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Critical and geometric properties of magnetic polymers across the globule-coil transition
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We study a lattice model of a single magnetic polymer chain, where Ising spins are located on the sites of a
lattice self-avoiding walk in d = 2. We consider the regime where both conformations and magnetic degrees of
freedom are dynamic, thus the Ising model is defined on a dynamic lattice and conformations generate an an-
nealed disorder. Using Monte Carlo simulations, we characterize the globule-coil and ferromaget-to-paramagnet
transitions, which occur simultaneously at a critical value of the spin-spin coupling. We argue that the transition
is continuous—in contrast to d = 3 where it is first order. Our results suggest that at the transition the metric
exponent takes the θ -polymer value ν = 4/7 but the crossover exponent φ ≈ 0.7, which differs from the expected
value for a θ polymer.
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I. INTRODUCTION

A linear polymer in thermal equilibrium in a solvent can
be either extended (“swollen”), or collapsed into a dense
globule, depending on the interplay between the excluded
volume effects, van der Waals attraction between monomers,
and its screening by the solvent [1]. The physics of the phase
transition between these two states, the so-called globule-coil
transition or θ transition, is well captured by a simple lat-
tice model of an interacting self-avoiding walk (ISAW), with
an attractive interaction between monomers on the nearest-
neighboring sites of the lattice [2].

For magnetic polymers, where monomers carry magnetic
moments (“spins”), the key parameter is the ratio of the re-
laxation times of magnetic and conformational degrees of
freedom [3]: If spins are fast, then conformations generate a
quenched disorder for the magnetic subsystem [3–6]; in the
opposite limit, the chain with quenched spins is qualitatively
equivalent to a disordered copolymer. Several models of this
kind have been discussed in the literature [7–10].

The regime where both spins and conformations have
comparable relaxation times has so far received much less
attention. In this regime, spins are defined on a dynamic lat-
tice, whose thermal fluctuations need to be taken into account
self-consistently, on an equal footing with spin fluctuations. In
this direction, Ref. [11] introduced a model where monomers
of a self-avoiding walk (SAW) carry Ising spins, which inter-
act via a short-range ferromagnetic interaction. The model is
investigated on a three-dimensional (3D) cubic lattice using
a mean-field approximation and Monte Carlo (MC) simula-
tions. In the absence of external magnetic field, Ref. [11]
finds a first-order magnetic induced collapse transition—from
a swollen paramagnetic phase to a ferromagnetic globular
phase. (On increasing the magnetic field, the transition is
reported to become continuous.) In Ref. [12] we considered
a dynamic hydrophobic-polar model in 2D. The collapse
transition was found to be consistent with a (continuous) θ

transition of a nonmagnetic ISAW.

In this paper, we consider a ferromagnetic Ising model with
spins placed on a SAW on a 2D square lattice. Using MC sim-
ulations, we also find a joint ferromagnetic and globule-coil
transition; however, our results indicate that it is continuous—
unlike the 3D model, where it is first order [11]. We argue that
the transition is characterized by the θ -point metric exponent
ν, but the crossover exponent θ is markedly different. We also
explore geometric properties of the model and stress the role
of the surface terms.

II. MODEL AND METHOD

We consider the model of Ref. [11]: Let UN be a set of all
SAW conformations of N monomers joined by N − 1 links
on a 2D square lattice. Each monomer i in a conformation
u ∈ UN carries an Ising spin, si = ±1, see Fig. 1. The spin-
spin interaction is short ranged: Two spins interact if they are
nearest neighbors on the lattice. Given a SAW conformation
u ∈ UN and a sequence of N spins, {s}, the Hamiltonian is

E ({s}, u) = −J
∑

〈i, j〉∈u

sis j − h
∑

j∈u

s j . (1)

Here the summation in the first term runs over pairs of spins,
i, j ∈ u, which are nearest neighbors on the 2D lattice, and
J > 0 is the ferromagnetic exchange coupling. In the second
term, h is the magnetic field.

The partition function corresponding to Eq. (1) reads

Z =
∑

u∈UN

∑

{s}
e−βE ({s},u), (2)

where β = 1/kT is the inverse temperature. To set the energy
units, we take β = 1 without loss of generality. Note that the
summations in Eq. (2) run over both conformations and spin
configurations.

