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Computer simulations of melts of ring polymers with nonconserved topology: A dynamic Monte
Carlo lattice model
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We present computer simulations of a dynamic Monte Carlo algorithm for polymer chains on a fcc lattice
which explicitly takes into account the possibility to overcome topological constraints by controlling the rate at
which nearby polymer strands may cross through each other. By applying the method to systems of interacting
ring polymers at melt conditions, we characterize their structure and dynamics by measuring, in particular, the
amounts of knots and links which are formed during the relaxation process. In comparison with standard melts of
unknotted and unconcatenated rings, our simulations demonstrate that the mechanism of strand crossing makes
polymer dynamics faster provided the characteristic timescale of the process is smaller than the typical timescale
for chain relaxation in the unperturbed state, in agreement with recent experiments employing solutions of DNA
rings in the presence of the type II topoisomerase enzyme. In the opposite case of slow rates the melt is shown
to become slower, and this prediction may be easily validated experimentally.
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I. INTRODUCTION

In dense polymer liquids and melts, the local Brownian
motion of each polymer chain is subject to long-lived topo-
logical constraints (a.k.a. entanglements) imposed by the
presence of the other chains. Well-documented manifestations
of entangled polymer chain behavior include chains reptative
motion in monodisperse melts of linear polymers [1–3] and
chains spatial segregation in monodisperse melts of unknotted
and unconcatenated ring polymers [4–7].

Polymer chains under typical dense conditions become
mutually entangled because they are effectively uncrossable
with each other [1,8]. In recent years, direct “manipulation”
of entanglements in single chain molecules has opened new
routes to fine-tune the mechanical properties of polymeric
materials. This is, for instance, the case of the so-called smart
materials like polycatenanes and polyrotaxanes [9,10], which
are made of interlocked components whose internal degrees of
freedom and mobility shape the unique conformational space
of the molecule.

Interlocking and other topology manipulations are not
exclusive to synthetic molecules; in fact, they take also
a prominent role in the organization of the long DNA
molecules which constitute the genomes of many organisms.
For instance, in eukaryotic nuclei in normal cell conditions
(interphase) the cm-long filament of DNA of each chro-
mosome is densely packed into a corresponding μm-sized
“territory” [11]. In this situation, tight confinement may result
in an “excess” of entanglements which may be detrimental
[12] at the later stage of cell division: a specific class of
enzymes, the topoisomerases [13] and in particular the type II
topoisomerase (hereafter, topoII), removes the entanglements
[14] between two nearby DNA strands by cutting one strand,
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moving the other through the cut, and ligating the broken
strand back.

Recently, Spakowitz’s group at Stanford [15] showed that
the “strand crossing” mechanism induced by the continuous
action of topoII relaxes (“fluidizes”) the topological con-
straints dominating the viscoelastic behavior of concentrated
solutions of entangled DNA rings. Moreover, by blocking the
activity of the enzyme, the once free rings become perma-
nently linked with each other: under these conditions the DNA
solution becomes equivalent to a so-called Olympic gel.

Theorized first by de Gennes [16,17], Olympic gels con-
stitute a fascinating class of soft materials due to their
remarkable theoretical [18–21], biological (the kinetoplast
DNA of certain protozoa [22,23] can be modeled [24] as an
Olympic gel), and even pharmacological [25] applications.
The fundamental difference between an Olympic gel and a
traditional gel is that the former is maintained together by
topological bonds and not by chemical cross-links [8]. Studies
like the one from Spakowitz’s group demonstrate that it is
indeed possible to change polymer topology to produce mate-
rials capable of switching from liquid-like to more solid-like
behavior.

In this paper, we present the results of extensive numerical
simulations describing the formation of linked networks of
ring polymers in melt conditions. The work generalizes the
efficient Monte Carlo scheme for lattice polymers described
in Refs. [26,27] by expanding the set of stochastic moves in
order to take explicitly into account the random occurrence of
strand crossings between nearby polymer fibers.

By studying the behavior of melts of rings at different chain
monomer numbers N and by comparing the systems in the
presence and absence of strand crossings, we confirm that the
strand crossing mechanism is capable of relaxing the effects
of the topological constraints between different rings and en-
hance the overall mobility of the polymer fluid. On the other
hand, this comes at the price of increasing the topological
“complexity” of the chains in terms of links and knots. We
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FIG. 1. Two-dimensional illustration of the lattice polymer
model with topology-preserving moves. Monomers (filled dots) oc-
cupy the spatial positions of a regular lattice (empty dots) and two
nearest-neighbor monomers are connected by a black line repre-
senting the polymer bond between them. For two nearest-neighbor
monomers occupying the same lattice site the bond connecting them
(the arcs) makes a unit of “stored length.” Lattice positions connected
by the double arrows are examples of MC allowed moves: (i) a unit
of stored length unfolding to a normal bond, (ii) a bond folding into
a unit of stored length, (iii) a Rouse-like move. Lattice positions
connected by the double arrows with the cross are examples of
MC forbidden moves: (iv) three consecutive monomers along the
chain occupying the same lattice site, (v) two non-nearest-neighbor
monomers violating the excluded volume constraint.

find that single chains swell with respect to the unknotted
and unconcatenated ensemble, their average size increasing
∝N1/2 as in ideal Gaussian rings: yet, we demonstrate that the
stationary chain size is not equivalent to Gaussian and analyze
in detail its structural and dynamical properties.

The paper is organized as follows. In Sec. II, we describe
the polymer model, the numerical details of the algorithm, its
computational cost and summarize the relevant length scales
of the polymer melts. In Sec. III, we present the main results
of the work. Then, in Sec. IV, we discuss an effect related
to the efficiency of the strand crossing mechanism that may
be tested in experiments employing DNA rings. The material
presented here is complemented by additional figures in the
Supplemental Material (SM) file [28].

II. THE POLYMER MODEL: SIMULATION PROTOCOL,
LENGTH SCALES, METHODS

A. The kinetic Monte Carlo algorithm

We employ a kinetic Monte Carlo (MC) algorithm on the
three-dimensional fcc lattice [29] with lattice spacing a corre-
sponding to our unit of length, and we model solutions of ring
polymers with excluded volume interactions.

