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Several studies on brain signals suggested that bottom-up and top-down influences are exerted through
distinct frequency bands among visual cortical areas. It was recently shown that theta and gamma rhythms
subserve feedforward, whereas the feedback influence is dominated by the alpha-beta rhythm in primates. A
few theoretical models for reproducing these effects have been proposed so far. Here we show that a simple
but biophysically plausible two-network motif composed of spiking-neuron models and chemical synapses can
exhibit feedforward and feedback influences through distinct frequency bands. Different from previous studies,
this kind of model allows us to study directed influences not only at the population level, by using a proxy for
the local field potential, but also at the cellular level, by using the neuronal spiking series.
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I. INTRODUCTION

Understanding the relationship between structural and
functional connectivities in the brain is one of the great-
est challenges of neuroscience. In other words, this means
associating specific anatomical networks with different pos-
sible patterns of activity and especially with information flow.
Regarding the hierarchical organization of cortical regions,
several anatomical studies have shown that the structural con-
nections from the primary sensory areas to higher-order areas
(i.e., feedforward or the bottom-up direction) are reciprocated
by connections in the opposite direction (known as feedback
or top-down connections) [1,2]. Furthermore, many cogni-
tive phenomena, including visual attention and perception,
have been related to both feedforward and feedback influ-
ences [3,4].

In visual cortical areas of primates, the hierarchy is
reflected not only in their projection patterns along with dif-
ferent cortical layers (anatomical connectivity) but also in
relation to local rhythmic synchronization (functional con-
nectivity). For example, feedforward projections typically
originate from superficial layers, whereas feedback pro-
jections originate predominantly from infragranular layers.
Synchronization in the gamma frequency band is strongest
in superficial layers, whereas synchronization in the alpha-
beta frequency band is strongest in infragranular layers [5–7].
Moreover, electrical stimulation of cortical area V1 induces
enhanced oscillatory activity in cortical region V4 in the
gamma band, whereas the stimulation of V4 induces en-
hanced alpha-beta-band activity in V1 [8]. Taken together,
these results suggest that gamma might subserve feedfor-
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ward and alpha-beta might subserve feedback information
flow [9,10]

Two recent experimental studies with primates corrobo-
rated these ideas. First, it was shown through large-scale
high-density electrocorticography and anatomical projection
patterns in rhesus macaques that among eight visual cortical
areas gamma is systematically stronger in the feedforward
direction and beta is stronger in the feedback direction [11].
Second, it was reported that in human visual areas feedfor-
ward or feedback could be determined based on retrograde
tracing data in homologous macaque visual areas. Moreover,
by using magnetoencephalogram data and spectral Granger
causality analysis to determine causal influences among cor-
tical areas, Michalareas et al. [12] showed that feedforward
projections were predominant in the gamma band, whereas
feedback projections were predominant in the alpha-beta
band.

The mechanisms underlying these frequency-specific in-
fluences are still under investigation. A large-scale network
using mean-field rate models of the Wilson-Cowan type was
employed to reproduce the feedforward and feedback influ-
ences through distinct frequency bands among eight selected
cortical areas of interest (V1, V2, V4, DP, 8m, 8l, TEO,
and 7A) [13]. Even though Mejias et al. [13] reproduced
the Granger causality patterns observed by Bastos et al. [11]
among the mentioned regions, a firing rate model cannot be
used to study the spiking time relations between neurons in
different areas, which is a natural future step of investigation
in experimental studies [11]. Furthermore, spiking-neuron
models allow us to investigate the effect of neuronal prop-
erties at large-scale function connectivity. For example, one
could explore the functional significance of important cellular
properties such as heterogeneity [14] and homeostasis [15]
for the feedforward and feedback influences through distinct
frequency bands, as well as their role in the underlying mech-
anisms promoting the phenomenon.
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In this direction, Lee et al. [9,16] have developed a bio-
physically based model to show how top-down signals in
the beta and gamma regimes can interact with a bottom-up
gamma rhythm to provide regulation of signals between the
cortical areas and among layers. However, in their studies,
they were interested in reproducing in vitro observations be-
tween the primary auditory cortex and adjacent association
cortex and did not reproduce the unidirectional gamma feed-
forward and unidirectional alpha-beta feedback verified in
visual areas [11,12].

