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Synaptic changes modulate spontaneous transitions between tonic and bursting neural
activities in coupled Hindmarsh-Rose neurons
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Experimentally, certain cells in the brain exhibit a spike-burst activity with burst synchronization at transition
to and during sleep (or drowsiness), while they demonstrate a desynchronized tonic activity in the waking state.
We herein investigated the neural activities and their transitions by using a model of coupled Hindmarsh-Rose
neurons in an Erdős-Rényi random network. By tuning synaptic strength, spontaneous transitions between
tonic and bursting neural activities can be realized. With excitatory chemical synapses or electrical synapses,
slow-wave activity (SWA) similar to that observed during sleep can appear, as a result of synchronized bursting
activities. SWA cannot appear in a network that is dominated by inhibitory chemical synapses, because neurons
exhibit desynchronized bursting activities. Moreover, we found that the critical synaptic strength related to the
transitions of neural activities depends only on the network average degree (i.e., the average number of signals
that all the neurons receive). We demonstrated, both numerically and analytically, that the critical synaptic
strength and the network average degree obey a power-law relation with an exponent of −1. Our study provides
a possible dynamical network mechanism of the transitions between tonic and bursting neural activities for the
wakefulness-sleep cycle, and of the SWA during sleep. Further interesting and challenging investigations are
briefly discussed as well.
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I. INTRODUCTION

Certain cells in the brain (e.g., in the thalamus) exhibit a
spike-burst activity (repeating sequences of multiple spikes)
with burst synchronization at transition to and during sleep
(or drowsiness), while they show a desynchronized tonic
activity (rhythmic single spiking) during the waking state
[1–4]. Such a spike-burst activity behaves experimentally as
a multi-timescale phenomenon with a slow process (burst),
modulating a fast, repetitive, firing (spike) pattern. The slow
(<1 Hz) oscillations observed in the electroencephalographic
recordings of naturally sleeping humans and other mammals,
are considered to be the result of the synchronized spike-burst
activity of neurons in the brain [4,5]. So far, there have been
many models of thalamocortical slow-wave sleep oscillations
[6,7], that suggest that the aforementioned oscillations arise
from an interaction between cortical and thalamic circuits.
In the network models, the constructed neuronal links are
particularly complex. For example, the model in Ref. [6] was
constructed according to a large number of physiological and
anatomical constraints and includes more than 30 000 spiking
neurons interconnected by more than 5 × 106 synaptic con-
nections and organized hierarchically into three cortical areas
with columnar connections including five cortical layers. In

*cszhou@hkbu.edu.hk
†yuanwj2005@163.com

Ref. [7], the network model consisted of a one-dimensional
four-layer array of N pyramidal neurons, N/4 interneurons,
and N/2 reticular and N/2 thalamocortical neurons with dif-
ferent AMPA-, NMDA-, GABAA-, and GABAB-mediated
synapses. Although the network models can produce slow-
wave oscillations by tuning parameters of neuronal dynamics
for the induction of the sleep state, the underlying network
mechanism of the tonic-to-burst transition and the resulting
slow-wave activity (SWA) with burst synchronization remains
unclear.