The core of the algorithm is based on the elastic lattice
polymer model inspired by Rubinstein’s [30] repton model
and developed in Refs. [26,27]. In this scheme (illustrated
for simplicity in two dimensions in Fig. 1) two consecutive
monomers along the chain either sit on nearest-neighbor lat-
tice sites or they can be on the same lattice site: no more
than two consecutive monomers may occupy the same lattice
site, while nonconsecutive monomers are never allowed to
occupy the same lattice site due to excluded volume. The bond

length b between nearest-neighbor monomers takes then two
possible values, a or 0; in the latter case the bond is said to
host a unit of stored length. For a polymer with N bonds, the
total contour length L ≡ N〈b〉 < Na where 〈b〉 is the average
bond length. This numerical trick makes the polymer elastic.

The dynamic evolution of the chains is implemented
by combining two kinds of MC moves, which we classify
based on the effects they produce on the global topology of
the chain: (i) topology-preserving moves (Sec. II A 1) and
(ii) topology-changing by stochastic strand crossing moves
(Sec. II A 2).

1. Topology-preserving moves

The first set of MC moves is as in the original lattice model
[26,27]: by construction, these moves preserve the overall
topological state of the system. They consist in randomly
picking a monomer of one of the chains in the system and
attempting its displacement towards one of the nearest lattice
sites (see Fig. 1 for a schematic illustration of these moves).
The move is accepted if chain connectivity is preserved and
with the additional constraints that (1) either the destination
lattice site is empty or (2) the lattice site is occupied by only
one of the nearest-neighbor monomers along the chain. In
analogy with classical [1,8] polymer dynamics, case (1) is an
example of a Rouse-like move while case (2) is a reptation-
like move (essentially the move produces mass drift along the
contour length of the chain, as occurs in reptation dynamics).
It is easy to see that, at low polymer densities, most of the
lattice sites are empty and Rouse moves prevail over reptation,
while in the opposite case of high polymer densities, reptation
becomes the dominant mode through which polymer chains
relax. Therefore the algorithm reproduces known [1,8] fea-
tures of polymer dynamics and, thanks to the stored length
“trick” which integrates local fluctuations of the chain density,
remains efficient even when it is applied to the equilibration
of very dense systems [27].

2. Topology-changing (strand crossing) moves

Here we are interested in studying melts of ring polymers
where topology changes are induced over time. In partic-
ular we consider the basic mechanism of strand crossing
(hereafter, SC) involving a pair of nearby polymer filaments,
similar to the action triggered by the enzyme topoII in DNA
ring solutions [15].

As explained in Sec. II A 1, the original [26,27] lattice
model does not include such a feature: we show here that it is,
however, possible to remove this “constraint” and we describe
the simplest possible MC move capable of inducing a single
crossing between two nearby polymer strands. These polymer
strands may either belong to the same chain (intrachain SC)
or they can stay on two distinct chains (interchain SC).

The new move (which is also one of the main contributions
of this paper [31]) is explained with the help of the two
examples in Fig. 2. Take the two distinct polymer strands, each
of effective contour length 2a, which are illustrated, in each
panel of the figure, as the thicker portions of the two closed
curves. The two segments are chosen with the constraints that
the corresponding central monomers (the bigger dots) (i) are
positioned at lattice site distance a and (ii) one can switch
position with the other and be then reconnected to the other
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FIG. 2. Illustration of Monte Carlo moves for strand crossing.
On each pair [red or orange (color) or dark or light gray (black
and white)] of ring polymers we identify those portions (the thicker
strands) of contour length 2a whose central monomers (the bigger
dots) are one lattice site far apart. The two strands can be “trans-
formed,” such that the original central monomer of one strand turns
into the central monomer of the other strand (left-hand-side panels
vs right-hand-side panels) and vice versa, without violating the chain
connectivity constraint. In some cases (e.g., as in the top row) this
operation does not lead to strand crossing, in others (e.g., as in the
bottom row) it does. We list all cases (12 in total) leading to strand
crossing and implement them in our MC algorithm. The configura-
tions in the bottom row constitute an example of a linking (left →
right) or an unlinking (right → left) event.

chain with no violation of polymer connectivity and preserv-
ing the contour length. By exhaustive search, we have then
compiled the list of all possible (36 in total) swapping moves
compatible with these constraints. By closer examination, we
verify that 24 of them do not produce SC (essentially the two
chain strands remain on parallel planes even after swapping,
see the polymer configurations in the top row in Fig. 2), while
the remaining 12 moves effectively lead to a single SC (as in
the polymer configurations in the bottom row in Fig. 2). The
successful SC has been verified by looking at the variation,
|�G| = +1, of the Gauss linking number G [see definition,
Eq. (11)] relative to the piecewise closed curves formed by
the triplets of monomers involved in the MC swapping move.

The implementation of this move in the kinetic MC algo-
rithm is as follows: We pick randomly two polymer strands
of effective contour length 2a and then check whether they
belong to the set compatible with a SC and, if so, we swap
the corresponding central monomers. When the two involved
strands belong to the same ring, the move is introducing knots
in the chain (Sec. III A 3), while on two separate rings it will
induce the formation of links (Sec. III B).

B. Simulation details

We have considered bulk solutions of M closed (ring)
polymer chains, each chain made of N monomers or
bonds. With values N × M = [40 × 5120, 80 × 2560, 160 ×
1280, 320 × 640, 640 × 320] each system contains a fixed
number of monomers, 204 800. Bulk conditions are im-
plemented through the enforcement of periodic boundary
conditions in a simulation box of total volume V = L3, where
the linear size of the box, L, has been fixed based on the
monomer number density ρa3 ≡ NM

V a3 = 1.23 corresponding
to melt conditions [27,32].

We have studied and compared structure and dynamics for
different setups:

1. Ring polymer melts with nonconserved chain topology.
Here, the topological state of the system changes in time
according to the SC mechanism. Therefore, the MC scheme
includes the whole set of dynamic moves described in Secs.
II A 1 and II A 2.

2. Ring polymer melts with conserved chain topology.
Here, only moves from Sec. II A 1 are included. Since
now topology cannot relax, the choice of the initial state
is crucial. The following two options have been considered:
(i) Equilibrated melts of unknotted and unconcatenated or (for
brevity and as in Ref. [32]) untangled rings. (ii) Equilibrated
melts of permanently catenated rings, corresponding to the
equilibrated polymer conformations obtained at the end of the
simulations with nonconserved chain topology. The name an-
ticipates some properties of the rings (catenation and linking)
that will be discussed in depth in Sec. III B.

3. For additional comparison, we have also considered
ideal (i.e., no excluded volume and no topological interac-
tions) rings.

