been reported. We
end this work with formulating the main conclusions along
with some perspectives for further research in Sec. VIII.

II. MODEL

In this study, we focus on mixtures of tip-associating rod-
shaped monomers with limited backbone flexibility mixed
with rigid disks. An overview of the basic particle shapes is
given in Fig. 1. We assume that each rod monomer is equipped
with identical attractive patches at either tip such that each
rod end can only form a single bond with an adjacent rod tip
producing a linear polymer. The rods do not associate into
multiarmed or ring-shaped polymers. We further assume that
all species retain their basic fluid order such that the respective
density distributions remain uniform in positional space (but
not necessarily in orientational phase space). We do not ac-
count for the possibility of hexagonal columnar phases formed
by (pure) polymers at high monomer concentration and low
temperature combined with elevated polymer backbone flexi-
bility [50,53]. In fact, disks too may form columnar structures
at packing fraction exceeding typically 40% [54–56], which
goes beyond the concentration range we consider relevant
here. Interactions between the polymer segments and the disks
are assumed to be purely hard with the only energy scale
featuring in the model being the noncovalent bond energy εb

between the monomers.
Contrary to previous modeling studies of rod-disks mixture

we focus here solely on uniaxial nematic phases and ignore
the possibility of biaxial order in which both components align
along mutually perpendicular directors. Our focus is moti-
vated by the expectation that excluded-volume interactions
between the polymers and the disks, which are the principal
entropic forces behind generating nematic order [16], are too
disparate to guarantee such orthorhombic nematic symmetry
to be stable. Previous theoretical studies [32,33,35,36,52] as
well as experiments [57–59] and simulations [27,34,60] on
mixed-shape colloids suggest that strongly unequal excluded
volumes indeed favor demixing into strongly fractionated
uniaxial nematic phases. In view of the basic symmetry differ-
ence between the linear polymer and disk, we then anticipate a
rod-based uniaxial phase [denoted N+; Fig. 1(d)] in which the
disks are distributed antinematically throughout the uniaxial
matrix. Conversely, when the disks outnumber the polymers,
a disk-based uniaxial nematic [N−; Fig. 1(e)] is formed in
which the aggregating rods adopt antinematic order.

III. SECOND-VIRIAL THEORY FOR REVERSIBLE
POLYMERS MIXED WITH RIGID DISKS

We start with formulating the free energy per unit volume
V of a mixture of disks with density ρd (û) and reversibly
polymerizing rods. We define ρr (�, û) as the number density

of monomer segments aggregated into a polymeric rod with
contour length �L and orientation described by unit vector û.
The aggregation number or polymerization degree is specified
by the index � = 1, 2, 3, . . .. Let us write the free energy per
unit volume of the mixture as follows [21,61]:

F

V
∼

∑
�

∫
dû{ln[4π	rρr (�, û)�−1] − 1}�−1ρr (�, û)

+
∫

dû{ln [4π	dρd (û)] − 1}ρd (û)+ Fas

V
+ Fwlc

V
+ Fex

V
.

(1)

Without loss of generality, all energies are implicitly ex-
pressed in units of thermal energy kBT (with kB Boltzmann’s
constant and T temperature). Furthermore, 	r/d are the ther-
mal volumes of the species which are immaterial for the
thermodynamic properties we are about to explore. The factor
4π is included for convenience and equals the unit sphere
surface representing the orientational phase space. The total
rod monomer concentration ρr0 is a conserved quantity so
that ρr0 = ∑

�

∫
dûρr (�, û). Likewise, ρd0 = ∫

dûρd (û) rep-
resents the number density of disks. The first two terms are
related to the ideal gas or mixing entropy and describe the
ideal translation and orientational entropy of each polymer
and disk, respectively. The third contribution in Eq. (1) repre-
sents an association energy that drives end-to-end aggregation
of the monomer segments. It reads:

Fas

V
= εb

∑
�

∫
dû�−1ρr (�, û)(� − 1). (2)

The free energy per unit volume arising from the polymerized
rod segments follows from the bond potential εb between
two adjacent rod segments and the number density ρa(�, û) =
(1/�)ρr (�, û) of polymers with aggregation number � each
containing � − 1 bonds. Being normalized to the thermal en-
ergy the potential εb serves as an effective temperature scale.
At strongly reduced temperature (εb � 0) the association
energy is minimised when all monomers join together into
a single long polymer, while at high temperature (εb � 0)
polymerization is strongly suppressed. If −εb is of the order
of the thermal energy kBT , the single chain configuration is
highly unfavorable in view of the mixing entropy that fa-
vors a broad distribution of aggregates with strongly disperse
contour lengths. This we will explore more systematically in
Sec. IV.

A. Backbone flexibility

The second last term in Eq. (1) represents the effect of
polymer flexibility through a correction to the original orien-
tational entropy [first term in Eq. (1)] that accounts for the
internal configurations of a so-called wormlike chain [18].
This leads to a strongly nonlinear term with respect to the
segment density [21,62]:

Fwlc

V
= −2Lr

3�p

∑
�

∫
dû[ρr (�, û)]1/2∇2[ρr (�, û)]1/2, (3)

where ∇2 denotes the Laplace operator on the unit sphere.
The persistence length �p measures the typical length scale
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over which local orientational fluctuations of the segments are
correlated. In our model we assume that the rod segments are
only slightly flexible [62] so that �p � � suggesting that the
main orientational entropy stems from the rigid body contri-
bution that is subsumed into the ideal gas term in Eq. (1). The
wormlike chain correction vanishes in the somewhat unnatural
situation where all polymers, irrespective of their contour
length, are perfectly rigid and the persistence length tends to
infinity (�p → ∞).