On the other hand, a wide range of human and animal
studies have found that net synaptic strength in neural net-
works increases during wakefulness and returns to a baseline
level during sleep [8–10]. Moreover, these changes in synaptic
strength are accompanied by corresponding changes in neu-
ral dynamics (including tonic and burst activities) and sleep
SWA [11–13], and the SWA may reflect synaptic changes
underlying a cellular need for sleep [13,14]. Based on the
experimental evidence including the changes in neural activity
and synaptic strength for the wakefulness-sleep cycle, one
can extrapolate two key and essential transition processes of
neural dynamics for the cycle. The first transition is that the
desynchronized tonic activity in wakefulness can change into
the spike-burst activity with burst synchronization, thus pro-
ducing the sleep SWA with an increasing of synaptic strength.
The second transition is that the spike-burst activity during
sleep can return to the desynchronized tonic activity of the
waking state when the increased synaptic strength decreases
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to a baseline level. Obviously, there is an association between
synaptic changes and neural dynamical transitions. So far, the
causal relationship of the association has been, experimentally
and theoretically, unclear. Based on the association, we hereby
assume that the neuronal spiking patterns result from synaptic
changes in the neural network, although the spiking pattern
of a single neuron might be due to modulations of the intrin-
sic ionic (e.g., sodium and potassium) channel conductance
during the wakefulness-sleep cycle [6]. In this paper, we won-
der whether the network coupling only under the changes of
synaptic strength (that does not take into account the interac-
tion between cortical and thalamic circuits) could contribute
to the dynamical transitions at both the neuronal (tonic-burst)
and the network (SWA) levels. Our aim is to provide a compu-
tational study that would investigate the dynamical transitions
similar to those observed throughout the wakefulness-sleep
cycle, and to focus on the transitions’ dependence on synaptic
strength by using a simple neural network model.

II. MODEL

We consider a network model of N coupled Hindmarsh-
Rose (HR) neurons [15] with chemical or electrical synapses.
In the chemically coupled network, the dynamics of neuron i
can be described by the following equations:

ẋi = yi − ax3
i + bx2

i − zi + Iext

+ g
N∑

j=1, j �=i

Ai j (Vs − xi )Gj, (1)

ẏi = c − dx2
i − yi, (2)

żi = r[s(xi − x0) − zi]. (3)

In Eq. (1), we let the reversal potential Vs = 2 (which is always
larger than xi(t ) for all the neurons i at any time t), i.e.,
the chemical synapses are excitatory. The reversal potential
Vs = −1.7 [which is always smaller than xi(t )] denotes that
the chemical synapses are inhibitory. Gj is the synaptic con-
ductance of a presynaptic neuron j, which is modeled as an
exponentially decaying function [16,17]. When the neuron
j fires, the synaptic conductance is increased, Gj → Gj +
�Gex (or Gj → Gj + �Ginh) for the excitatory (or inhibitory)
synapse of neuron j. Otherwise, it decays exponentially with
a time constant τex (or τinh) for the excitatory (or inhibitory)
synapse. For the electrically synaptic coupled network, only
Eq. (1) in the above Eqs. (1)–(3) needs to be replaced with

ẋi = yi − ax3
i + bx2

i − zi + Iext

+ g
N∑

j=1, j �=i

Ai j (x j − xi ). (4)

Here, the electrically synaptic coupling is linear and di-
rectly dependent on the difference of the membrane potentials
[18,19]. In the network, the chemically or electrically coupled
model is composed of identical HR neurons [15]. In the above
equations, xi represents the membrane potential, yi is associ-
ated with the fast current, and zi with the slow current. Iext

is an external current. g is the synaptic coupling strength (for
simplicity, the same coupling strengths are hereby provided

FIG. 1. The diagram of ISIs versus external current Iext for a
single HR neuron. The insets show the time series of bursting
(at Iext = 2.5) and tonic (at Iext = 3.6) activities of the membrane
potential x.

for all synapses). Ai j is an element of the adjacency matrix:
Ai j = 1 when a synaptic connection exists from neuron j
to i; otherwise, Ai j = 0. The ki = ∑N

j=1, j �=i Ai j is the degree
of neuron i, which denotes the number of coupled neurons
of the neuron i. The network average degree is defined by
k̄ = 1

N

∑N
i=1 ki. The parameters are chosen as follows: a = 1,

b = 3, c = 1, d = 5, γ = 0.002, s = 4, x0 = −1.6, �Gex =
�Ginh = 1, τex = 1, and τinh = 4. The single HR neuron can
exhibit tonic or bursting activity by tuning Iext. In Fig. 1, we
present the interspike intervals (ISIs). The tonic state appears
for Iext > 3.3, and a multi-timescale spike-burst behavior for
1.27 < Iext < 3.3. In this case, we choose Iext = 3.6, at which
a single (or uncoupled) neuron exhibits a tonic activity.