At each MC time step, monomers are picked at random
and time is measured in MC units of τMC ≡ NM. For polymer
solutions with nonconstrained topology (Sec. II A 2) one
needs to specify also the rate λSC at which SCs occur. In
principle, this rate is a free parameter of our model that we
must tune. For the typical experimental conditions described
in the work by Spakowitz et al. [15], it was estimated that the
action rate of topoII on DNA rings is close to its intrinsic rate
of O(1 s−1) and ≈104 times slower than the mean diffusion
time of a single DNA persistence length. Considering that our
polymers are pretty flexible (see Sec. II E), we take here one
SC move (modeled according to Sec. II A 2) each 104 MC
time steps (i.e., λ−1

SC = 104τMC) with only topology-preserving
moves. Notice that the algorithm makes the implicit assump-
tion that the enzyme topoII is immediately available for the
reaction, i.e., the SC process is intrinsically reaction-limited.
Nonetheless, we will also discuss (see Sec. IV) smaller values
of λSC corresponding to “less efficient” topoII.

Figure 3 shows that the algorithm generates the correct
dynamics. By taking the longest rings with N = 640, the
diffusive monomer [Fig. 3(a)] and chain [Fig. 3(b)] motions
for the three cases of melts of (i) untangled rings, (ii) rings
with active SCs, and (iii) permanently catenated rings nicely
superimpose on each other on timescales shorter than the SC
timescale λ−1

SC, i.e., ring dynamics on these timescales is not
sensitive to SCs and deviates above λ−1

SC. Importantly, this test
confirms that the local segment dynamics is not significantly
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FIG. 3. Time mean-square displacements of (a) single chain monomers [g1(τ ) ≡ 〈[�rmon(t + τ ) − �rmon(t )]2〉] and (b) the chain center of
mass [g3(τ ) ≡ 〈[�rc.m.(t + τ ) − �rc.m.(t )]2〉] for rings with N = 640 monomers. Here, �rmon(t ) and �rc.m.(t ) are the spatial positions for the single
monomer and center of mass of the chain respectively, and brackets denote ensemble and time averages. In both panels, the lines for (i) melts
of untangled rings (red, solid), (ii) rings with active SCs (orange, dashed), and (iii) permanently catenated rings (yellow, dot-dashed) visibly
depart (circle) from each other at the imposed SC timescale λ−1

SC/τMC = 104 (see Sec. II B).

altered by the presence of SCs (see Sec. II C for more details
on this point).

C. Comparison with other simulation methods

In this section, we review some computational work having
significative overlap with (i) our method of creating strand
crossings and (ii) the consequent formation of linked gels
from melts of entangled rings.

In two papers [33,34], Schaffer introduced and studied the
physical properties of a Monte Carlo model for polymer dy-
namics where monomers have distinct positions on the simple
cubic lattice and bonds are allowed to fluctuate by inclusion of
the first, second, and third nearest neighbors of each monomer.
Chain dynamics proceeds by random monomer displacements
which respect bond constraints and excluded volume. Then,
topological constraints between different chains are switched
on (off) by forbidding (allowing) chain conformations with
bonds which may cross at their midpoints. Using these simple
rules, the model was applied first to melts of linear chains
[33,34] and later on to melts of untangled rings and rings with
SCs [35]. Our results for ring structure (see Sec. III A 1) and
dynamics (see Sec. III B 2) substantially confirm the results
reported in Ref. [35].

An approach very similar to Schaffer’s was then employed
by Lang and coworkers in a series of more recent papers
[18–21]: specifically, the authors complemented the bond fluc-
tuation model on the fcc lattice [36,37] with a set of diagonal
moves (the so-called “x traps” [38]), which enforce the tem-
porary overlap of polymer bonds and hence possible SCs.
The model was used to study the conformational properties
of Olympic gels, however the dynamics of the gel was not
discussed.

The philosophy at the basis of these two models is the
same: letting random overlaps between bonds as the first, nec-
essary, step for strand crossings to occur. However (quoting
Schaffer [33]), this procedure suffers from the inconvenience
that “the local density is not guaranteed to be the same ...
because the noncrossing simulations exclude a small fraction

of configurations (those in which bond midpoints overlap) that
are included in the crossing simulations.” At the same time,
albeit small, the chain local mobility changes in moving from
noncrossing to crossing simulations (Ref. [33], Fig. 5) and the
corresponding single-monomer time mean-square displace-
ments g1(τ ) do not coincide at short timescales (see figure
8 in Ref. [33]) where we expect the effects of SCs to be small.

For the completeness of the discussion, it is worth men-
tioning that the preservation of the local density may indeed
be a problem that one has to deal with also in classical off-
lattice simulations. Related to that, in Ref. [24] Michieletto
and coworkers used classical Brownian dynamics simulations
of a bead-spring polymer model to construct model Olympic
gel conformations for the DNA kinetoplast. In this study, en-
tanglements were removed by (i) switching off the nonbonded
monomer-monomer interactions of the system, (ii) letting the
system equilibrate, and (iii) slowly turning interactions on
again. However, as demonstrated by Auhl et al. [39], this
procedure must be performed with extreme care, especially
when applied to dense polymer solutions because it may lead
to considerable artifacts if the system is not allowed to equili-
brate properly.

Clearly both problems discussed above (the nonpreserva-
tion of the local density and chain mobility) are absent in our
work, see Figs. 2 and 3(a). At the same time, the protocol
allows for easy calibration of the relevant SC parameter λSC

(Sec. II B) whose effects are considered here (see Discussion,
Sec. IV).

D. Computing observables for polymer structure

The ensemble-average value, 〈O〉, for the generic
single-chain observable O is given by the mathematical
expression:

〈O〉 ≡ 1

M

M∑
m=1

1

Trun − τd

∫ Trun

τd

Om(t )dt, (1)
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TABLE I. Computational cost of MC runs. In interacting systems
(melts), M is the total number of chains, whereas for ideal sys-
tems with no excluded volume interactions it represents the number
of single independent runs. (i) Trun: length of the single MC run.
(ii) τd : ring self-diffusion time. Values for permanently catenated
rings with N = 320 and N = 640 are not defined because the cor-
responding time mean-square displacements of the center of mass
[g3(τ ), Eq. (17)] attain the characteristic plateaus for stacked dy-
namics [see Fig. 9(c)]. τMC = NM is the Monte Carlo time unit (see
Sec. II B for details).