For h = J = 0, spins decouple from conformations, and
model of Eqs. (1) and (2) reduces to a noninteracting SAW.
In the limit h � J , all spins are aligned, and Eqs. (1) and (2)
reduces to the ISAW model. In this work we only consider the
case h = 0. In the limit J � 1, the model (1)–(2) describes
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FIG. 1. Spin or SAW configurations and MC updates. Straight
lines show a sample SAW, open circles denote spins-up, s j = +1,
and closed circles denote spins-down, s j = −1. The BEE move is
changing (a) to (b), where the edge shown in dashed red line in (a) is
removed and the edge shown in dashed red line in (b) is added. The
reconnect update is changing the configuration between (a) and (c).
Note that configurations (a) and (c) have the same energy Eq. (1).

Ising spins located on a noninteracting SAW—for the spins,
the geometry is effectively one-dimensional and spontaneous
magnetization is absent in the thermodynamic limit [3–5].
For J � 1, it is natural to expect a dense ferromagnetically
ordered globule.

We note that since Eq. (1) only involves a single coupling
constant, it is natural to expect that the ferromagnetic ordering
sets in simultaneously with the globule-coil transition. In the
next sections we verify this expectation and characterize the
corresponding transition.

A. Method

Most popular methods for MC simulations of SAW-like
model are based on chain growth techniques with pruning
and enrichment [13], and their flat-histogram generalizations
[14]. We use a different strategy: We work directly with
fixed-length configurations and employ a variant of the worm
algorithm [15] for interacting SAW-like models [16]. Specif-
ically, the method uses two sets of MC updates. First is a
bilocal reptation update, where we simultaneously remove a
monomer from one end of a chain and add a monomer to the
other end—the direction of the new edge and the value of the
new spin are selected at random, see Figs. 1(a) and 1(b). This
is nothing but the BEE move of Ref. [17]. Second, to render
the reptation dynamics ergodic and improve convergence for
dense configurations, we also use the “reconnect” update,
where we rotate a single edge in the middle of the chain and
attach it to the end of the chain—which needs to be adjacent
to an internal monomer, see Figs. 1(a) and 1(c). The reconnect
update is nonlocal since it reverses directions of O(N ) links
of the SAW. However, the Metropolis acceptance probability
[18] equals unity since the update does not change the energy,
Eq. (1). The reconnect update allows the simulation to escape
from conformations where the end of the chain is trapped
inside a dense configuration [16]. Furthermore, to improve
convergence of magnetic observables, we also use standard
Wolff cluster updates [19] for spins which keep the conforma-
tion fixed.

III. NUMERICAL SIMULATIONS

We simulate our model on a square 2D lattice for chains of
up to N = 104 monomers. We typically use up to 109 MC

FIG. 2. Top: Mean-squared magnetization as a function of J for
several values of N . Solid squares with error bars are MC results,
and lines are a guide for the eye. Error bars are estimated via binning
analysis. In these simulations we use at least 7 × 109 MC steps per
data point. Bottom panel Mean energy as a function of J for several
values of N . Squares are MC data with error bars, and lines are a
guide for they eye. See text for discussion.

updates for thermalization and collect statistics for 1010 to
1011 MC steps. Here in a single MC step we select an update
(a BEE move, a reconnect or a spin cluster update) at random.

We perform simulations for h = 0 and 0 < J < 2. We
collect statistics for the mean energy, Eq. (1), per spin, ε =
〈E〉/N , the mean magnetization per spin, 〈m〉 ≡ 〈∑ j∈u s j〉/N
and its powers, 〈m2〉 and 〈m4〉. To characterize the structural
properties of the model, we measure the mean end-to-end
distance of the SAW, 〈R2

N 〉 [20]. Here and elsewhere in the
text, angular brackets denote the MC average approximating
the average over the Gibbs distribution (2).