In our network model, the Erdős-Rényi (ER) random net-
work [20] is chosen. For simplicity and comparison between
the chemical and the electrical coupling, the adjacency matrix
A = (Ai j ) is considered as symmetric (i.e., Ai j = Aji). In order
to describe the collective neuron dynamics, we employ the
average membrane potential x̄ = 1

N

∑N
i=1 xi as the average

potential signal of the whole network.

III. RESULTS

In experiments, the potentiation (or depression) of the
net synaptic strength in the neural networks seems to be
the underlying mechanism of learning (or resting) during
wakefulness (or sleep), which is mediated by complicated
cascades of cellular events [13,21]. For simplicity, our model
uses a linear increase and decrease function for the change
of synaptic strength [see Fig. 2(a)]. In Figs. 2(b)–2(f), the
two transitions between tonic and bursting neural activities
can spontaneously emerge in the chemically coupled network
with excitatory synapses by tuning the synaptic strength. The
neurons exhibit desynchronized tonic activities in the region
of weak synaptic strength [see Fig. 2(b), far left]. With the
increasing of synaptic strength [see Fig. 2(a), left half], the
spike-burst activities with burst synchronization appear from
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FIG. 2. The two spontaneous transitions between the tonic and the bursting neural activities in an ER random network with size N = 100
and excitatory chemical connection probability p = 0.1. (a) The change of synaptic strength g. (b) The dot-raster plot showing the firing
pattern. (c) The average potential signal x̄ of the whole network. (d) The membrane potential xi, (e) the slow current zi, and (f) the sum of
external current Iext and synaptic coupling current Ii(syn) for a randomly chosen neuron i. The two vertical red dashed lines illustrate the critical
times of the two transitions.

the tonic activities in the whole network [see Fig. 2(b), left
half]. Thus, the potential signal of the whole network can
transfer from a low-amplitude, high-frequency fluctuation to
a high-amplitude, slow wave [i.e., SWA; see Fig. 2(c), left
half], which was experimentally found in electroencephalo-
gram recordings under the states of wakefulness and sleep
[22]. In order to understand the emergence of the bursting
activity, the membrane potential xi and the current zi of a
randomly chosen neuron i in the network are provided in
Figs. 2(d) and 2(e). It is found that, the bursting activity of
the membrane potential xi emerges due to the appearance of a
slow current zi [see Figs. 2(d) and 2(e), left half], as similarly
shown in a single HR neuron [15]. Moreover, we show the
sum of the external current Iext and the synaptic coupling
current Ii(syn) = g

∑N
j=1, j �=i Ai j (Vs − xi )Gj for the neuron i in

Fig. 2(f), in order to compare with the causal role of the exter-
nal current Iext in a single HR neuron. It is important to stress
that the spike-burst activity results from an oscillatory cur-
rent Iext + Ii(syn) > Iext = 3.6 in the coupled neural network,
which is different from the bifurcation to the bursting regime
induced by a static current in the range 1.27 < Iext < 3.3 as
shown in the single HR neuron (see Fig. 1). This indicates
that the spike-burst activity is an emergence of collective
behavior in the coupled dynamical network. In the latter part
of the results, we will study in more detail the neuronal re-
sponse to oscillatory input in order to reveal the dependence
of the spike-burst activity on network connectivity. On the
other hand, the bursting-to-tonic transition can also appear

[see Figs. 2(b)–2(f), right half] when the increased synaptic
strength decreases to a baseline level [see Fig. 2(a), right half].