N M Trun[τMC] τd [τMC]

Ideal rings

40 100 	6.0 × 106 	7.0 × 103

80 100 	6.0 × 106 	7.0 × 103

160 100 	6.0 × 106 	1.0 × 104

320 100 	9.0 × 106 	4.0 × 104

640 200 	1.5 × 107 	2.0 × 105

Melts of untangled rings

40 5120 	2.0 × 106 	1.0 × 104

80 2560 	2.0 × 106 	3.0 × 104

160 1280 	2.0 × 106 	2.0 × 105

320 640 	4.0 × 106 	7.0 × 105

640 320 	1.5 × 107 	3.0 × 106

Melts of rings with strand crossings

40 5120 	2.0 × 106 	1.0 × 104

80 2560 	2.0 × 106 	3.0 × 104

160 1280 	2.0 × 106 	1.0 × 105

320 640 	5.0 × 106 	6.0 × 105

640 320 	1.4 × 107 	2.0 × 106

Melts of permanently catenated rings

40 5120 	2.0 × 106 	1.0 × 104

80 2560 	2.0 × 106 	5.0 × 104

160 1280 	7.0 × 106 	5.0 × 105

320 640 	9.8 × 107

640 320 	1.9 × 108

where Om(t ) is the value of the observable calculated for the
mth ring at time t and Trun is the total runtime of the MC
trajectory (values for Trun, illustrating the computational cost
of our simulations, are reported in Table I). The time average
in Eq. (1) is calculated by discarding the initial portion of
each trajectory which is of the order of the self-diffusion
time [τd (N ), see values in Table I] of the polymers. τd (N )
corresponds to the timescale for the polymer to diffuse of a
distance the size of its own mean gyration radius, g3(τd (N )) ≡
〈R2

g(N )〉, where g3(τ ) is the time mean-square displacement of
the chain center of mass [see definition, Eq. (17)].

E. Polymer model: Length scales

For completeness, here we give a few additional details
about the relevant length scales (summarized in Table II)
used to characterize the local bending and the entanglement
properties of polymer melts. We remind the reader that, as
in Refs. [27,32], we choose the monomer number density
ρ = 1.23a−3 where a is the fcc lattice unit distance (Sec. II A).

TABLE II. Values of physical parameters for melts of ring poly-
mers on the fcc lattice with unit distance a and monomer number
density ρa3 = 1.23: (i) 〈b〉, mean bond length; (ii) �K , Kuhn length
[Eq. (2)]; (iii) ρK�3

K , number of Kuhn segments per Kuhn volume
[40]; (iv) Le, entanglement length [Eq. (4)]; (v) Ne ≡ Le/〈b〉, number
of bonds per entanglement length.

〈b〉/a �K/a ρK�3
K Le/�K Ne

0.74 1.48 1.9937 100.633 201.266

Average bond length 〈b〉. Due to excluded volume effects
and chain packing the average bond length 〈b〉 = 0.74a < a.

Kuhn length �K . The Kuhn length is used to quantify the
flexibility of polymer chains [1,8]. Given the mean-square
end-to-end distance 〈R2(�)〉 between monomers at contour
length separation � on linear chains, �K is defined as [1,8]:

�K ≡ lim
�→∞

〈R2(�)〉
�

, (2)

provided that such a limit exists [41]. To determine the
polymer Kuhn length of our polymer chains, we simulated
systems of M = 640 linear chains with N = 320 monomers
per chain and with chain dynamics as described in Sec. II A 1.
After equilibration, we computed the ratio [Eq. (2)] 〈R2(�)〉

�
,

where � = n〈b〉 is the contour length separation between any
two monomers separated by n bonds along the chain. We
have found that this quantity gives a plateau in the region
� = [200〈b〉, 300〈b〉] whose value, estimated by best fit to
a constant, is reported in Table II. For completeness, the
same procedure applied to ideal polymers leads to �K 	 1a,
i.e., ideal polymers are locally more flexible than interacting
polymers.

Entanglement length Le. Dense untangled rings are known
[4,7,42] to compact above a characteristic length scale, which
is the entanglement length Le of the chains. According to the
classical packing argument by Lin [43] and by Kavassalis and
Noolandi [44], the number of entanglement strands inside the
volume spanned by a single entanglement volume,

ρK

Le/�K
〈R2(Le)〉3/2 	 20, (3)

is a universal constant. In Eq. (3), ρK is the number density of
Kuhn segments and 〈R2(Le)〉 = �K Le is the mean-square end-
to-end distance of a linear polymer chain of contour length
=Le [Eq. (2)]. Equation (3) is then equivalent to

Le

�K
	

(
20

ρK�3
K

)2

, (4)

i.e., the ratio Le/�K is a function of the number of Kuhn
segments inside the (Kuhn) volume =�3

K . By using Eq. (4)
it is a simple exercise to extract Le/�K and the corresponding
number of monomers per entanglement length, Ne. In partic-
ular, we notice that the largest rings with N = 640 ≈ 3Ne are
above the entanglement threshold and are expected [4,7,42] to
crumple due to topological constraints.
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TABLE III. Single-chain properties in melts of N-monomer
rings. (i) 〈R2

g〉: ring mean-square gyration radius, expressed in lattice
units. (ii) Pknot: mean knotting probability per chain (only for melts
of rings with strand crossings).

N 〈R2
g〉/a2 Pknot

Ideal rings

40 3.178 ± 0.002
80 6.284 ± 0.006
160 12.52 ± 0.02
320 24.9 ± 0.1
640 50.0 ± 0.3

Melts of untangled rings

40 3.3334 ± 0.0004
80 6.361 ± 0.003
160 11.88 ± 0.02
320 21.9 ± 0.1
640 38.1 ± 0.5

Melts of rings with strand crossings

40 3.5093 ± 0.0005 0
80 7.088 ± 0.004 1 × 10−3

160 14.30 ± 0.02 6 × 10−3

320 28.6 ± 0.1 3 × 10−2

640 57.6 ± 0.4 9 × 10−2

Melts of permanently catenated rings

40 3.521 ± 0.004
80 7.10 ± 0.01
160 14.36 ± 0.07
320 29.3 ± 0.3
640 59 ± 1

III. RESULTS

A. Single-chain structure

1. Ring size

We have studied first how the average ring size, or the
polymer mean-square gyration radius

〈R2
g(N )〉 ≡ 1

N

N∑
i=1

〈(�ri − �rc.m.)
2〉 ∼ N2ν, (5)

scales as a function of N . In Eq. (5), �ri are the monomer
coordinates, �rc.m. is the chain center of mass, and ν is the Flory
scaling exponent [8]. The results for the different ensembles
are summarized in Table III and plotted in Fig. 4(a).