Here we show that two reciprocally connected cortical-
like populations composed of randomly connected Izhikevich
neurons can present Granger causality from 1 to 2 in the
gamma band, whereas the influence from 2 to 1 occurs in the
alpha band. This means that our simple model qualitatively
reproduces the experimental results of feedforward and feed-
back influences through distinct frequency bands at the visual
cortex [11,12].

In Sec. II, we describe the neuronal population model as
well as the parameters that we use to change interarea cou-
pling. We also describe the spectral time series analysis that
we use to characterize influences at the two different spatial
scales: populational and neuronal levels. In Sec. III, we report
our results, showing that our motif can exhibit bottom-up
and top-down influences in the alpha (∼10 Hz) and gamma
(∼40 Hz) bands. One of the advantages of a spiking-neuron
network model is that one can explore information measures
at the neuronal level such as the directional spike-train pairs
associated with directional information (DI) [17]. In fact, we
employ this method and show that the spiking-neuron trains
can give us complementary information about the direction of
influence. Concluding remarks and a brief discussion of the
significance of our findings for neuroscience are presented in
Sec. IV.

II. METHODS

A. Modeling the spiking-neuron networks

We modeled two neuronal populations following the ideas
proposed in Ref. [18]. Both populations, namely, 1 and 2,
consist of 400 excitatory and 100 inhibitory neurons each.
Each neuron is modeled by the Izhikevich model [19]:

dv

dt
= 0.04v2 + 5v + 140 − u +

∑
Isyn + IDC (1)

and

du

dt
= a(bv − u). (2)

If v � 30 mV, then v is reset to c and u to u + d . v and u
stand for the membrane potential and the membrane recovery
variable (activation of the K+ ionic current and inactivation
of the Na+ ionic current), respectively. a, b, c, and d are
dimensionless parameters that account for the firing pattern
heterogeneities, which are randomly distributed according to
the neuron’s nature. For excitatory neurons a = 0.02, b =
0.20, c = −65 + 15σ 2, and d = 8 − 6σ 2, whereas for in-
hibitory neurons a = 0.02 + 0.08σ , b = 0.25 − 0.05σ , c =
−65, and d = 2, where σ ∈ (0, 1) is a random variable. Ad-
ditionally, all neurons have IDC = 0, except for the excitatory

neurons in population 1, which are submitted to a constant
current of IDC = 25 pA.

The synaptic transmissions are mediated by excita-
tory AMPA (A, related to α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors) and fast inhibition
GABAA (G, related to γ -aminobutyric acid). The presynaptic
current is described as Isyn = −gsynr(v − Vsyn ), where VA = 0
mV and VG = −65 mV. gsyn is the maximal conductance, gA

is for excitatory synapses, and gG is for inhibitory synapses.
r is the gating variable and follows a first-order kinetic dy-
namics: τsyndr/dt = −r + D

∑
j δ(t − t j ), where τA = 5.26

ms, τG = 5.60 ms, and the summation over j stands for the
neighbor’s presynaptic spikes at the previous time step t j . D is
taken, without loss of generality, to be equal to 0.05. Also,
all neurons are subject to an independent noisy spike train
described by a Poisson distribution with rate R. The input
mimics excitatory synapses from neurons that are not included
in the populations. For population 1 we have employed R =
3000 Hz, and for population 2, R = 2400 Hz with the maximal
conductance set to gPoisson

A = 0.6 nS.
For the connectivity, each neuron, excitatory or inhibitory,

receives 50 randomly chosen synapses from other neurons
within the same population. Excitatory and inhibitory conduc-
tances are set to g1