Figure 2 (top) shows simulation results for mean-square
magnetization, 〈m2〉, as a function of J for several repre-
sentative values of the SAW lengths N . At small values
of J , 〈m2〉 → 0 at increasing N , which is consistent with
the spontaneous magnetization being zero in the thermody-
namic limit [3–5]. For larger values of the coupling constant,
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FIG. 3. Mean-squared end-to-end distance as a function of N
from N = 100 to N = 3000 for several values of J . Stars are MC
data with error bars, dashed lines are a guide for the eye, and solid
lines are R2 ∼ N2ν with ν = 3/4 (the solid red line) and ν = 4/7 (the
solid black line). See text for discussion.

magnetization increases with increasing J and starts saturating
for J � 0.88, which suggests a ferromagnetic ordering for
large J .

Figure 2 (bottom) illustrates the behavior of the mean
energy, which approaches the asymptotic N → ∞ value of
−2J for a densely packed fully magnetized walk. Finite-size
corrections are clearly visible for both 〈m2〉 and 〈ε〉, and
we note that corrections are more pronounced for J � 0.82,
especially in Fig. 2 (bottom).

Figure 3 shows the dependence of the mean end-to-end dis-
tance, 〈R2

N 〉, on N for several values of the coupling constant
J . For N � 1 the scaling is visually consistent with a power
law,

〈
R2

N

〉 ∼ N2ν (1 + · · · ), (3)

where dots represent corrections to scaling. For compari-
son, Fig. 3 also shows the asymptotic power laws N2ν with
ν = 3/4—which is a noninteracting SAW value (see, e.g.,
Ref. [21])—and ν = 4/7—which is the exact value for the
2D ISAW at the θ point [22].

Numerical data in Fig. 3 seem to indicate that the scaling
of the end-to-end distance for our model crosses over from a
noninteracting SAW limit for small J to a θ -point scaling for
J ∼ 0.83, and further on toward ν = 1/2, which is expected
for a dense globular phase [23]. Taken together, our numerical
results shown in Figs. 2 and 3, indicate that both magnetic and
structural properties of the model undergo a change at around
J ∼ 0.83.

A. The joint transition

To locate the magnetic transition between paramagnetic
and ferromagnetic phases, we compute the fourth-order
Binder cumulant,

U4 = 1 − 〈m4〉
3〈m2〉2

, (4)

FIG. 4. Top: Binder cumulants (4) as a function of J for several
values of N . Solid squares with error bars are MC results, lines are a
guide for the eye. Error bars are estimated via a Gaussian resampling
from error bars of 〈m4〉 and 〈m2〉. Bottom: Scaled mean end-to-end
distance (3) with ν = 4/7, which is the exact value for the 2D ISAW
at the θ point [22]. Squares are MC data with error bars, and lines are
a guide for the eye. See text for discussion.

which is expected to become scale independent at the transi-
tion [25].

Figure 4 (top) shows the dependence of the Binder cumu-
lant (4) on interaction J for several values of N . For large
values of the coupling constant (not shown in Fig. 4), U4

tends to the value 2/3 from below, as expected for a ferro-
magnetic state [25]. Curves of the cumulant U4 for varying
N cross around J ≈ 0.834, indicative of the paramagnetic-
to-ferromagnetic phase transition. Finite-size corrections are
clearly visible in Fig. 4 (top), thus to get a more precise esti-
mate for the transition temperature, we analyze the pairwise
crossings of the U4 vs N curves for a series of N values from
N = 2000 to N = 9000. The final estimate for the critical
values is

Jc = 0.8340(5), U (c)
4 = 0.308(8). (5)

This result (5) is close to but distinct from the estimate Jc =
1/1.18 ≈ 0.847, stated as preliminary without much discus-
sion in Ref. [11].
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FIG. 5. Data collapse for the scaled end-to-end distance,
〈R2

N 〉/N2ν , vs the scaled coupling x = (J − Jc )Nφ . We fix ν = 4/7
and vary Jc and φ. On this plot, Jc = 0.832 and φ = 0.7. From visual
inspection of the quality of the collapse, we estimate Jc = 0.833(1)
and φ = 0.7(1). See text for discussion.