B. Excluded-volume entropy

The last contribution in Eq. (1) is the excess free energy
that incorporates all excluded-volume driven interactions be-
tween the stiff polymers and disks. Assuming all interactions
to be strictly hard, we write following Ref. [26]:

Fex

V
= 1

2

∑
�,�′

∫∫
dû dû′ρr (�, û)ρr (�′, û′)2L2

r Dr | sin γ |

+
∑

�

∫∫
dû dû′ρr (�, û)ρd (û′)

π

4
LrD2

d | cos γ |

+ 1

2

∫∫
dû dû′ρd (û)ρd (û′)

π

2
D3

d | sin γ |, (4)

where Lr,d and Dr,d denote the length and diameter of the
cylindrical building blocks [see Fig. 1(b)]. We assume all
polymers and disks to be sufficiently slender, i.e., Lr/Dr � 1
and Dd/Ld � 1 so that finite-thickness corrections to the
excluded volume terms above can be neglected. Next we
formally minimize the free energy with respect to the polymer
segment distribution:

δ

δρr (�, û)

(
F

V
− λr

∑
�

∫
dûρr (�, û)

)
= 0 (5)

and to the one-body density of the disks:

δ

δρd (û)

(
F

V
− λd

∫
dûρd (û)

)
= 0. (6)

The Lagrange multipliers λr,d ensure that the total concen-
tration of each species (monomers and disks) be preserved.
The coupled Euler-Lagrange (EL) equations can be rendered
tractable by expanding the orientation-dependent kernels that
depend on the enclosed angle γ between the main particle
orientation axes, as we will show next.

IV. MOLECULAR WEIGHT-DISTRIBUTION FROM
SECOND-POLYNOMIAL APPROXIMATION

A commonly employed method to cast the free energy in a
more tractable form is to express the trigonometric functions
featuring in the excluded-volume (4) in terms of a bilinear
expansion in Legendre polynomials [63–65]. Truncating this
expansion after the second-order contribution leads to a sim-
plified theory that has been explored previously for rod-plate
mixtures [26,52] as well as in the context of rods with fixed
length polydispersity [66]. For the present mixture, the ap-
proximation should be adequate if the nematic order of either

component is not too strong. We write:

| sin γ | = π

4
− 5π

32
P2(cos θ )P2(cos θ ′) + · · ·

| cos γ | = 1

2
+ 5

8
P2(cos θ )P2(cos θ ′) + · · ·

in terms of the second Legendre polynomials P2(x) = 3
2 x2 −

1
2 . The orientation of each particle is described by a polar
angle θ and azimuthal angle ϕ defined with respect to the
nematic director n̂ [see Figs. 1(a) and 1(b)]. Let us define a
set of size-specific nematic order parameters for the polymer:

Sr� = ρ−1
r�

∫
dûρr (�, û)P2(û · n̂) (7)

with ρr� = ∫
dûρr (�, û) a partial number density of rod seg-

ments belonging to polymers of length �L. Likewise we find
for the disks:

Sd = ρ−1
d0

∫
dûρd (û)P2(û · n̂). (8)

These order parameters allow us to distinguish between an
isotropic fluid (Sr� = Sd = 0), a polymer-dominated uniaxial
nematic fluid (N+: Sr� > 0, Sd < 0) and a discotic one (N−:
Sr < 0, Sd > 0), as sketched in Figs. 1(d) and 1(e), respec-
tively. With the aid of these expansions, the excess free energy
can be written in terms of a simple bilinear dependence on the
nematic order parameter:

Fex

V
∼ ρ2

r0

(
1 − 5

8
S̄2

r

)
+ 2qρr0ρd

(
1 + 5

4
S̄rSd

)

+ zρ2
d

(
1 − 5

8
S2

d

)
. (9)

Here we have implicitly renormalized the free energy and
species densities in terms of the isotropic excluded volume
of the monomeric rods vrr = π

4 L2
r Dr . The excess free en-

ergy thus depends only on the excluded-volume ratios q =
vrd/vrr and z = vdd/vrr with vrd = π

16 LrD2
d and vdd = π2

16 D3
d

denoting the isotropized monomer-disk and disk-disk ex-
cluded volumes, respectively. Furthermore, the bar denotes
a molecular-weight average of the nematic order parameter
associated with the polymers:

S̄r = ρ−1
r0

∑
�

ρr�Sr�. (10)

Similarly, the coupled EL equations may be cast as follows:

�−1 ln[4πρr (�, û)�−1] = λr + εb�
−1 + arP2(û · n̂)

+ Lr

3�p

∇2[ρr (�, û)]1/2

[ρr (�, û)]1/2
(11)

and

ln[4πρd (û)] = λd + adP2(û · n̂). (12)

The uniaxial order parameters that feature in the EL equations
are specified as follows:

ar = 5
4 (ρr0S̄r − 2qρd0Sd ),

ad = 5
4 (zρd0Sd − 2qρr0S̄r ). (13)
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We are now equipped to explore the equilibrium polymer
length distribution ρr� = ∫

dûρr (�, û) corresponding to the
basic fluid symmetries we consider (cf. Fig. 1).

A. Isotropic fluid

In the isotropic phase, all nematic order parameters are
strictly zero. Applying conservation of monomers to Eq. (11)
and performing some algebraic rearrangements we find a geo-
metric distribution (i.e., the discrete analog of the exponential
distribution):

ρr� = �eεb+λr�

= �eεb
(
1 − m−1

I

)�
(14)

in terms of the mean aggregation number:

mI =
∑

� ρa(�)�∑
� ρa(�)

= 1

2
(1 +

√
1 + 4ρr0e−εb ), (15)

which, as expected, goes up monotonically with increasing
monomer concentration ρr0 and also increases when the ef-
fective temperatures εb grows more negative. Since there is
no global particle alignment whatsoever, the presence of the
disks does not influence the polymerization process, and the
polymer molecular-weight distribution is independent from
the disk concentration.