A = 3 nS and g1
G = 16 nS for population 1

and g2
A = 0.8 nS and g2

G = 16.4 nS for population 2. For the
connectivity between populations, each neuron in population
1 (2) receives 20 randomly chosen synapses from excitatory
neurons from population 2 (1). The conductances are set to
g12

A = 0.15 nS and g21
A = 4 nS, from 1 to 2 and from 2 to 1,

respectively. For the simulations in Fig. 3 below, where feed-
back and feedforward strength connections were decreased
or increased by 50%, we decreased or increased g12

A and g21
A

simultaneously by the same amount.
It is worth mentioning that to adjust the rhythms at the

gamma band we have modified the internal synaptic conduc-
tances g1

A and g1
G and the external constant current IDC, but

the effect of modifying other parameters such as the number
of inhibitory neurons and the number of synapses could also
be explored. The model was implemented in a C++ code
and simulated using the Euler method, with a time step of
5 × 10−2 ms. Our code is available from GitHub [20].

B. Time series analysis in the frequency domain: Power,
coherence, and Granger causality

To determine functional connectivity at the population
level we analyzed the time series generated from the average
membrane potential of excitatory neurons in each popula-
tion: VX = ∑400

i=1 vi, where v, the cell’s membrane potential,
is given by Eq. (1) and X stands for the population (X =
1, 2). Power, coherence, and Granger causality spectral anal-
yses of our simulated time series were calculated using a
methodology similar to that employed in Refs. [18,21] and the
MVGC MATLAB toolbox [22]. The multivariate autoregressive
(MVAR) modeling method employed here, which is based on
the Wiener-Granger causality method, models the value of
a stochastic process at current time t in terms of its p past
values at times t1, . . . , tp. The regression coefficients represent
the predictable structure of the data, whereas the residuals
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represent the unpredictable structure (see Refs. [22–24] for
more details about the Granger causality).

To estimate the spectral analysis from the local field po-
tential (LFP) time series, the MVAR requires the ensemble
of single-trial time series to be treated as if it were produced
from a zero-mean stochastic process. Therefore, we have an-
alyzed the simulated time series of each population as if it
were generated by 100 repetitions of 480 ms each (which is
equivalent to 100 time series of 96 points with a sample rate of
200 Hz). It is also necessary to determine an optimal order for
the MVAR model. For this purpose, we obtained the minimum
of the Akaike information criterion [25] as a function of the
model order (which we allowed to vary from 1 to 10; that is,
we considered influences up to 50 ms in the past).

We calculated the spectral matrix elements SXY ( f ), with
X = 1, 2 and Y = 1, 2, from which the coherence spec-
trum C12( f ) = |S12|/[S11( f )S22( f )] and the phase difference
spectrum �lk ( f ) = tan−1{Im[Slk/Re(Slk )]} were calculated.
A peak of C12( f ) indicated synchronized oscillatory activ-
ity at the peak frequency fpeak, with a time delay τlk =
φlk ( fpeak )/(2π fpeak ). The directional influence from popula-
tion X to population Y was assessed via the Granger causality
(GC) spectrum GX→Y ( f ). We say that if the p past values of X
do convey information about the future of Y above and beyond
all information contained in the past of Y , then X Granger-
causes Y . On the other hand, X does not Granger-cause Y if
and only if Y , conditional on its own past, does not depend on
the past of X . Since we are applying GC to only two neuronal
populations we are not dealing with issues related to pairwise
and conditioned Granger causality [26,27].

Since G1→2( f ) is calculated independently of G2→1( f ),
the methodology can distinguish unidirectional and bidirec-
tional influences for each frequency. To quantify the possible
asymmetry between the influences from 1 to 2 and from 2 to 1,
we can determine, for each frequency, the directed asymmetry
index (DAI) between the two areas. The DAI was defined by
Bastos et al. [11] to quantify the asymmetry between both
directions of influence. Therefore, the DAI A is computed
as the normalized difference between spectral GC influences
as in Ref. [11]:

A1→2( f ) = G1→2( f ) − G2→1( f )

G1→2( f ) + G2→1( f )
. (3)

It is worth mentioning that GC has been applied over the
population field potential that was estimated from the average
value of the neuronal membrane potential, which is com-
parable to the LFP recorded in experiments [11]. Since the
implementation of GC for spiking processes is not straight-
forward [28–30], we have employed a different methodology
to estimate the directional flow of information between a pair
of spike trains, as explained in the following section.