Figure 4 (bottom) shows the dependence of the mean-
squared end-to-end distance (3). Here we rescale the values
of R2

N by N2ν with ν = 4/7, as suggested by the analysis
in the previous section. With this rescaling, 〈R2〉/N2ν be-
comes N-independent (modulo corrections-to-scaling) at Jθ =
0.833(1), which is consistent with Eq. (5) within the com-
bined error bars.

We also checked that the existence of the crossing is sensi-
tive to the value of the metric exponent ν: If ν is changed by
more then 0.07, then the crossing disappears.

We thus conclude that our numerical data suggest that (i)
the ferromagnetic and globule-coil transition occur simulta-
neously at the critical coupling constant given by Eq. (5), and
(ii) the scaling of the end-to-end distance at the transition is
consistent with the θ -point metric exponent ν = 4/7.

B. The crossover exponent

We turn our attention to estimating the crossover exponent
φ which quantifies the deviation from criticality via the scaled
coupling x = (J − Jc)/N−φ [21]. Specifically, the end-to-end
distance is expected to follow 〈R2

N 〉 = N2ν f (x), where f (·)
is a dimensionless function of a dimensionless variable. To
probe this Ansatz, we perform data collapse of the end-to-end
distance, where we keep ν = 4/7 fixed at its θ -point value
[22], and vary Jc and φ. This procedure is illustrated in Fig. 5.

We find that our MC data are consistent with Jc = 0.833(1)
and φ = 0.7(1), where the error bars are conservative es-
timates from visual inspection of the quality of the data
collapse. We note that the value of Jc is consistent with Eq. (5).
The crossover exponent clearly differs from the θ -point value
for the ISAW model, where the Coulomb gas prediction is
φ = 3/7 [22] and numerical estimates are somewhat larger
(see Ref. [26] and the discussion therein).

We also perform a similar data collapse analysis for
the magnetization, where the scaling Ansatz is 〈m2〉 =
N−2βφg(x), where g(x) is a scaling function and β is the

FIG. 6. Data collapse for the second moment of magnetization
〈m2〉. In this plot we use φ = 0.71, Jc = 0.832, and β = 1/8. See
text for discussion.

order parameter exponent. Figure 6 illustrates the procedure
where we take β = 1/8—which is the value for the 2D Ising
universality class. While the quality of our numerical data
does not allow for estimating critical exponents with accuracy
of any less then, say, 50%, we find that our data are consistent
with the order parameter exponent taking the 2D Ising value,
and the crossover exponent φ ≈ 0.7.

We stipulate that a high-precision estimate of the crossover
exponent and/or the order parameter exponent should take
into account two sources of corrections. First, for a disordered
Ising model, logarithmic corrections [27], are known to lead
to apparently varying exponents [28]. Second, nonuniversal
corrections due to the surface tension are strong for 2D SAWs
[29] because the surface-to-volume ratio in 2D scales as
∼N−1/2 which is close to the universal θ -point values ν = 4/7
and φ = 3/7.

C. Bulk-to-surface ratio

Strictly speaking, the very notions of bulk and surface are
not well defined for J < Jc, where typical conformations are
coil-like. To come up with a quantitative characteristic which
is meaningful across the globule-coil transition and can be
interpreted as a bulk-to-surface ratio in the globular phase,
we consider a local neighborhood of a monomer. We note
that each monomer (apart from two endpoints of the chain)
can be classified according to the number of its neighbor
monomers as being either 1D-like (two neighbors), 2D-like
(four neighbors), or surfacelike (3 neighbors).

For a length-N conformation, we count the numbers of
monomers of each kind; dividing by N we obtain the fractions,
nα (α = 2, 3, 4), so that n2 + n3 + n4 = 1 − 2/N . Qualita-
tively, the ratio n2/(n3 + n4) characterizes a blob-and-link
structure of a coil-type conformation, and n4/n3 can be in-
terpreted as a proxy for a bulk-to-surface ratio.