From Fig. 2, we can see that two critical values of synaptic
strength exist for the two respective transitions. One is ap-
proximately g = 0.046 (i.e., at t ≈ 910) with the increasing of
synaptic strength, while the other is approximately g = 0.021
(i.e., at t ≈ 3580) with the decreasing of synaptic strength (see
the two red dashed lines in Fig. 2). The two critical values
are not equal, because of the delay in the network responses
to the changes of synaptic strength. The two critical values
will be equal to a same value g∗ (0.021 < g∗ < 0.046; result
not shown), if there is a long enough time for the changes in
synaptic strength (meaning, if the changes of synaptic strength
are slow enough). In order to study the critical value g∗ of the
network, we plot the ISIs of a randomly chosen neuron in the
homogeneous ER network as a function of the static synaptic
strength g in Fig. 3. In this case, the ISIs are calculated when
the response of the network arrives to the stable state under
the corresponding synaptic strength. As shown in Fig. 1, the
interburst interval is far larger than 100, when the neuron
exhibits a spike-burst activity. With the increasing of g, there
is a critical value (≈0.023) so that if it is exceeded by g, then
large ISIs (>100) illustrating the bursting activity appear in
Fig. 3. We define this critical value as the critical g∗. In order
to indicate the transition as the boundary of g∗, the dynamical
activities of the neuron and the corresponding potential sig-
nals of the whole network are shown in the regions of g < g∗
and g > g∗, respectively (see insets in Fig. 3). Particularly,
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FIG. 3. The diagram of ISIs versus synaptic strength g for a
randomly chosen neuron i in the ER random network with a scale of
N = 100 and an excitatory chemical connection probability p = 0.1.
The insets demonstrate the time series of the tonic (at g = 0.008)
and the bursting (at g = 0.05 and g = 0.1) activities of the membrane
potential xi (top panels) for the chosen neuron i as well as the average
potential signal x̄ (bottom panels) for the whole network. The vertical
red dashed line illustrates the critical g∗ producing the transition
between the tonic and the bursting activities.

the higher-amplitude, slower wave appears with the further
increasing of g, reflecting the state of deep sleep.

For comparison, we perform simulations with electrical
synapses in the model. As shown in Figs. 4 and 5, we obtain
similar results to those with the excitatory chemical synapses
(Figs. 2 and 3). In Fig. 4, the two transitions between the

FIG. 5. The same as in Fig. 3, but for an electrically coupled
network. The insets are given at g = 0.003, g = 0.01, and g = 0.04.

tonic and the bursting neural activities can spontaneously
emerge by tuning synaptic strength g. With the increasing of
g, the synchronized bursting activities and the resulting SWA
can appear. Moreover, there is a critical synaptic strength g∗
for these transitions, shown in Fig. 5. The higher-amplitude,
slower wave can also appear with the further increasing of g
(see insets in Fig. 5).

In addition, we also perform simulations with inhibitory
chemical synapses in the model. In this case, there are also
two transitions between the tonic and the bursting neural
activities by tuning the synaptic strength (see Fig. 6), and
there is also a critical synaptic strength g∗ for these transi-
tions (see Fig. 7). The emerging spike-burst activities exhibit
desynchronized bursting activities [see Fig. 6(b)] that cannot

FIG. 4. The same as in Fig. 2, but for an electrically coupled network.

054407-4



SYNAPTIC CHANGES MODULATE SPONTANEOUS … PHYSICAL REVIEW E 104, 054407 (2021)

FIG. 6. The same as in Fig. 2, but for inhibitory chemical synaptic connections.

induce a SWA [see Fig. 6(c)]. However, the aforementioned
results showed that the synchronized bursting activities and
the resulting SWA can appear in the presence of excitatory
chemical synapses [see Figs. 2(b) and 2(c)]. The different
results obtained between excitatory and inhibitory chemical
synapses indicate that the SWA during sleep could be induced
mainly by the excitatory chemical synapses; a fact that is
consistent with the larger number of excitatory synapses (than
that of inhibitory synapses) in realistic neural systems. The
bursting activity of the membrane potential xi emerges due to
the appearance of a slow current zi [see Figs. 6(d) and 6(e)],
resulting from an oscillatory current Iext + Ii(syn) < Iext = 3.6

FIG. 7. The same as in Fig. 3, but for inhibitory chemical synap-
tic connections. The insets are given at g = 0.003, g = 0.015, and
g = 0.045.