C. Neuronal directional information estimation

To compute the DI from the spiking-neuron series we use
the same methodology proposed by Tauste Campo et al. [17].
The method consists of estimating the directional flow of
information between a pair of spike trains recorded simul-
taneously, which are assumed to be generated according to
a Markovian process. Given a spike-train pair (X T ,Y T ) of
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FIG. 1. Cortical motif circuits. (a) Schematic representation of
two uncoupled cortical populations, 1 (left, blue) and 2 (right,
orange), with excitatory and inhibitory neurons represented by trian-
gles and circles, respectively. (b) Example of oscillatory activity for
both populations, represented by the average membrane potential.
(c) Power spectrum of the average membrane potential depicted in
(b) (see text for details).

length T , time delay D � 0, and Markovian orders M1 > 0
and M2 > 0, the information-theoretic measure I (D) quan-
tifies the information that the past of X at a delay D has
about the present of Y , i.e., I (D) = I (X T −D → Y T ). The I (D)
significance is then determined via nonparametric testing of
maximizing-delay statistics, which returns a statistic value
and the maximizing delay. Finally, DI is defined as the spike-
train pairs associated with significance estimators (α = 0.05).
In this context, feedforward, feedback, and bidirectional in-
fluences are defined when X → Y , X ← Y , and X ↔ Y are
significant, respectively.

DI was estimated over a spike-train time series 10 s long
from 100 randomly selected excitatory neurons of each pop-
ulation, i.e., 10 000 spike-train pairs. The spike train was
binarized in 1 ms bins, and the time series was divided into 10
nonoverlapping time bins. Results are robust against changes
in the bin size of the spike trains of up to 10 ms. DI was
performed at time delays D = 0, 2, 4, . . . , 20 with maximum
memory M1,2 = 2, in accordance with Ref. [17]. The MATLAB

code with directional information implementation is available
from GitHub [31].

III. RESULTS

To study the effect of unidirectional influence in one fre-
quency band and the opposite direction of influence in another
frequency band, we first simulate two uncoupled populations
that could mimic, without loss of generality, areas V1 and V4
in the visual cortex. This will allows us, when we connect the
two populations in the following sections, to identify popula-
tion 1 as lower-order areas and population 2 as higher-order
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FIG. 2. Frequency-specific feedforward and feedback interac-
tions. (a) Schematic representation of two cortical areas coupled in
a bidirectional configuration and their average membrane potential.
(b) Power spectral density of each population, 1 (blue, dashed)
and 2 (orange, solid). (c) Spectral coherence (equivalent to the
cross-spectral density) between the two areas. (d) Spectral Granger
causality in both directions (feedforward: blue, dashed; feedback: or-
ange, solid), showing that each of the peaks found in (c) corresponds
to a particular direction of influence. (e) The directed influence asym-
metry index (from population 1 to 2), or DAI profile of the functional
connection, which is obtained by normalizing the difference between
the two GC profiles [see Eq. (3)], can be used to characterize a
directed functional connection between two cortical areas. Power,
coherence, and Granger causality spectral analyses were calculated
following a similar methodology employed in Refs. [18,21] and
using the MVGC MATLAB toolbox [22].

areas in the hierarchical organization and reproduce the ex-
perimental results of feedforward and feedback interactions.