Figure 7 shows the fractions of each kind of monomers
as a function of J for chains of length from N =
1000 to N = 4900. For comparison, we also compute the
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FIG. 7. Fractions of monomers with two neighbors, n2 (left), three neighbors, n3 (center), and four neighbors, n4 (right). Solid circles are
the MC data for the Ising model (1)–(2), stars are the MC data for the ISAW model, and dotted lines are a guide for the eye. The vertical solid
black line is the θ point for the ISAW, taken from Ref. [26]. The vertical dashed brown line is Eq. (5).

corresponding fractions for an ISAW model [i.e., Eqs. (1) and
(2) with h � J].

Several features stand out in Fig. 7. First, even in the
noninteracting SAW limit, J → 0, conformations are not fully
1D-like, as n2 ≈ 0.75 only (the finite-size corrections be-
come negligible for N � 100). The “bulk” fraction, n4, is
vanishingly small in the J → 0 regime, and the fraction of
the “surface” monomers, n3, tends to 0.25 for J → 0. In the
opposite limit of large J , the 1D-like fraction tends to zero and
the “bulk” fraction grows. Most surprisingly, the “surface”
fraction, n3, develops a peak for both ISAW and Ising models
in the vicinity of their respective collapse transitions.

While the relation between these results to a bulk-to-
surface ratio of real polymer chains is qualitative at best and
that more work is needed to understand the nature of the
peaks of n3(J ), these results do illustrate the importance of
surface effects and stress the qualitative difference between
the magnetic SAW models and spin networks with mixed 1D
or 2D local connectivity [30].

D. Relation to the Ising model on rectangular lattices

It is instructive to compare the critical value of the Binder
cumulant, U (c)

4 [Eq. (5)], to the values for a usual Ising model
on a regular grid. For the Ising model on a rectangular L × W
lattice, the critical value of U4 depends on the boundary con-
ditions and on the aspect ratio of the lattice, L/W [31,32]. The
dependence on the boundary conditions is strong: on an L × L
lattice with periodic boundary conditions, U (c) ≈ 0.61, while
open boundary conditions lead to U (c) ≈ 0.4. Furthermore,
on the lattice with open boundary conditions, U (c) decreases
continuously for increasing aspect ratio L/W down to ≈ 0.35
for L/W = 2 [32] and further down for larger aspect ratios.

The critical value U (c)
4 , Eq. (5), is approximately compati-

ble with the result for the Ising model on a rectangular lattice
with open boundary conditions and the aspect ratio given
by the ratio of the eigenvalues of the gyration tensor of an
interacting SAW at the θ point [26]. More work is needed to
accurately trace this connection.

E. The nature of the transition

In 3D, the transition is clearly first order [11]. Our simula-
tions indicate that the transition is continuous in 2D. First, the
Binder cumulant (4) is a monotonic function of J for fixed N ,

cf. Fig. 4 (top). This is consistent with a continuous transition,
and is in contrast to the expected behavior for a first-order
transition, where the cumulant is nonmonotonic and develops
a dip at Jc as N increases [33].

We then perform simulations for the specific heat capacity
per monomer, which is given by the second moment of the
energy, Eq. (1) and (2),

C = 1

N
(〈E2〉 − 〈E〉2). (6)

For finite values of N , the heat capacity is expected to have
a peak in the critical region. The peak can be rounded and
shifted by finite-size corrections, and the evolution of the peak
height and shape is expected to be very different for first-
order and continuous transitions: For a first-order transition,
the height of the peak of C(J ) is expected to be linear in
N , while the width is expected to shrink as ∼N−1 [33]. For
continuous transitions, the structure of C(J ) in the vicinity
of Jc is controlled by the heat capacity exponent α, which is
typically different from unity.

FIG. 8. The specific heat capacity per monomer, Eq. (6), as a
function of the coupling constant J . Error bars are estimated via
statistical resampling from MC data for the first and second moments
of the energy. See text for discussion.
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FIG. 9. Distribution of the magnetization m = ∑
j∈u s j/N for

N = 10 000. The coupling constants are J = 0.830 < Jc (blue
points), J = 0.833 ≈ Jc (orange), J = 0.836 (just above the Jc,
green), and J = 0.840 > Jc (red). Each simulation uses ∼7 × 109

MC steps.