B. Uniaxial nematic fluid

The decoupling of polymeric rods and disks is no longer
valid for a nematic fluid where the alignment direction of one
component is strongly affected by the amount of orientational
“templating” it experiences from the other component. The
polymer density follows from Eq. (11) and can be written in
an exponential form:

4πρr (�, û) = � exp[εb + �λr + ãr�P2(t )] (16)

with t = cos θ . The three basic contributions affecting the
polymer molecular weight distribution in a (uniaxial) nematic
fluid are easily identified in the argument; the first denotes
monomer-monomer bonding while the second term enforces
monomeric mass conservation. The third one is the most in-
teresting one; it encapsulates the templating effect associated
with nematization of the disks as per Eq. (13). Here we have
introduced ar as a renormalized version of the one in Eq. (13):

ãr = ar + ξ . (17)

The factor ξ depends on both ar itself and on the polymer
persistence length �p. It accounts for the finite polymer flex-
ibility and vanishes for strictly rigid polymers (�p → ∞).
The corresponding expressions are given in the Appendix.
As noted previously, the multiplier λr featuring in Eq. (16)
follows from monomer mass conservation:

∞∑
�=1

∫
dûρr (�, û) = ρr0. (18)

The summation can be resolved analytically, and we find:

ρr0 = eεb
1

2

∫ 1

−1
dt

eW (t )

(eW (t ) − 1)2
. (19)

The molecular-weight averaged nematic order parameter Eq.
(10) is then given by:

S̄r = ρ−1
r0 eεb

1

2

∫ 1

−1
dt

P2(t )eW (t )

(eW (t ) − 1)2
. (20)

The two conditions above are intricately coupled given that ãr

depends on both S̄r and Sd via Eq. (13). Convergence of the
summation in Eq. (18) requires that the argument be negative:

W (t ) = λr + ãrP2(t ) < 0, all t . (21)

Noticing that −1/2 � ||P2|| � 1 one then finds that λr should
satisfy:

−λr < |ãr | (N+),

−λr < |ãr/2| (N−), (22)

and it is tempting to introduce a rescaled normalization con-
stant λ′

r that is strictly positive (λ′
r > 0) for both phases. With

this, we recast:

W (t ) =
{ 3

2 ãr (t2 − 1) − λ′
r (N+)

3
2 ãrt2 − λ′

r (N−)
. (23)

Unlike for the isotropic phase, the normalization constant
λ′

r cannot be resolved in closed form. The molecular-weight
distribution of the polymer follows from integrating Eq. (16)
over all orientations û:

ρr� = �eεb
1

2

∫ 1

−1
dte�W (t ). (24)

The uniaxial nematic order parameter Sr� associated with a
polymer of length � is easily found from:

Sr� = −1

2

{
1 + 1

ãr�
− 1

F (
√

3ãr�/2)
√

ãr�/3

}
(25)

in terms of Dawson’s integral F (x) = e−x2 ∫ x
0 ey2

dy [67]. The
discotic nematic order parameter Sd easily follows from the
above expression upon substituting ãr� → ad . A little reflec-
tion of Eq. (25) tells us the following; since ar does not depend
explicitly on the aggregation number �, the nematic order pa-
rameter Sr� must be a monotonically increasing function of the
polymerization degree �; the longer the polymers the stronger
their nematic (ar > 0) or antinematic (ar < 0) alignment in
the mixed nematic fluid. This effect becomes systematically
weaker for increasingly flexible polymers as can easily be
inferred from the above expression by comparing Sr� ver-
sus � for rigid polymers (ξ = 0) versus the case of slightly
flexible ones (ξ nonzero but small) for any given value for
ar .

Let us now examine a concrete example by picking a dense
uniaxial discotic nematic doped with polymerizing rods. The
polymers are dispersed antinematically within the discotic
fluid as indicated in Fig. 1(e). In specifying the shape of
the rods and disks, we can distinguish between so-called
symmetric mixtures [26], in which the excluded-volume be-
tween two monomers, a monomer and a disk, and two disks
are all equal, so that q = 1 and z = 1 and asymmetric mix-
tures composed of species with strongly disparate excluded
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FIG. 2. Polymer molecular-weight distributions ρr� and corre-
sponding uniaxial nematic order parameter Sr� as a function of the
polymer length � for (a) a typical polymer nematic N+ and (b) dis-
cotic nematic phase N−. The effective temperature εb is color-coded.
(c) Most probable length (MPL) in terms of the effective temperature
εb. Fixed parameters: persistence length �p = 3, disk mole fraction
x = 0.5, overall concentration ρ = 3, excluded-volume ratios q =
1
4

Lr
Dr

and z = πq with monomer aspect ratio Lr/Dr = 10.

volumes. Our principal attention goes to the latter systems
which arise more naturally in an experimental context when
mixing, for instance, tip-associating colloidal rods such as
fd [68,69] with clay platelets [70]. The molecular-weight
distributions of some mixtures of this nature are shown in
Fig. 2.

Figure 2(a) relates to the uniaxial polymer-dominated ne-
matic phase (N+) and demonstrates an exponential probability
distribution whose shape can be tuned by changing the ef-
fective temperature of the system. As expected, the tail of
the distribution grows longer upon decreasing the tempera-
ture, which would give longer polymers. A more interesting
scenario shows up for the discotic nematic phase (N−) in
Fig. 2(b), where the distributions are no longer monotonically
decreasing. The maximum of the distributions corresponds to
the most probable length of the polymers for each system,
which depends quite sensitively on the effective tempera-

ture as we observe in Fig. 2(c). Reversible polymerization
within an antinematically organization thus leads to a strong
manifestation of oligomeric polymers at the expense of its
monomeric counterparts. We note that the orientational order
associated with the antinematic oligomers remains relatively
mild (particularly at larger temperature εb) so that the second-
polynomial truncation should not be too severe.