We adjust the parameters of each region to obtain pop-
ulation 1 oscillating in the gamma band (∼40 Hz) and
population 2 oscillating in the alpha band (∼10 Hz) when
isolated. In fact, several visual tasks have been related to
an increase in the gamma activity of V1 [32,33]. Since the
Granger causality from one network to the other is predom-
inantly around the network oscillation frequency [34], we
expect to obtain a causal flow from 1 to 2 at the gamma
band and from 2 to 1 at the alpha band when we turn the
connections on between the two networks in the following
sections.
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FIG. 3. Robustness of the bidirectional coupling in the parameter
space. In the control case (gray, solid) the interareal synaptic con-
ductances are set to g12

A = 0.15 nS and g21
A = 4 nS. For other cases

the strength connections were decreased (purple, dotted) or increased
(green, dashed) by 50%. (a) Spectral coherence. (b) Spectral Granger
causality in feedforward (upper panel) and feedback (lower panel),
showing that each of the peaks found in (c) corresponds to a par-
ticular direction of influence. (c) The directed influence asymmetry
index (from population 1 to 2) profile of the functional connection.

The important parameters to adjust the rhythms are the in-
ternal synaptic conductances and an external constant current
applied to population 1 (see Sec. II for more details about
the model). Figure 1 shows an illustrative example of the
two populations, their oscillatory activity represented by the
average membrane potential, and the power spectra associated
with them.

A. Frequency-dependent feedforward and feedback interactions

By connecting the two populations with chemical synapses
in such a way that we know the structural connectivity [see
Fig. 2(a)] we can measure their power spectrum as well as
the synchronization and causal relations between their activity
to infer the functional connectivity of our motif. In Fig. 2
we show the temporal evolution of the average membrane
potential and its corresponding spectral analysis. First, the
power spectrum [Fig. 2(b)] of each signal indicates that, due to
the coupling, the two populations oscillate in both the gamma
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FIG. 4. Directional information between spike-train pairs. (a) Schematic representation of two spike trains from distinct populations: the
directional information (DI) can be via feedforward (blue, population 1 → population 2), via feedback (orange, population 1 ← population
2), or bidirectional (gray, population 1 ↔ population 2). (b) Percentage of neuron pairs involved in feedforward, feedback, and bidirectional
interactions assessed through DI (see Sec. II for details). (c) Delay distribution associated with the feedforward, feedback, and bidirectional
interactions depicted in (b).

and alpha bands. Second, the coherence spectrum [Fig. 2(c)],
characterizing the cross correlation in the frequency domain,
shows that the activities of the two areas are synchronized
predominantly around 10 and 40 Hz. Finally, the spectral
Granger causality [Fig. 2(d)] profiles show that the statistical
causal influence is from population 1 to population 2 (1 → 2)
at the gamma band and the other way around (2 → 1) at the
alpha band. This means that each of the peaks found in the
coherence is related to a particular direction of influence.

The time delay τlk associated with each frequency peak in
the coherence spectrum can be calculated from the phase dif-
ference spectrum (see Sec. II for more details). We have found
that the time delay of the feedforward direction is τ12 = 3.6
ms [related to fpeak = 40.5 Hz in Fig. 2(c)], whereas the time
delay of the feedback interaction is τ21 = 5.3 ms [related to
fpeak = 11.3 Hz in Fig. 2(c)].

The DAI, which is obtained by normalizing the difference
between the two GC profiles [see Eq. (3)], quantifies the
asymmetry between the two directions of influence for each
frequency [11]. The DAI profile in Fig. 2(e) corroborates that
the directed functional connection between the two cortical
areas is predominantly from 1 to 2 at the gamma band (30–
60 Hz) and from 2 to 1 at the alpha band (7–13 Hz).

To verify whether the results are robust against model
parameters, we modified the coupling parameters (between
populations) in the simulation and reanalyzed the time series.
In Fig. 3 we show that an increase or a decrease of 50% in the
interareal synaptic conductances (g12

A and g21
A ) slightly shifts

the frequency of synchronization and influence but the overall
results remain the same.

In order to test the statistical significance of the frequency
shifts for each set of g12

A and g21
A , we have extracted the peak

frequency (for both coherence and GC) over 10 different
realizations of our simulations. We have applied a Wilcoxon
signed-rank test. Statistical significance was assessed at the
population level by post hoc Wilcoxon signed-rank tests (p <

0.05). We have found that the mean frequencies of both alpha
and gamma peaks increase (decrease) for an increase (de-
crease) of 50% in the interareal synaptic conductances when
compared to the control case. We have obtained p < 0.02 for
all comparisons.