In agreement with Refs. [5,7,32], topological constraints
in untangled melts are ineffective below N � Ne where Ne ≈
200 is the total number of monomers per entanglement length
(see Sec. II E). Above Ne, the mutual topological constraints
between nearby rings let the chains to deviate from the ideal
behavior 〈R2

g(N )〉 ∼ N2×1/2 and to become more compact: in
particular here we report the scaling 〈R2

g(N )〉 ∼ N2×0.4, which
describes [4] the slow crossover to the asymptotic compact
regime 〈R2

g(N )〉 ∼ N2×1/3 [6,7]. In the presence of active SCs
the rings swell again, 〈R2

g〉 ∼ N2×1/2, and reach a steady state
which does not change further after the SC mechanism is

FIG. 4. (a) Mean-square gyration radius of ring polymers,
〈R2

g(N )〉, as a function of the number of bonds, N (for detailed values
at each N , see Table III). Different colors and line styles are for
different polymer ensembles (color code and line styles for untangled
rings, rings with SC, and permanently catenated rings are as in
Fig. 3), and dashed lines correspond to theoretical asymptotic behav-
ior. (b) Distribution functions of gyration radius, P(Rg/(〈R2

g〉)1/2), in
the different ring ensembles and for the largest chains (N = 640).
The up-triangles correspond to Minato and Hatano’s exact analytical
result for ideal rings [45].

switched off and rings become permanently catenated [over-
lying dashed and dot-dashed lines in Fig. 4(a)].

It is interesting to point out that, while the reported scaling
exponent ν = 1/2 is the same of ideal chains, rings struc-
ture remains nonetheless nonideal. To show that, we have
computed the complete distribution function, P(Rg), of the
gyration radius and compared their shapes in the different
ensembles [see Fig. 4(b) for the particular case N = 640 and
Fig. S1 in the SM [28] for rings of different values of N]. First,
ideal rings [dotted line in Figs. 4(b) and S1(a)] are remarkably
well described by the analytical expression [up-triangles in
Fig. 4(b) and dashed line in Fig. S1(a) in the SM [28]] by
Minato and Hatano [45]. Second, untangled rings [solid lines
in Figs. 4(b) and S1(b) in the SM [28] ] show systematic
deviations from the ideal behavior which are especially visible
for small and large values of Rg. Third, rings with active SCs
and permanently catenated rings have, as expected, the same
P(Rg) [dashed and dot-dashed lines in Figs. 4(b) and in Figs.
S1(c) and S1(d) in the SM [28] ]: the curves are consistent
with ideal behavior only for large values of Rg, while for
small values of Rg they confirm the nonideal nature of rings
and highlight the incomplete screening of excluded volume at
short scales.
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FIG. 5. Monomer-monomer mean contact probability 〈pc(�)〉L

as a function of �(1 − �/L) and for the largest simulated rings (N ≡
L/〈b〉 = 640) in the different ensembles. We define two monomers
to be in contact if their distance is � one lattice unit. (inset)
Local scaling exponent γ (�), defined as the logarithmic derivative of
〈pc(�)〉L [Eq. (6)]. Dashed horizontal lines correspond to theoretical
asymptotic behavior. Color code and line styles are as in Fig. 4.

2. Contact probabilities

We investigate the physics of polymer self-interactions
and consider the mean contact probability 〈pc(�)〉L between
pairs of monomers separated by n bonds (equivalent to the
mean contour length � = n〈b〉, see Table II) for rings of total
mean contour length L ≡ N〈b〉. 〈pc(�)〉 appears frequently
in studies related to DNA-DNA interactions in chromosome
conformation capture experiments [46–48].

In agreement with Ref. [49], finite-chain effects can be
reduced and the universal shape of 〈pc(�)〉L in the large-L
limit can be demonstrated by plotting the curves for dif-
ferent values of L in terms of the variable 	 = �(1 − �/L)
(see Fig. S2 in the SM [28]). It is then useful to discuss
the scaling behavior of 〈pc(�)〉L by introducing the local
exponent

γ (�) ≡ d ln〈pc(�)〉L

d ln 	
. (6)

Figure 5 shows results for 〈pc(�)〉L (main) and the corre-
sponding γ (�) (inset) for rings with N = L/〈b〉 = 640 in the
different ensembles. Asymptotically, ideal rings, rings with
SCs, and permanently catenated rings converge all to the
ideal value γ = − 3

2 while untangled rings show γ 	 −1.2,
consistent [50] with ν 	 0.4 (Fig. 4) for these systems. On
the contrary, and quite interestingly, the small scale behavior
of γ (�) for rings with SCs is strongly nonideal, in agreement
with the similarly nonideal behavior seen for the correspond-
ing chain size distributions [Fig. 4(b)].

3. Knot statistics in ring polymers with strand crossings

Topological constraints in untangled melts make the chains
more compact with respect to the ideal case, a situation which
is radically altered in the presence of active SCs [Fig. 4(a)].
SCs act in the same way regardless of whether the two strands
are on the same or on different rings (see Sec. II A 2): for

this reason they change both single-chain topology by forming
knots and interchain topology by forming links (studied in
Sec. III B).

There exists copious literature on the effects of physical
knots (and links) in polymer filaments and soft matter, see the
review work [51]. Knots in closed curves can be classified
based on the number of irreducible crossings they present
when one tries to smoothly deform the curve so as to force
it to lie on a plane [51,52]: neglecting chirality, there exist
one single knot with three crossings (31, the trefoil knot), one
with four (41, the figure-eight knot), two with five crossings
(51 and 52), etc. In general, at increasing knot complexity, the
same number of crossings correspond to several topologically
distinct knot types.

In general, knots classification is carried out by means of
suitable topological invariants. One of the simplest and most
popular of the knot invariants, which we also adopt in the
present work, is given by the so-called Alexander polynomial
[51,52] of the knot, which provides a mathematically tractable
representation of the smallest number of chain crossings oc-
curring in the closed curve. Here, we used the open package
KYMOKNOT [53] to detect and classify first the knots which
form in our polymer chains through SC. Then, for simplicity,
we used the sole number of irreducible crossings, K, for
knot classification, i.e., knots like the already-mentioned 51

and 52 fall into the same group K = 5. An example of a
model ring conformation entrapping a trefoil knot is given in
Fig. 6(a).

Figure 6(b) shows the probability P(N ;K) that
N-monomer rings have given knot type K = 0 (the unknot),
K = 3 (the trefoil, i.e., the simplest nontrivial knot) and so
on for knots of increasing complexity. Knots of complex
shapes are in general rare (the trefoil dominates), yet their
frequency increases [51,52] steadily with N and for N = 640
we are even able to detect a few, and quite complex, knotted
structures up to 11 crossings.