As we will see in the following sections of this paper,
the overall particle concentration and disk molar fraction
associated with Fig. 2 may correspond to regions of the
phase diagram where the uniform nematic system is in fact
thermodynamically unstable with respect to some kind of
phase separation. The molecular-weight distributions should
therefore be interpreted under the caveat that monophasic
nematic fluidity is preserved and that any demixing process
is somehow suppressed. We wish to add that the nonmono-
tonic features of the antinematic polymer molecular-weight
distribution are also present at conditions where monophasic
antinematic order is found to be stable. Next we address the
thermodynamic stability of the mixtures within the context of
a Gaussian variational theory.

V. ISOTROPIC-NEMATIC PHASE BEHAVIOR

At conditions where (anti)nematic order is strong, the
previously used polynomial-based expansion truncated after
P2 [Eq. (7)] is no longer appropriate and a cumbersome
inclusion of multiple higher-order terms becomes neces-
sary [36,65]. A more technically expedient route towards
exploring the thermodynamics of strongly ordered nematic
fluids is to use a simple Gaussian parametrization of the
orientational probability [17,18]. Following [61] we express
the polymer molecular-weight distribution in a factorized
form:

ρr (�, û) = ρr� fG(û), (26)

where fG is a normalized Gaussian distribution with a vari-
ational parameter that is proportional to either the amount
of nematic order (α(1) > 0) or antinematic order (α(2) > 0).
The corresponding Gaussian distributions for the polar angles
corresponding to these different nematic symmetries are given
by [35]:

fG(û) ∼
⎧⎨
⎩

α(1)

4π
exp

( − 1
2α(1)θ2

)
,√

α(2)

(2π )3 exp
( − 1

2α(2)ψ2
)
,

(27)

where ψ = π
2 − θ (−π/2 < ψ < π/2) denotes a meridional

angle [see Fig. 1(a)]. The Gaussians operates on the domain
0 < θ < π/2 and must be complemented by their mirror
fG(π − θ ) for π/2 < θ < π given that all nematic phases are
required to be strictly apolar. The Gaussian representations
are appropriate only for strong nematic order (α � 1). They
are clearly inadequate for isotropic systems since the prob-
abilities reduce to zero when α → 0 instead of reaching a
constant. Obviously we apply the same distributions to the
disks with α

(1)
d and α

(2)
d denoting the variational parameters
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quantifying the amount of nematic or antinematic order, re-
spectively. The disk probability density is then equivalent to
Eq. (26):

ρd (û) = ρd0 fG(û). (28)

A major advantage of using Gaussian trial functions is
that we may apply asymptotic expansion of the various free
energy contributions [17] which are valid in the limit α → ∞.
In particular, it can be shown that the double orientational
averages over the sine and cosine in Eq. (4) up to leading
order in α take a simple analytic form [35]. In the general
case in which particles with equal nematic signature (nematic
or antinematic) do not necessarily have the same degree of

alignment the asymptotic averages read:

〈〈| sin γ |〉〉11 ∼
√

π

2

(
1

α(1)
+ 1

α(1′)

)
,

〈〈| cos γ |〉〉12 ∼
√

2

π

(
1

α(1)
+ 1

α(2)

)
,

〈〈| sin γ |〉〉22 ∼ F (α(2), α(2′) ). (29)

Here the double brackets denote the orientational averages
featuring in the excess free energy (4) with 〈·〉 = ∫

dû fG(û).
The symmetry of nematic order clearly matters since the an-
tinematic case features a distinct logarithmic dependence. The
function F reads in explicit form:

F (α(2), α(2′) ) = 4α(2)Q − 2(1 + Q)arctanh
√

Q − (1 + Q) ln(1 − Q) + (1 + Q) ln(4α(2)Q)

2πα(2)Q
(30)

in terms of the ratio Q = α(2′)/α(2) with α(2) and α(2′) quan-
tifying the antinematic order parameters of two polymeric
species differing in length. Note that generally, α(2) �= α(2′).
The expression becomes a lot more manageable if all poly-
mers are assumed to exhibit an equal degree of alignment,
irrespective of their length. Then Q = 1 and [71]:

F (α(2) ) = 2

π

(
1 + ln α(2)

2α(2)

)
. (31)

Similar asymptotic expressions may be obtained for the ori-
entational entropy featuring in the ideal free energy Eq. (1).
For strong nematic or antinematic order we find, respectively
[35]:

σ1 = 〈ln 4π fG(û)〉1 ∼ ln α(1) − 1,

σ2 = 〈ln 4π fG(û)〉2 ∼ 1

2

(
ln α(2) + ln

2

π
− 1

)
. (32)

The wormlike chain entropy (3) too can be quantified within
the Gaussian limit which leads to:

〈
ln f 1/2

G (û)∇2 f 1/2
G (û)

〉
1 ∼ −α(1)

2
,

〈
ln f 1/2

G (û)∇2 f 1/2
G (û)

〉
2 ∼ −α(2)

4
. (33)

We infer that the loss of conformational entropy of an antine-
matic polymer is half that of a nematic polymer. This suggests
that a wormlike chain is able to retain more of its internal
configurations when aligned antinematically than in a nematic
organization of equal strength. With all the orientational aver-
ages specified, we now turn to computing the free energy and
its derivatives.