[see Fig. 6(f)]. In fact, we find that the bursting activities
can appear in chemically coupled networks including both
excitatory and inhibitory synapses. Whether the synchronized
bursting activities and the SWA appear depends on the ratio of
excitatory to inhibitory synapses. The synchronized bursting
and SWA occur with a high enough ratio (e.g., 4:1, which
is about the ratio of excitatory to inhibitory synapses in real
neuronal networks; see Fig. 8); otherwise, they do not occur
at all (e.g., with a 1:4 ratio; see Fig. 9).

The critical value g∗ is key to the transitions between the
tonic and the bursting activities in networks with excitatory
(or inhibitory) chemical synapses and electrical synapses,
respectively. Further below, we focus on the dependence of
g∗ on network connectivity. In our simulations, we calculate
ISIs for all the neurons as a function of synaptic strength
g, as in Figs. 3, 5, and 7. As long as there is one neuron
transferring from tonic to bursting activity at a certain g, we
take the g value as the critical value g∗ in the network. The
changes of g∗ as a function of the network size N for different
connection probabilities p are shown in Fig. 10. We conclude
that g∗ approximately obeys a power-law relation, g∗ ∼ N−1,
for different connection probabilities p in chemically and
electrically coupled networks. The scaling exponent −1 is
independent of p. Moreover, the variation of g∗ versus the
network average degree k̄ ≈ (N − 1)p is shown in Fig. 11.
The curves obtained for different p in excitatory and inhibitory
chemically and electrically coupled networks collapse into a
single one, respectively. This indicates that there is a general
power-law relation,

g∗ ∼ k̄−1. (5)

Thus, g∗ is not dependent directly on the network size
N and the connection probability p in ER networks. It
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FIG. 8. The same as in Fig. 2, but for a chemically coupled network including both excitatory and inhibitory synapses at a ratio of 4:1.

is only determined by the network average degree k̄, de-
noting the average number of signals that all the neurons
receive. Namely, g∗k̄ is a constant corresponding to the
tonic-to-bursting transition coupling threshold. One can note

that in Fig. 11, g∗ with excitatory synapses is slightly
larger than that with inhibitory synapses for the same k̄
in a chemically coupled network. Additionally, g∗ with in-
hibitory synapses in a chemically coupled network is slightly

FIG. 9. The same as in Fig. 2, but for a chemically coupled network including both excitatory and inhibitory synapses at a ratio of 1:4.
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FIG. 10. The critical g∗ as a function of N for different con-
nection probabilities p = 0.3, 0.5, 0.7, 1.0 (i.e., globally coupled
network) with chemical (a) or electrical (b) synapses. Data are av-
eraged over ten realizations of the networks with random initial
conditions. For comparison, the solid lines indicating the power-law
property with an exponent of −1 are shown in (a) and (b).

larger than that in an electrically coupled network for the
same k̄.

In the following, we proceed to the theoretical analysis of
the power-law relation (i.e., g∗ ∼ k̄−1) and explore the burst-
ing response to the oscillatory input of a synaptic coupling
current. In Eqs. (1) and (4), the synaptic coupling currents in
the homogeneous ER networks, Ii(syn) = g

∑N
j=1, j �=i Ai j (Vs −

xi )Gj and g
∑N

j=1, j �=i Ai j (x j − xi ), are approximately propor-
tional to the coupling strength g and the average number of
signals that all the neurons receive (i.e., the network average
degree k̄). The synaptic current Ii(syn) for each neuron i can
be regarded as an oscillating current with randomness [see
Figs. 2(f), 4(f) and 6(f)]. In the homogeneous ER network with
identical neurons, the Ii(syn) for each neuron i is approximately
the same. As a result, each neuron can be approximately
regarded as a single (or uncoupled) neuron characterized pre-
dominantly by the identical synaptic oscillating current Isyn,
whose dynamics can approximately reflect the dynamics of
some other neurons in the network. Thus, we focus on the
dynamics of the single neuron dominant by the synaptic oscil-

FIG. 11. The same as in Fig. 10, but as a function of the network
average degree k̄.