Then we consider the cumulative knotting probability, de-
fined as

Pknot (N ) ≡
∑

K=3,4,...

P(N ;K) = 1 − P(N ;K = 0). (7)

In Ref. [18], Lang and coworkers showed that for catenated
N-monomer rings in solution P(N ; kt = 01) 	 exp(−N/N0),
where N0 is some characteristic (and model dependent [54])
polymer length scale. The exponential character of P(N ;K =
0) matches the known conjecture [52,54] that the probability
of the unknot in ideal, closed lattice polygons decays expo-
nentially with the chain contour length, and it implies that
Pknot (N ) has a concave shape when displayed in a lin-lin plot.
Our data for Pknot (N ) do not seem to reflect this behavior,
they are better described instead by the simple power law
[see symbols vs line in the left-hand-side (l.h.s.) inset (lin-lin
plot) and the right-hand-side (r.h.s.) inset (log-log plot) of
Fig. 6(b)]:

Pknot (N ) =
( N

Nknot

)αknot

, (8)
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FIG. 6. (a) Model conformation of a ring polymer (in red) entrapping a trefoil (K = 3) knot (highlighted in white). (b) Probability
distribution function P(N ;K) of knots with K crossings in N-monomer rings (different symbols and line styles correspond to different values
of N) undergoing continuous SCs. Rings with N = 40 do not knot during the simulation. The two insets show plots [in lin-lin (left) and log-log
(right) representations] of the knotting probability Pknot, Eq. (7), as a function of N (symbols) and the corresponding best fit to power-law
behavior [line, Eq. (8) with Eqs. (9) and (10)].

with [55]

Nknot = 2203 ± 433, (9)

αknot = 1.9 ± 0.2. (10)

Of course it is possible that the quadratic behavior, Eqs. (8)
and (10), is just a crossover to the “∼1 − exp(−N/N0)” be-
havior and that we cannot detect the latter because polymers
of higher N need to be considered. Yet, it is interesting to
notice that the value αknot ≈ 2 [Eq. (10)] has a simple interpre-
tation: it mirrors the enforced mechanism where knots form
“cooperatively” due to random SCs between pairs of polymer
strands.

Another possible explanation for the discrepancy between
the results by Lang et al. [18] and Eqs. (8) and (10) may
come from the different ways the SCs are generated in the

two models. Lang et al. used the bond fluctuation model
[36,37] with the addition of a set of diagonal moves which
switch temporarily off all the entanglements (see comments
in Sec. II C): in this sense, their SC mechanism reproduces
somehow the features of an ideal polymer and for this reason
the reported knotting probability decays exponentially accord-
ing conjecture [52,54]. Our ring polymers, instead, remain not
ideal [Fig. 4(b)]: simply, the physical entanglements emerging
from the uncrossability [1,8] of the chains are resolved by
a dynamic mechanism which does not require chain-chain
overlap (Fig. 2).

In conclusion, to assess the validity of Eq. (8) systematic
(and computationally much more expensive) simulations of
polymers of higher values of N need to be done; in particular,
since Pknot (N ) → 1 for large N , we expect rings with N �
Nknot to be always knotted on average.
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FIG. 7. (a) Pair of model ring conformations connected by a link with Gauss linking number [Eq. (11)] G = 1. (b) Probability distribution
function P(N ; |G|) of the absolute value |G| of the Gauss linking number between pairs of N-monomer rings. The two insets show plots [in
lin-lin (left) and log-log (right) representations] of the decay length G0 vs N [symbols, Eq. (12)] and best fit to power-law behavior [line,
Eq. (13) with Eqs. (14) and (15)]. Color code, line styles and symbols are as in Fig. 6(b).
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TABLE IV. Network properties in melts of N-monomer rings with strand crossings. (i) G0: decay length for the probability distribution
function of the Gauss linking number, P(N ;G) ∼ e−|G|/G0 (N ) (see Fig. 7(b) and Fig. S3 in the SM [28]). (ii) 〈LD〉: mean linking degree. (iii)
plink: mean fraction of pairs of linking rings.

N G0 〈LD〉 plink

40 0.164 ± 0.004 0.376 ± 0.001 (7.32 ± 0.02) × 10−5

80 0.22 ± 0.01 1.143 ± 0.003 (4.46 ± 0.01) × 10−4

160 0.29 ± 0.01 2.754 ± 0.004 (2.153 ± 0.003) × 10−3

320 0.36 ± 0.01 5.77 ± 0.01 (9.00 ± 0.02) × 10−3

640 0.46 ± 0.01 10.92 ± 0.08 (3.29 ± 0.02) × 10−2

B. Structure and dynamics of ring polymers with
strand crossings

1. Physical links

The physical links between any given pair of rings R1 and
R2 have been quantified in terms of the corresponding Gauss
linking number [51,52]:

G ≡ 1

4π

∮
R1

∮
R2

(�r2 − �r1) · (d�r2 ∧ d�r1)

|�r2 − �r1|3 , (11)

where �r1 (respectively, �r2) is the spatial coordinate for a point
on the (oriented) contour line formed by ring R1 (resp., ring
R2) and d�r1 (resp., d�r2) is the corresponding infinitesimal
increment. As in the case of the Alexander polynomials (used
in Sec. III A 3), G is also a topological invariant: physically,
it represents the number of times (with “+” or “−” sign,
depending on the reciprocal orientations of the curves) that
each curve winds around the other. For our rings modeled as
discretized closed paths on the 3d fcc lattice, Eq. (11) has been
evaluated numerically by employing the efficient algorithm by
Klenin and Langowski [56]. An example of a pair of linked
rings (with G = 1) is given in Fig. 7(a).