A. Polymer nematic phase (N+)

We first focus on the case of the polymer-dominated
nematic phase which is expected to be stable at elevated
monomer concentration and low disk mole fraction. Inserting
the asymptotic orientational averages formulated above into

the corresponding entropic contributions in Eq. (1) we obtain
the following algebraic expression for the free energy density
(in units thermal energy kBT per randomized monomer ex-
cluded volume vrr):

F N+

V
∼

∑
�

ρr��
−1[ln ρr��

−1 − 1 − εb + σ1(αr�)]

+ ρd0[ln ρd0 − 1 + σ2(αd )]

+ 1

3�p

∑
�

ρr�αr� +
∑
�,�′

ρr�ρr�′hr�r�′

+ 2qρd0

∑
�

ρr�hr�d + zρ2
d0

8

π2

(
1 + ln αd

2αd

)
(34)

with hi j is short-hand notation for:

hi j =
√

8

π

(
1

αi
+ 1

α j

)
, (35)

where αi and α j should be considered dummy variables for
the species-dependent nematic order parameters as specified
by the indices i and j. For later reference we also define:

gi j =
(

8

π

)1/2(
1 + αi

α j

)−1/2

. (36)

At equilibrium, the species-dependent nematic order parame-
ters αr� and αd follow from the minimum conditions:

∂F/V

∂αr�,d
= 0. (37)

The expressions above can be simplified considerably by
noting that a small amount of backbone flexibility causes
the nematic alignment to fully decorrelate from the polymer
contour length. We then approximate αr� ≈ αr�′ = αr , inde-
pendent from �. Applying Eq. (37) we obtain a set of simple
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algebraic equations:

m−1
N+α1/2

r = − 1

3�p
α3/2

r + 2√
π

ρr0 + qρd0grd ,

α
1/2
d = zρd0

8

π2

(
ln αd − 1

α
1/2
d

)
+ 4qρr0gdr, (38)

with mN+ the mean aggregation number in the polymer ne-
matic phase. The molecular-weight distribution now becomes
strictly exponential, as for the isotropic phase. We write:

ρr� = �eε̃b
(
1 − m−1

N+
)�

(39)

with an effective potential ε̃b that depends on the orientational
entropy:

ε̃b = εb − σ1(αr ). (40)

Given that σ1 > 0, the effective temperature is lower than
the bare one, so that polymerization in the nematic phase
is stronger than in the isotropic fluid, as is well established
[19,51]. The mean aggregation number in the nematic phase
has an analogous form to Eq. (15):

mN+ = 1
2 (1 +

√
1 + 4ρr0e−ε̃b ). (41)

The chemical potentials are obtained from the standard
thermodynamic relations μr,d = ∂ (F/V )/∂ρr0,d0. The contri-
bution from the polymers reads:

μN+
r ∼ ln

(
1 − m−1

N+
) + 1

3�p
+ m−1

N+σ1(αr )

+ 2ρr0
4√
παr

+ 2qρd0hrd + εb, (42)

while for the disks we find:

μN+
d ∼ ln ρd0 + σ2(αd ) + 2qρr0hrd + 2zρd0

8

π2

(
1 + ln αd

2αd

)
.

(43)

The osmotic pressure follows from the thermodynamic rela-
tion −P = (F − Nμ)/V leading to:

PN+ ∼ eε̃b (mN+ − 1) + ρd0 + ρ2
r0

4√
παr

+ 2qρr0ρd0hrd + zρ2
d0

8

π2

(
1 + ln αd

2αd

)
. (44)

Note that all pressures are implicitly renormalized in units of
the thermal energy kBT per monomer excluded volume vrr .

B. Discotic nematic phase (N−)

Repeating the previous steps for the discotic nematic
through simple bookkeeping we write for the free energy of

the discotic phase:

F N−

V
∼

∑
�

ρr��
−1[ln ρr��

−1 − 1 − εb + σ2(αr�)]

+ ρd0[ln ρd0 − 1 + σ1(αd )] + 1

6�p

∑
�

ρr�αr�

+
∑
�,�′

ρr�ρr�′
4

π
F (αr�, αr�′ )

+ 2qρd0

∑
�

ρr�hr�d + zρ2
d0

4√
παd

. (45)

The corresponding minimum conditions for the variational
parameters under the assumption that all polymer species ex-
perience the same degree of orientational order (αr� = αr�′ =
αr) are as follows:

1

2
m−1

N−α1/2
r = − 1

6�p
α3/2

r + ρr0
8

π2

(
ln αr − 1

α
1/2
r

)
+ qρd0grd

α
1/2
d = zρd0

2

π1/2
+ 2qρr0gdr . (46)

The molecular-weight distribution is analogous to Eq. (39) but
with the effective temperature now reading:

ε̃b = εb − σ2(αr ), (47)

which, as for the case of the polymer nematic phase suggests
that particle alignment facilitates polymer growth, although
less so for antinematic polymers since generally σ2 < σ1

[Eq. (32)]. The chemical potential of the polymers and the
disks are given by, respectively:

μN−
r ∼ ln

(
1 − m−1

N−
) + 1

6�p
+ m−1

N−σ2(αr )

+ 2ρr0
8

π2

(
1 + ln αr

2αr

)
+ 2qρd0hrd + εb, (48)

μN−
d ∼ ln ρd0 + σ1(αd ) + 2qρr0hrd + 2zρd0

4√
παd

.

Finally, the pressure of the N− phase reads:

PN− ∼ eε̃b (mN− − 1) + ρd0 + ρ2
r0

8

π2

(
1 + ln αr

2αr

)

+ 2qρr0ρd0hrd + zρ2
d0

4√
παd

. (49)

The thermodynamics of the isotropic phase is easily es-
tablished from the original free energy (1) because the
randomized excluded volumes becomes simple constants,
namely, 〈〈| sin γ |〉〉 = π/4 and 〈〈| cos γ |〉〉 = 1/2. We thus
obtain the following expressions for the chemical potentials
in the isotropic fluid [61]:

μI
r ∼ ln

(
1 − m−1

I

) + 2ρr0 + 2qρd0 + εb,

μI
d ∼ ln ρd0 + 2zρd0 + 2qρr0. (50)

The osmotic pressure combines the ideal gas and excluded
volume contributions and reads:

PI ∼ eεb (mI − 1) + ρd0 + ρ2
r0 + 2qρr0ρd0 + zρ2

d0. (51)
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FIG. 3. Overview of the isotropic I (white), polymer nematic N+ (red), and discotic nematic N− (blue) phase diagrams for a mixture of
disks and reversibly polymerizing weakly flexible rods at various effective temperatures εb. Two types of phase diagrams are represented:
osmotic pressure P versus disk mole fraction x (top panels) and concentration of disks ρd0 versus concentration of rods ρr0 (bottom panels).
Fixed parameters: persistence length �p = 3, excluded-volume ratios q = 1

4
Lr
Dr

and z = πq where Lr/Dr = 10. The presence of a negative
azeotrope is indicated in panels (e) and (f) as a bold black line, which is shown to be parallel to the dilution line [gray diagonal shown in (e)
and (f)].