B. Feedforward and feedback influences at the neuronal scale

As suggested by Bastos et al. [11], future experimental
studies might test causality influences directly with simulta-
neous multiarea multilayer recordings of the LFP and spikes.
Therefore, modeling the observed phenomena with a spiking-
neuron network allows us to investigate specific properties of
the spiking trains which could be compared in the future with
similar experimental data. This simultaneous investigation of
the LFP and spike would not be possible in a firing rate model.

We address the question of causal relation at the neuronal
level by using a nonparametric directed information-theoretic
measure [17,35]. DI allows the estimation of spiking direct
influences from one population to another [Fig. 4(a)]. By
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analyzing the interaction of 10 000 neuron pairs (100 neurons
from population 1 with another 100 neurons from population
2; see Sec. II for details), we can estimate the percentage of
neurons from population 1 that influence the neurons from
population 2 (and vice versa) through feedforward (feedback)
interactions. Moreover, we can quantify what percentage of
these connections are bidirectional. In our population model,
by estimating DI in 1 s long nonoverlapping time windows
over 10 s long time series (see Sec. II for details), we obtained
that both feedforward and feedback interactions are mediated
by approximately the same number of neuron pairs, ∼12%
[Fig. 4(b)]. For bidirectional communication there are fewer
neurons involved, ∼2% [Fig. 4(b)].

To measure the communication delay through which neu-
rons interact, we estimated delayed versions of the directed
information-theoretic measure in both directions at short time
delays D = 0, 2, 4, . . . , 20 ms. The probability of finding an
interaction for each delay is shown in Fig. 4(c). For feedfor-
ward and feedback interactions there is no preferred delay
of communication [Fig. 4(c), left and middle], while for the
bidirectional case the interaction occurs mostly at zero lag,
followed by a less pronounced peak at around 10 to 12 ms
[Fig. 4(c), right]. It is worth mentioning that these communi-
cation delays at the neuronal level are calculated at the time
domain and not at a specific frequency. Therefore, they are
different from the time delays τlk associated with the oscilla-
tory activity in each frequency band at the populational scale.

IV. CONCLUDING REMARKS

To summarize, we have shown that a simple but
biophysically plausible model of two bidirectionally con-
nected spiking-neuronal populations can present unidirec-
tional Granger causality in the gamma frequency band and
the opposite direction of causal flow in the alpha frequency
band. Our model qualitatively reproduces experimental results
verified with electrocorticograms in macaques and magne-
toencephalograms in humans of feedforward and feedback
influences through distinct frequency bands [11,12]. There-
fore, our results are a verification in silico using a network
model of spiking neurons of such a specific phenomenon

related to cortical synchronization which was previously
reported in vivo in primates. In particular, there are two advan-
tages to use spiking-neuron models: (i) investigating detailed
mechanisms underlying the phenomena such as neuronal
variability, heterogeneity, homeostasis, and synaptic plasticity
within each population, and (ii) analyzing statistical properties
of neuronal spiking series which could also be investigated in
experimental setups.

Our results are a first step to explore more realistic and
detailed spiking-neuron networks, including details about the
different cortical layers [16,36]. It would be possible to use
our model to explore a large-scale network with many cortical
areas in order to explore hierarchic properties between visual
regions, similar to what was done by Mejias et al. [13] with
a firing rate model for each cortical layer. Such further steps
would allow us to better compare the spiking-neuron popu-
lation model and the experimental results reported in visual
areas [11,12].

Furthermore, our findings open avenues to explore the role
of phase diversity in the computational properties of brain sig-
nals, a subject that has gained the attention of the neuroscience
community in recent years [37,38]. In light of anticipated
synchronization ideas [18,39–42] it is possible to explore the
mechanisms underlying the phase relation between the two
populations in each frequency band both experimentally and
numerically.
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