To validate the method we verify first that the distribution
functions for G, P(N ;G), are symmetric around G = 0 (Fig.
S3 in the SM [28]). Then, for |G| � 1 [57] P(N ;G) follows
the exponential decay [see Fig. 7(b)]:

P(N ;G) ∼ e−|G|/G0(N ). (12)

The “decay length” G0(N ) as a function of N (for the specific
values, see Table IV) is well described by the power-law
behavior [see symbols vs line in the l.h.s. inset (lin-lin plot)
and r.h.s. inset (log-log plot) of Fig. 7(b)]:

G0(N ) =
( N

Nlink

)αlink

, (13)

with [55]

Nlink = 5277 ± 239, (14)

αlink = 0.363 ± 0.005. (15)

The reported value for αlink, close to the scaling exponent ν

of the gyration radius of the ring [Fig. 4(a)], is consistent
with the intuitive picture that two rings link to each other
if the spatial distance between the corresponding centers of
mass is of the order or smaller than Rg(N ) ∼ Nν [Eq. (5)].
Since G0(N ≈ Nlink ) ≈ 1, Nlink is intuitively close to the poly-
mer length scale N∗ described in Ref. [18] which marks
the crossover “from a nonconcatenation contribution to an

overlap-dominated concatenation contribution.” Although the
polymer model adopted here and the one by Lang et al. are
not the same and a quantitative comparison is difficult, our
Nlink [Eq. (14)] and Lang et al.’s N∗ [18] are similarly large,
in particular of the order of a few thousand bonds.

By using the results on the Gauss linking number, we
consider (i) the mean linking degree 〈LD(N )〉 defined as
the mean number of chains linking to a single ring and
(ii) the mean ring fraction 〈Mcc(N )〉/M belonging to the
largest connected component of chains in the melt. The results

FIG. 8. (a) Mean ring fraction in the largest connected compo-
nent 〈Mcc(N )〉/M (black line, left y axis), and mean linking degree,
〈LD(N )〉 (gray line, right y axis) as a function of N . (b) Frequency
of observing a ring linking to, respectively, LD = 0, 1, . . . , M − 1
other rings (symbols) in comparison with the binomial function
[lines, Eq. (16)] for random graphs. Color code and symbols are as
in Fig. 6(b).
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(a) (b)

(c)

FIG. 9. Time mean-square displacement g3(τ ) of the center of mass of N-monomer rings in melt. (a) Melts of untangled rings. (b) Melts
of rings in the presence of SCs. (c) Melts of permanently catenated rings. The insets display Ng3(τ )/τ as a function of τ . Curves of different
colors and with different symbols [color code and symbols are as in Fig. 6(b)] are for different values of N (see legends).

are shown in Fig. 8(a). 〈LD(N )〉 increases linearly [18] with
N and the largest (≈10) attained value is consistent with the
characteristic number of 10–20 chains [7,42] protruding the
volume occupied by a single ring in melt. We see that, for
〈LD(N )〉 � 2, i.e., when one ring is connected on average to
two (or more) other rings, a single giant network is obtained
(see also Fig. S4 in the SM [28] for instantaneous snapshots
of the networks for different values of N).

It is interesting to notice that, in agreement with previous
studies [21,24], the network of connections has the structure
of a random graph, hence the frequency of observing a ring
linking to, respectively, LD = 0, 1, . . . , M − 1 other rings is
accurately described [symbols vs lines in Fig. 8(b)] by the
binomial function:

P(M, plink; LD) =
(

M − 1

LD

)
pLD

link (1 − plink )M−1−LD. (16)

Equation (16) is equivalent to the probability that a single
node in a random graph made of M nodes is connected to LD
other nodes, with plink (N ) = 〈LD(N )〉/(M − 1) (see values in
Table IV) representing the linking probability or the fraction
of distinct node-to-node links out of the M(M − 1)/2 total
possible combinations. As in Ref. [24], the onset of a single
fully connected polymer network can then be interpreted as

the percolation transition on the graph, signifying that, on
average, each node can be reached from any other node by
walking on the graph.

2. Single-chain and network dynamics

We analyze first the polymer dynamics in the different
ensembles. To this purpose, we consider the mean-square
displacement of the spatial position �rc.m.(t ) of the center of
mass of the chain [3]:

g3(τ ) ≡ 〈[�rc.m.(t + τ ) − �rc.m.(t )]2〉, (17)

as a function of time τ .
Unconstrained motion implies that g3(τ ) ∝ τ/N in the

long-time regime. Figure 9(a) shows that this is not the case
for untangled rings, in agreement with the original simula-
tions by Schram and Barkema [27]. Conversely, introducing
SCs into the system [Fig. 9(b)] removes the constraints and
accelerates the dynamics to the extent that g3(τ ) is now pro-
portional to 1/N [Fig. 9(b)]. Then, by the right amount of SCs,
it is possible to “fluidize” [15] the entanglements induced by
the presence of uncrossable strands and in this way to enhance
the dynamics of the polymer system.
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λ−1
SC = 104τMC

FIG. 10. Time autocorrelation function χ (τ ) for two rings re-
maining linked on timescale τ in the presence of SCs [Eq. (18)]. The
vertical dotted line corresponds to the timescale λ−1

SC = 104τMC for
SC. The “’s” mark the positions of the polymer self-diffusion times
τd (N ) (see Table I). Color code and symbols are as in Fig. 6(b).

In agreement with that, by again turning off the SC activity
and then “quenching” the topology, polymer dynamics slows
down dramatically [Fig. 9(c)] up to the complete arrest (evi-
dent in the saturation of g3(τ ) at large times). Slow-down for
N = 40 and N = 80 is due to the fact that rings have linked
into multichain structures [Figs. S4(a), S4(b), S5(a), and S5(b)
in the SM [28]) which tend to move slower. Starting from
N = 160 [Figs. S4(c)– S4(e) and S5(c)–S5(e) in the SM [28]]
rings are locked together into a single, giant structure and,
therefore, unable to perform large-scale diffusion, hence the
reported saturation. This effect confirms experimental reports
[15] of a rubber-like plateau in the storage modulus of topoII-
inactivated solutions of catenated DNA rings. Accordingly,
the relative motion displayed by rings with N = 160 [line with
“�” symbols, Fig. 9(c)] is the consequence of the fact that a
non-negligible amount of unconcatenated rings is still under-
going random diffusion [see Figs. S4(c) and S5(c) in the SM
[28]). Notice that these dynamic effects appear on timescales
larger than the imposed (Sec. II A) timescale λ−1

SC = 104τMC

for SCs: on timescales τ � λ−1
SC, the three ensembles show

the same subdiffusive behavior ≈τ 0.85 characteristic [27] of
untangled rings.