Figure 8 shows our numerical results for the specific heat
capacity. We note that numerical cancellations in Eq. (6) mag-
nify statistical errors of MC simulations, thus limiting the
values of N accessible in these simulations to be about an
order of magnitude smaller then those in Figs. 2–6—which is
comparable to the values reported in Ref. [11]. At these values
of N � 500, shown in Fig. 8, finite-size corrections are very
strong. Nevertheless, the available numerical data suggest that
the peak height dependence on N is sublinear and the peak
widths shrinks slower then 1/N . The overall shape of C(J )
curves in Fig. 8 is drastically different from those observed for
a first-order transition in 3D in Ref. [11]. We interpret these
observations, however limited, as an additional indication of
a transition being continuous, with the heat capacity exponent
α < 1.

We also note that we observe a single peak of C(J ), not
a two-peak structure reported for a site-diluted Ising model
[34] and a network of Ising spins with mixed 1D or 2D
local connectivity [30]. The difference with the latter is not
surprising given the role of the surfacelike spins, cf Fig. 7.

To further check the nature of the transition, we compute
distributions of observables. Fig. 9 shows the distribution of
the magnetization for N = 104 in the vicinity of the transition,
Eq. (5). The distribution is Gaussian-like on the paramagnetic
side, J < Jc, broadens on approach to the critical coupling,
and develops a clear ferromagnetic structure (m = ±1) for
J > Jc. In the critical region, we see no signs of a phase
coexistence which would signal a first-order transition.

IV. CONCLUSIONS AND OUTLOOK

Concluding, we study a 2D model of a magnetic poly-
mer chain where monomers of a self-avoiding walk on
a lattice carry Ising spins [11]. We use a variant of the
worm algorithm to simulate fixed-length chains of up to 104

monomers. We find a joint transition—where both spins order

ferromagnetically and the SAW collapses into a globular
phase—at J/T = 0.8340(5). The very fact that the transi-
tions occur simultaneously can be traced to the specifics of
the model, which only has a single coupling constant, the
exchange integral for the short-range spin-spin interaction.
What is less clear a priori, is the nature of the transition. Our
results suggest that the transition is continuous, in contrast to
a similar 3D model, where it is reported to be first order [11].
Our numerical results suggest that some critical exponents
(but not all of them) are inherited from the “parent” models,
namely the θ -polymer ISAW model, and the Ising model.
Specifically, we present numerical evidence that the metric
exponent ν at the transition takes the θ -point value ν = 4/7,
but the crossover exponent φ ≈ 0.7, which is clearly different
from the θ -polymer value of 3/7. We also present indications
that the magnetic order parameter exponent β is consistent
with the 2D Ising universality class value β = 1/8; however,
the accuracy of this observation given our simulation results
is relatively weak.

We study geometric properties of the model and classify
the local connectivity of monomers of the chain into 1D-
like, bulklike, and surfacelike. A possible interpretation of
our numerical results is that the surface-to-bulk ratio has a
peak in the vicinity of the transition. Incidentally, we also find
numerical evidence that for a noninteracting SAW, the fraction
of 1D-like monomers is 1/4 in the thermodynamic limit. To
the best of our knowledge, this was previously not discussed
in the literature. More work is needed to clarify the status and
physical meaning of these numerical results.

Concerning future work, it would be interesting to explore
more realistic models of magnetic polymers, e.g., by consider-
ing Potts or Heisenberg type models and general dipole-dipole
couplings in two and three dimensions. Models with separate
coupling constants might generate richer phase diagrams with
separate globule-coil and magnetic transitions.

Possible experimental realizations of magnetic polymers,
for which our model and its suggested generalizations may
be applicable, include magnetic filaments where magnetic
nanoparticles are either cross-linked by a polymer to form
linear structures—these can be realized via, e.g., biotemplaing
[35]— or self-organize into one-dimensional like structures
at liquid-liquid interfaces [36]. Monte Carlo simulations of
models of magnetic polymers may complement molecular
dynamics studies of magnetic filaments [37].

When this work was completed, we became aware of an
independent study of the same model in Ref. [38]. Our esti-
mates of the location of the transition and critical exponents
and those of Ref. [38] are consistent within the combined error
bars.
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