FIG. 12. The diagram of ISIs versus c at ω = 0.3 for excitatory
(a) or inhibitory (b) chemical synapses, and electrical synapses (c) in
the presence of synaptic oscillating currents Eqs. (6)–(8), respec-
tively. The vertical red dashed lines illustrate the critical c∗ producing
the transition between tonic and bursting activities.

lating current Isyn. We model the oscillating current as a simple
type of fluctuation, consisting of a sinusoidal signal and a
white noise. In a chemically coupled network with excitatory
synapses, the synaptic oscillating current with positive value
is given by

Isyn = gk̄{0.5[1 + sin(ωt )] + ξ}. (6)

For a chemically coupled network with inhibitory synapses,
the synaptic oscillating current with negative value is as fol-
lows:

Isyn = −gk̄{0.5[1 + sin(ωt )] + ξ}. (7)

On the other hand, in an electrically coupled network, we
adopt the synaptic oscillating current including the positive
and negative values,

Isyn = gk̄[sin(ωt ) + ξ ]. (8)

In Eqs. (6) and (7), ξ is a white noise uniformly distributed
between 0 and 1, and that between −1 and 1 in Eq. (8). The
following results do not qualitatively depend on the value of ω

and the distribution type of ξ . We adopt the parameter c = gk̄,
that reflects the oscillation amplitude of the synaptic current.
In order to study the response of the neuron to the synaptic
oscillatory input, a single neuron is hereby driven by such an
oscillatory synaptic current Isyn. The dynamics of the single
neuron can be described by the following equations:

ẋ = y − ax3 + bx2 − z + Iext + Isyn, (9)

ẏ = c − dx2 − y, (10)

ż = r[s(x − x0) − z], (11)

where the same parameters (including Iext = 3.6) are adopted
as in the above coupled networks [i.e., in Eqs. (1)–(4)]. By
simulating the dynamics of the single neuron, we find that in
Fig. 12, the transition from the tonic to the bursting activity
can appear with the increasing of oscillation amplitude c, and
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FIG. 13. The diagram of c∗ versus ω for different synapses in
the presence of corresponding synaptic oscillating currents. Data are
averaged over ten realizations with random initial conditions.

that there is a critical constant c∗ in the presence of the three
types of synaptic oscillating currents, respectively. According
to c = gk̄, the dynamical transition can thus appear with the
increasing of g, and there exists a critical g∗ if the k̄ is fixed.
Moreover, there is the relation g∗k̄ = c∗, being a constant for
the different k̄. Consequently, g∗ ∼ k̄−1 is obtained, and it
verifies Eq. (5). Similarly, one can get the relation g∗ ∼ k̄−1

if the model of the synaptic oscillating current includes many
sinusoidal signals with the different ω. Additionally, we show
the critical constant c∗ as a function of ω in Fig. 13. It
is found that the c∗ fluctuates as ω increases and that the
amplitude of fluctuation decreases with the increasing of ω.
As shown in Figs. 12 and 13, the critical constant c∗ in the
presence of excitatory chemical synapses is larger than that in
the presence of inhibitory chemical synapses for the same ω.
Moreover, the critical constant c∗ in the presence of inhibitory
chemical synapses is larger than that in the presence of elec-
trical synapses for the same ω. According to g∗k̄ = c∗, the
same relations of g∗ apply with those of c∗ for the different
synapses, and thus, these can also be obtained for the fixed
k̄, consistently with the results of Fig. 11. As compared to
the result of Fig. 1, one can see that the response of an HR
neuron to the oscillatory input is very different to that to the
static input. Indeed, the bursting activity in coupled networks
results from the oscillation of the synaptic current.

IV. CONCLUSION AND DISCUSSION

To sum up, we investigated the neural activities and their
transitions during the wakefulness-sleep cycle by using a
simple model of coupled HR neurons in a homogeneous ER
network. By tuning the synaptic strength, two spontaneous
transitions between the tonic and the bursting neural activi-
ties are realized. The SWA resulting from the synchronized
bursting activities during sleep can appear in the presence of
excitatory chemical synapses (or electrical synapses). Mean-
while, the SWA cannot appear due to the emergence of
desynchronized bursting activities when the inhibitory chem-
ical synapses are dominant. In particular, the critical synaptic
strength related to two transitions of the neural activities de-
pends strongly on the network average degree. It was found

both numerically and analytically that they obey a power-law
relation with an exponent of −1.