To complement the analysis on ring dynamics (Fig. 9) in
the presence of active SCs, we characterize now the interplay
between ring motion and the “fluidization” [15] process in-
duced by the SC mechanism from the point of view of the
formed polymer network. To this purpose, we introduce the
characteristic function Clink

i j (t ) = 1, [Clink
i j (t ) = 0] between

the pair of rings i and j being linked (unlinked) at time t and
calculate the corresponding time autocorrelation function:

χ (τ ) ≡ 〈Clink
i j (t + τ )Clink

i j (t )〉
〈Clink

i j (t )2〉 , (18)

where the average is taken over all possible pairs i and j.
The results for rings made of N monomers are shown in
Fig. 10. Qualitatively, we identify three regimes: (i) Below
the SC timescale λ−1

SC = 104τMC, χ (τ ) displays a power-law

FIG. 11. Asymptotic diffusion coefficient of rings with active
SCs normalized to the corresponding values in untangled melts as
a function of the inverse of the SC rate, λ−1

SC/τd (N ), normalized to
the ring self-diffusion time in untangled melts (see Table I). Color
code and symbols are as in Fig. 6(b).

decay. (ii) This is followed by a second regime which, by
increasing N , becomes slower than the first one and attains a
quasiplateau. Intuitively, this is due to the fact that, on such
timescales, both linking and unlinking events may happen,
while at times τ < λ−1

SC we expect on average only a single
unlinking event. (iii) Finally, on timescales larger than the ring
self-diffusion time τd (N ) [corresponding to the timescale for
the polymer to spread over a distance the size of its own mean
gyration radius, g3(τd (N )) ≡ 〈R2

g(N )〉, see Table I], the two
rings occupy, on average, distinct regions in space and χ (τ )
decays as an exponential. The “persistent” regime (ii) valid
for long chains is particularly noteworthy, because it suggests
that, with SCs, work rings coalesce into a “dynamic” gel-like
structure.

IV. DISCUSSION

Our melts of rings with active SCs form transient networks
(Fig. 10) which, in spite of the non-negligible amount of
introduced linking (Fig. 7), move faster than in the untangled
case [Fig. 9(a) vs 9(b)]. Physically this happens because SCs
operate at a reasonably fast rate (λ−1

SC = 104τMC, see Sec. II A),
guaranteeing rapid linking and unlinking events which main-
tain rings only “loosely” entangled with each other.

By the same argument one may imagine that, by oppor-
tunely slowing down the SC rate λSC, it ought to be possible
to create systems of interlocked rings where topological con-
straints are temporary yet long-lived [58]: as a consequence,
now chain dynamics is expected to be slower than in un-
tangled melts [59]. Intuitively this situation can be realized
by choosing λ−1

SC to be of the same order or larger than the
self-diffusion time τd of rings in untangled melts since, sup-
posedly, during this timescale a single polymer has interacted
with the chains to which it is effectively able to link.

To validate this idea (which may be also tested experi-
mentally, for instance by resorting to DNA rings [15]), we
performed new simulations for the same melts of rings but
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FIG. 12. (a) g3(τ )/τ : time mean-square displacement of the center of mass of rings with N = 640 monomers normalized to time τ . (b)
χ (τ ): time-correlation function for two rings remaining linked on time span τ in the presence of SCs [Eq. (18)]. Different colors and symbols
are for different SC rates λSC (see legend).

with the two different rates λ−1
SC = 105τMC and λ−1

SC = 106τMC,
i.e., ten and one hundred times slower than the previous one.
We have then estimated the asymptotic diffusion coefficients
of the rings, DSC, by best fits of the terminal behavior of
the corresponding mean-square displacements, g3(τ )/τ (see
Fig. S6 in the SM [28]), normalized to time τ . The results
(normalized to the corresponding values for untangled melts,
Duntangled) vs the inverse of the SC rate, λ−1

SC/τd (N ), normal-
ized to the polymer self-diffusion times in untangled melts
are shown in Fig. 11. The plots confirm our expectations: slow
SC rates result in melts with slower relaxation dynamics com-
pared with the untangled case. Notice that, while the precise
value of the SC rate affects the dynamics of the melt, static
quantities like the gyration radius of the ring or the Gauss
linking number (see, respectively, Figs. S7 and S8 in the SM
[28]) do not change for the different setups.

It is also worth noticing that, even in those cases where SC
accelerates the asymptotic chain dynamics with respect to the
untangled case, detailed analysis of g3(τ )/τ shows a regime
where the action of SCs makes the rings temporarily slower
[Fig. 12(a), the “λ−1

SC = 106τMC” curve vs the untangled case
for N = 640 and on timescales τ/τMC � 105]. On the same
timescales, the time autocorrelation function χ (τ ) for link
dynamics [Eq. (18), see corresponding lines in Fig. 12(b)]
becomes increasingly slower with λ−1

SC, demonstrating that the
observed polymer slows down compared with the untangled
case is the consequence of persistent links between rings.

V. CONCLUSIONS

Motivated by recent experiments [15] employing the
enzyme topoII to induce “fluidization” of the topological con-
straints arising in entangled solutions of DNA rings, we have
introduced a dynamic Monte Carlo computational scheme for
polymer chains on the fcc lattice which takes explicitly into
account the action of the enzyme by controlling the rate at
which two nearby polymer strands are able to cross through
each other. By applying then the model to ring polymers made
of N monomers and in melt conditions, we discuss how the

strand-crossing mechanism influences both the static and the
dynamic properties of the chains.

At stationary conditions, ring polymers swell with respect
to the untangled (i.e., unknotted and unconcatenated) case and
stay nonideal (Fig. 4). On the other hand, they tend to become
increasingly knotted (Fig. 6) and to form a macroscopic net-
work of linked chains (Figs. 7 and 8). As a byproduct, yet
quite intriguingly, we find (Fig. 6, insets) that the knotting
probability Pknot (N ) increases with N more sharply than in
other analogous studies. We conjecture that this is due to the
fact that knots form through the random crossings between
pairs of polymer strands, and we point out that it would
be worth investigating this question more systematically by
simulating ring polymers of much larger contour length (for
instance, by adapting the efficient GPU-based implementation
of the original lattice model described in Ref. [27]).

On the dynamics side, we show (Fig. 9) that the ability to
produce strand crossings make polymers faster and that large
rings tend to “glue” together into a permanent gel as soon
as crossings are not allowed anymore. Yet an acceleration of
the dynamics is not true in general, but only when the rate
for strand crossings is fast enough. In the opposite case, the
dynamics of the melt may be even slower than the untangled
case (Fig. 11), a prediction which might be tested by using,
again, DNA rings in the presence of topoII.

We conclude on a technical remark. Notice that the model
presented here is for flexible chains (Sec. II E) while polymers
in general, and DNA in particular [60], are typically semiflex-
ible i.e., locally stiff [8]. The inclusion of a bending penalty
term in our model is not presenting particular technical diffi-
culties and its consequences on the topological properties of
ring polymers will be examined in future studies.
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