Binodals denoting coexistence between phases of any sym-
metry may be established from equating chemical potentials
and pressures in conjunction with the minimum conditions
for the nematic variational parameters, where relevant. Phase
diagrams can be represented in a pressure-composition (P −
x) plane or, alternatively, in a density-density representation
using ρr0 = c(1 − x) and ρd0 = cx in terms of the overall
particle concentration c and disk mole fraction (0 < x < 1).
In order to remain consistent with the Gaussian approximation
adopted in our analysis, we will focus on asymmetric mixtures
characterized by both monomer-disk and disk-disk excluded
volumes being much larger than the monomer-monomer one.
The considerable excluded-volume disparity thus ensures that
the nematic order of all components be sufficiently strong.
Concretely, we impose that αr,d > 5 for all numerical results
to be self-consistent.

VI. PHASE DIAGRAMS

Figure 3 presents an overview of the isotropic-nematic
phase diagram for a mixture of reversibly polymerizing rods
and disks at three different temperatures. The choice of
excluded-volume parameter q and z is inspired by the typical

dimensions of experimentally realizable anisotropic colloids,
where the monomeric rods and disks usually have equal
largest dimensions (Lr = Dd ). The monomer aspect ratio
Lr/Dr can be chosen freely but we fix it here at Lr/Dr = 10.
The disk aspect ratio is not constrained as long as the disks
are sufficiently thin (Dd/Ld � 1). In this study we keep the
persistence length fixed at �p = 3. We found that variations up
to �p = 10 (corresponding to stiffer monomers) did not lead to
major changes in the phase behavior. For practical reasons we
refrained from exploring the near-rigid rod limit (�p → ∞)
which is known to cause the polymers to grow to unphysically
large lengths [19].

Several key trends in the phase diagrams can be discerned.
First, Fig. 3(a) correspond to high-temperature scenario in
which reversible polymerization happens on a very limited
scale. The shape-dissimilar nature of the mixture translates
into a phase diagram that is highly asymmetric about the
equimolar point x = 0.5. Second, demixing is prominent
given the large range of monomer-disk compositions where
the mixture fractionates into strongly segregated uniaxial ne-
matic phases [Fig. 3(a)]. Only at very low osmotic pressures,
where particle exclusion effects are relatively weak, does the
mixture remain miscible throughout the entire composition
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FIG. 4. Nematic order of the polymers (αr) and disks (αd ) and
polymer mean aggregation number (m) of the nematic N+ phase in
coexistence with the isotropic phase I across the azeotropic region.
The corresponding binodal in Fig. 3(c) has been indicated in red.

range. We further observe that the discotic nematic N− can
be stabilized over a relatively broad pressure range, while
the polymer nematic (N+) only features at elevated pressures,
where polymerization is strong enough for the long polymers
to align into a conventional nematic organization with the
disks interspersed antinematically. The phase diagram also
features a triple I − N+ − N− equilibrium in agreement with
previous predictions [34,35] and experiment [57,59] for disks
mixed with nonpolymerizing rods.

Reducing the temperature stimulates polymer growth and,
consequently, enhances the stability window for the polymer-
dominated nematic [Figs. 3(b) and 3(c)]. Reversible poly-
merization thus renders the phase diagrams less asymmetric.
At the same time, the osmotic pressure (and concomitantly
the particle concentrations) at which nematic order occurs
drops significantly as polymerization becomes more promi-
nent. Furthermore, the I − N+ binodals develop a remarkable
(negative) azeotrope which in Fig. 3(b) coincides with the
triple pressure. Under these conditions, coexistence occurs be-
tween a discotic nematic, a polymer nematic and an isotropic
fluid with the latter two having the same monomer-disk com-
position. At lower temperature the azeotrope comes out more
prominently at x ≈ 0.2 [Fig. 3(c)]. In the density-density
representations shown in the bottom panels, the azeotrope
manifests itself at the point where the tie line connecting
the monomer and disks concentrations of the coexisting I
and N+ phases coincides with the dilution line. The latter
are straight lines emanating from the origin along which the
overall particle concentration changes but the monomer-disk
composition is preserved. It can be gleaned that upon follow-
ing a dilution line at, for instance, x = 0.2 the sequence of
phase transitions encountered depends strongly on tempera-
ture. At high temperature [Fig. 3(a)] the isotropic fluid first
transforms into N−, then develops a triphasic I − N+ − N−
equilibrium. At low temperature, however, a polymer nematic
is formed first, followed by a binematic N+ − N− coexistence
while the triphasic equilibrium does not show up at all unless
the monomer concentration is significantly increased. Fig-
ure 4 provides insight into the change of nematic order of the

polymers and disks as well as the mean aggregation number
of the N+ across the azeotrope. In view of their considerable
excluded volume, the disks are way more ordered than the
polymers (αd > αr). Increasing the mole fraction of disks
reduces the nematic order of both components, though the de-
crease is much more significant for the disks than the change
of αr for the polymers which in fact develops a minimum at
the azeotrope.