Less is known about the mechanism underlying the slow
(<1 Hz) oscillation that occurs during sleep in animals and
humans [4,7]. So far, there have been many models of the tha-
lamocortical slow-wave sleep oscillations [6,7], all of which
reflect that the oscillations arise from an interaction between
the cortical and the thalamic circuits. Based on the experimen-
tal association between the synaptic changes and the neural
dynamical transitions throughout the wakefulness-sleep cycle,
and by using our model of neural network, we found that, only
the network coupling occurring under the changes of synap-
tic strength (that does not take into account the interaction
between cortical and thalamic circuits) can contribute to the
dynamical transitions at both the neuronal (tonic-burst) and
the network (SWA) levels. Alternatively, our network model
might provide a probable dynamical network mechanism for
the SWA. By introducing the model of synaptic oscillating
current, we found that the synchronized bursting activities
and the resulting SWA are induced by synaptic oscillatory
inputs in the presence of excitatory chemical synapses or
electrical synapses. It is worth mentioning that the time unit
of the model is a numerical simulation time unit (i.e., it has
no explicit unit) according to the description in the original
reference regarding the HR neuron [15]. The timescale is
equivalent to millisecond. The SWA induced by the synchro-
nized spike-burst activity in coupled HR neurons can describe
the slow (<1 Hz) oscillations during sleep [18]. Addition-
ally, the decaying time constants of the chemical synapses
(with typical values for excitatory synapses being smaller than
those for inhibitory ones) can impact the interburst intervals
(results not shown), which have an impact on the onset and
frequency of the collective oscillations, and might yield richer
SWA. In the network, the oscillation of the synaptic coupling
current results from the large synaptic strength g. In fact, the
larger the g, the larger the amplitude of synaptic oscillating
current, as shown in Figs. 2(f), 4(f), 6(f), 8(f), and 9(f). In
this study, we focus on the analysis of g∗ ∼ k̄−1 by using the
model of synaptic oscillating current with noise. The burst-
ing activity induced by the synaptic oscillatory inputs might
have been dependent on the amplitude and the frequency of
the oscillation, as well as on the strength of the noise. The
further dynamical analysis of the bursting activity induced by
the synaptic oscillation remains an open and very interesting
question.

It is noted that the transitions between the tonic and the
bursting neural activities can also appear in the heterogeneous
networks, such as in a scale-free network or a star network.
However, the critical synaptic strength related to these tran-
sitions does not depend only on the network average degree,
suggesting that some other network factors are more strongly
influencing the transition in the heterogeneous network. In
the future, we will investigate in detail the dependence of
critical synaptic strength in these heterogeneous networks.
Moreover, in order to focus on the role of synaptic strength in
the production of two transitions between tonic and bursting
neural activities, we herein considered identical neurons with
the same synaptic strengths in the homogeneous ER network.
In the future, when nonidentical neurons, different types of
synapses (excitatory and inhibitory chemical, and electrical
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synapses) and different synaptic strengths are collectively (or
partially) considered in a heterogeneous (e.g., scale-free [23],
modular [24], or hierarchical [24,25]) network for a more
realistic neural systems’ simulation, further investigations will
be expected to produce the dynamic clusters of synchronized
bursting activities with different interburst intervals, and thus
could form richer SWAs similar to those found in experiments
during sleep [26]. In the SWA up state, the synchronized
spikes within the bursting activities might contribute to the
sharp-wave ripples [27,28]. In particular, the different forms
of synaptic plasticities [29,30] (e.g., short-term depression
[31] and spike-timing-dependent plasticities [32–34]) charac-
terized by the interplay between structure and dynamics, will

make the study of the transitions between the tonic and the
bursting neural activities, and that of SWA, both interesting
and challenging.
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