We move on to explore a similar mixture featuring more
slender rod monomers, namely, Lr/Dr = 25. The resulting
phase diagram is shown in Fig. 5. The asymmetry of the
mixture is now very strong with the monophasic N+ and
N− regions being largely unstable except for strongly pu-
rified systems (x close to 0 or 1) [Fig. 5(b)]. Qualitatively,
the phase diagram resembles the one in Fig. 3(a), but the
isotropic fluid undergoes a gas-liquid-type phase separation
producing two phases differing in composition. The I1-phase
may be associated with a discotic colloidal gas, and I2 with
its liquid counterpart. The demixing is driven by the extreme
excluded-volume difference between the rod monomers and
the disks. This phenomenon has been reported for (nonpoly-
merizing) rod-disk mixtures in Ref. [33], where the effect
was ascribed to a depletion of disks by the much smaller
rods. Isotropic-isotropic demixing has been more generally
observed when mixing different shapes dominated by hard-
core repulsion [72], including thin and thick rods [73], spheres
and disks [74,75], and disks differing in diameter [76]. It
has also been observed in thermotropic LC-solvent mixtures
where the effect is primarily of enthalpic origin and is caused
by specific interactions between the LC forming molecules
and the solvent [77,78]. It is well known that mixing colloids
with nonadsorbing polymer depletants creates an effective
attraction between the colloids which is entirely of entropic
origin and may drive various types of demixing mechanisms
[79]. In our case, the depletion effect is however less clear-
cut given that the “depletants” reversibly polymerize into a
wide array of different sizes [80] and experience orientation-
dependent volume-exclusion interactions, which are usually
ignored in colloid-polymer models. Moreover the average
polymer size depends, via Eq. (15), on the monomer con-
centration which is different in the gas and liquid phases.
Figure 5(c) demonstrates that the difference in mean aggrega-
tion number between the two isotropic phases is in fact quite
small, with the disk-rich fraction harboring slightly longer
polymers. Note that the presence of isotropic-isotropic demix-
ing gives rise to a low-pressure triple equilibrium where both
phases coexist with a discotic nematic N−.

VII. QUADRUPLE FLUID COEXISTENCE

At this stage, one might wonder whether a mixtures could
be designed in which the two separate triple equilibria in
Fig. 5 were to join into a quadruple coexistence featuring all
fluid phases. In Fig. 6(a) we demonstrate that this scenario is
indeed possible. For the particular mixture shown there, the
rod monomers and disks no longer have equal largest dimen-
sions (Lr = Dd ) but the disk diameter is somewhat smaller
than the rod length, namely Dd = 0.7Lr while the rods are
kept sufficiently slender (Lr/Dr = 25). The excluded-volume
asymmetry is then sufficiently reduced to make the two triple
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FIG. 5. Phase diagram in the osmotic pressure-composition (P − x) representation with the following parameters: persistence length �p =
3, effective temperature εb = −1, excluded-volume ratios q = 1

4
Lr
Dr

, and z = πq corresponding to a monomer aspect ratio Lr/Dr = 25. The disk
mole fraction x is plotted on a linear scale (a) and on a logarithmic scale (b) to highlight the behavior close to single-component systems (pure
polymers x = 0, and pure disks x = 1). Note the presence of a coexistence between an isotropic gas and fluid phase (I1 and I2) with different
disks compositions (gray region). (c) Comparison of mean aggregation numbers mI between I1 and I2 for a given pressure. I1 corresponds to
the phase with the lowest disk mole fraction x.

points coincide and generate a simultaneous coexistence be-
tween two isotropic and two nematic phases, each differing in
monomer-disk composition and overall particle concentration.
This mixture is by no means unique and belongs to a family
of monomer-disk size ratios where a remarkable I1-I2-N+-N−
quadruple point could be encountered, as illustrated by the
colored manifold in Fig. 6(b). This result provides important
guidance if one wishes to explore these intricate multiphase
equilibria in real-life mixtures featuring reversibly polymeriz-
ing rods mixed with colloidal platelets.

At this point we wish to draw a connection with re-
cent theoretical explorations of polymer depletion on purely
monomeric colloidal rods which have revealed similar multi-
phase equilibria involving one-dimensional periodic smectic
structures as well as fully crystalline states [81]. Similar

FIG. 6. (a) Phase diagram in the osmotic pressure-composition
(P − x) representation showing an I1-I2-N+-N− quadruple point at
P = 4.29. For this particular case, �p = 3, εb = −1.2, Lr/Dr = 25
and Dd/Lr = 0.7. (b) Visualization of combinations of rod-disk
excluded-volume ratio (q and z) and temperature εb where an I1 −
I2 − N+ − N− quadruple coexistence is possible.

phenomena involving isotropic-nematic-columnar quadruple
points had been reported previously for disk-polymer mix-
tures [82]. In those studies, the multiphase equilibria emerge
from an effective one-component theory based on free-volume
theory where polymeric depletants, envisaged as fixed-shape
spherical particles that do not interact with one another, are
depleted from the surface of the colloidal rod due to volume
exclusion as per the original Asakura-Oosawa model [83–85].
In our work, the depletion effect is strongly convoluted since
all components (polymer species and disks alike) are explic-
itly correlated, albeit on the simplified second-virial level.
Furthermore, high-density crystal phases with long-ranged
positional order are not considered in the present study since
their stability requires strong uniformity in particle shape [86],
which is not the case in our mixtures. In fact, even for basic
mixtures of nonassociating hard rods mixed with hard disks
the full phase behavior at conditions of elevated particle pack-
ing remains largely elusive to this day. Large-scale numerical
simulations or density-functional computations are needed to
overcome the limitations of the simple second-virial approach
taken here, but these are technically challenging to implement
for dense multicomponent systems.

The results gathered in Fig. 6 illustrates the possibility
of generating four different fluid textures emerging from re-
versibly changing excluded-volume-driven interactions alone,
without the need to invoke attractive interparticle forces. This
could bear some relevance on the emergence of functionality
through liquid-liquid type phase separation in biological cells
which are composed of biomolecules possessing a multitude
of different shapes, some of them controlled by reversible
association [87,88].

VIII. CONCLUSIONS

We have explored the phase behavior of a simple model for
thermoresponsive supramolecular rods mixed with discotic
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particles. Possessing attractive tips the rod monomers re-
versibly associate into polymers that retain their basic slender
rod shape and experience only a limited degree of backbone
flexibility. The interaction between the species is assumed to
be of steric origin such that basic shape differences between
the constituents, more specifically the excluded-volume dis-
parity, plays a key role in determining the prevailing liquid
crystal symmetry. The principal ones are a polymer nematic
(N+) composed of nematic polymer interspersed with an an-
tinematic organization of disks and a discotic nematic (N−) in
which the polymers are dispersed antinematically. Lowering
temperature stimulates polymer growth which enlarges the
stability window for the N+ phase. The phase diagram devel-
ops a marked azeotrope upon increasing the mole fraction of
added disks which indicated that the polymer nematic is sta-
bilized by the addition of nonadsorbing rigid disks provided
their mole fraction remains small. The polymer-dominated
nematic phase eventually becomes destabilized at larger mole
fractions where mutual disk alignment disrupts the nematic
order of the polymers in favor of the formation of a discotic
nematic phase in which the polymers self-organize into an
antinematic structure. The corresponding molecular weight
distribution functions strongly deviates from the usual expo-
nential form and becomes nonmonotonic with a maximum
probability associated with oligomeric aggregates. Enhancing
the shape asymmetry between the rod monomers and disks
we observe a depletion-driven demixing of the isotropic fluid
which opens up the possibility of a quadruple existence fea-
turing two isotropic phase along with the fractionated polymer
and discotic nematic phases. Such quadruple points occur in
a wide range of mixed-shape nematics involving supramolec-
ular rods templated by disks and highlight the possibility of
multiple liquid symmetries (both isotropic and anisotropic)
coexisting in mixtures of anisotropic colloids with reversible
and thermoresponsive shape-asymmetry without cohesive in-
terparticle forces. Future explorations should aim at a more
careful assessment of biaxial nematic order, ignored in the
present study, which could develop in near-equimolar rod-disk
mixtures provided they are stable against global demixing.
Polymerizing rods and disks with finite particle thickness
and low shape asymmetry may favor the emergence of liq-
uid crystals possessing lamellar, columnar or fully crystalline
signatures [89] which may be addressed using computer sim-
ulation models along the lines of Refs. [21,22,42]. Inspiration
for such mixed-shape lamellar structures could be drawn from
bio-inspired supramolecular liquid crystals [90] such as, for
example, the “sliding columnar phase” and similar stacked
architectures observed in cationic lyposome-DNA complexes
[91,92] which are essentially made up of mixed planar and
rod-shaped architectures.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: RENORMALIZED P2 APPROXIMATION FOR
SLIGHTLY FLEXIBLE POLYMERS

We seek a simple perturbation theory for the one-body den-
sity Eq. (11) of near-rigid polymers characterized by a finite
persistence length �p. Let us attempt the following generaliza-
tion of the probability density distribution for the polymers:

ρr (�, û) = �eεb+λr�e�(ar+ξ )P2(û) (A1)

with ξ representing a correction induced by the internal ori-
entational entropy of the polymer due to a small degree of
wormlike chain flexibility. Inserting this expression into the
wormlike chain contribution (last term) in the EL equation
(11), substituting ∇2 = ∂t (1 − t2)∂t and t = cos θ , we find
that for the uniaxial symmetry:

∇2ρ1/2
r

ρ
1/2
r

= 3

4
ã2

r +
(

3

2
ã2

r − 3ãr

)
P2(t ) + O(t4), (A2)

where ãr = ar + ξ denotes a rescaled alignment amplitude for
the polymer.

1. Antinematic polymers

We expect that neglecting the fourth-order term will be
fairly harmless in a strongly antinematic state where t is
generally very small (since θ ∼ π/2 for most polymers). This
situation is naturally encountered in the N− phase where
ar� � 0 in particular for long polymers. The constant in
Eq. (A2) is unimportant for the EL equation where it can
be subsumed into the normalization factor λ, but must be
retained when computing the wormlike chain free energy.
Then, consistency requires that:

ξ ≈ 1

3�p

(
3

2
ã2

r − 3ãr

)
, (A3)

where the chain persistence length �p should be interpreted in
units of the segment length Lr . From the above the dependence
of ξ on the bare alignment amplitude ar is easily resolved and
we find:

ξ ≈ 1 + �p + |ar | −
√

(1 + �p)2 + 2|ar |�p, (ar � 0).

(A4)

The correction factor vanishes in the rigid rod limit,
lim�p→∞ ξ = 0, as it should.

2. Nematic polymers

We may repeat the analysis for the case of conventional
nematic polymers as encountered in the polymer-dominated
N+ phase using a slightly different route. For ar � 1 the av-
erage polar deflection angle will be small and we may expand
the wormlike chain term up to quadratic order in θ . Using
the asymptotic relation P2(t ) ∼ 1 − 3θ2/2 and ignoring any
constant factors we find a simple approximation valid for |t |
close to unity (strong alignment):

∇2ρ1/2
r

ρ
1/2
r

∼ −3

2

(
ã2

r + 2ãr
)
P2(t ). (A5)
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Then, in analogy with the preceding case, we find an expres-
sion identical to Eq. (A4) except for a minus sign:

−ξ ≈ 1 + �p + |ar | −
√

(1 + �p)2 + 2|ar |�p, (ar � 0).

(A6)

This simple scaling result confirms our expectation, namely
that a small degree of backbone flexibility leads to a reduction
of the alignment propensity for the polymers, since |ar + ξ |
is always smaller than |ar |. For strongly aligned systems, this
effect turns out to be of equal strength for both nematic and
antinematically ordered polymers.
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