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Extinction transition of hantavirus-infected rodents in a hostile environment
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The spatial critical shelter sizes above which populations would survive are investigated for the infection of
hantavirus among rodent populations surrounded by a deadly environment. We show that the critical shelter
sizes for the infected population and the susceptible population are different due to symmetry breaking in the
reproduction and the transmission processes. Therefore, there exists a shelter size gap within which the infected
population becomes extinct while only the susceptible population survives. With the field data reported in the
literature, we estimate that, if one confines the rodent population within a stripe region surrounded by a deadly
environment with the shorter dimension between 335.5 ± 27.2 m and 547.9 ± 78.3 m, the infected population
would become extinct. In addition, we introduce two factors that influence the movement of rodents, namely,
the spatial asymmetry of the landscape and the sociality of rodents, to study their effects on the shelter size gap.
The effects on the critical size due to environmental bias are twofold: it enhances the overall competition among
rodents which increases the critical size, but on the other hand it promotes the spread of the hantavirus which
reduces the critical size for the infected population. On the contrary, the sociality of rodents gives rise to a more
localized population profile which promotes the spread of the hantavirus and reduces the shelter size gap. The
results shed light on a possible strategy of eliminating hantavirus while preserving the integrity of food webs in
ecosystems.
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I. INTRODUCTION

Hantavirus pulmonary syndrome (HPS) is a severe and po-
tentially life-threatening respiratory disease [1,2]. The specific
species of hantavirus named Sin Nombre virus [3], which
causes the disease, is transmitted to humans from infected
rodents through contact with rodents’ saliva, urine, and drop-
pings. HPS has attracted much attention since its first known
outbreak in the Four Corners region of the southwestern U.S.
in 1993, and in this case, the hantavirus is found to be carried
by Peromyscus maniculatus, the deer mouse [4]. In contrast to
its deadly threat to humans, infected rodents show no signs of
illness and the susceptible rodents could get infected through
physical contact with infected rodents [5–7]. Since the con-
traction of the disease closely depends on rodent activities, the
spatiotemporal distribution of rodent populations is important
to understand the spatial spread of the hantavirus.

By considering principal ingredients for the evolution of
the rodent population based on biological observations, such
as birth, death, competition for resources, movement, and the
horizontal transmission of the virus among them, Abramson
and Kenkre proposed a theoretical model to study the spa-
tiotemporal patterns of the rodent population [8]. With this
phenomenological model, it is shown that the survival or
extinction of the infected population is strongly correlated
to the spatiotemporal distribution of the carrying capacity of
the environment [8–11], which is consistent with reported
observations [2,6,7,12]. A critical carrying capacity is iden-
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tified in the study, below which the infected population would
become extinct unless a resource-rich environment is nearby.
Due to its success, further generalizations of the model are
made to include the Allee effect [13–16] which addresses a
possible survival fitness change with the population [17,18],
the age-group-dependent mobility [19,20], time-delay effects
due to maternal antibodies for juvenile rodents [21,22], etc.
Nonetheless, the carrying capacity is shown to play a crucial
role in the survival or extinction of the infected population.
In this paper, we show that, even if the carrying capacity
is above the critical value, the infected population could be-
come extinct and only the susceptible population survives in a
shelter surrounded by a hazard environment.

The theoretical study of a critical patch size for the popula-
tion to survive as it is surrounded by a deadly environment was
first carried out by Kierstead, Slobodkin, and Skellam (KiSS)
in the 1950s [23,24]. The critical patch size, which is named
the KiSS size, is the minimal spatial patch size below which
the population becomes extinct regardless of the abundance
of resources within the patch. This characteristic length scale
is associated with the competition between the reproduction
of the population in the bulk volume and mortality of the
population on the surface due to diffusion [25]. The KiSS size
is extensively studied theoretically [23,25–30], and it has been
applied to a wide range of ecological systems such as bacteria
[31–36], plankton [24,37], and birds [38–40].

In this study, we investigate how the shelter size impacts
the survival of the hantavirus-infected and the susceptible
rodents surrounded by a hazardous environment. We show
analytically and numerically that there exists two KiSS sizes,
one for the infected population and one for the susceptible
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population, between which the infected population becomes
extinct and the susceptible population survives. It sheds light
on a possible strategy for eliminating hantavirus while pre-
serving the integrity of food webs in ecosystems. In addition,
we explore how two common factors, namely, the bias of the
movement due to the landscape such as the mountain slope
and the social nature of rodents, affect the shelter size gap. We
find that the environmental bias results in asymmetric popula-
tion profiles which give rise to an overall keener competition
between rodents. Therefore, an increase in the critical size is
expected if the competition is solely considered. However, the
asymmetric population profile could promote the spread of the
hantavirus due to the densely packed region of the asymmetric
population profile, which would reduce the critical size for the
infected population. On the other hand, sociality of rodents
would drive the population to be more localized that promotes
the spread of the hantavirus. Therefore, the shelter size gap is
shown to shrink as expected.

This paper is organized as follows: In Sec. II, we briefly
review the population model for the spatial spread of the
hantavirus by Abramson and Kenkre. In Sec. III, the KiSS
sizes for the infected population and susceptible population
are obtained analytically using a Galerkin truncation method
(GTM) [41], and the results are in good agreement with
numerical simulations quantitatively. In addition, a phase
diagram is constructed to illustrate three possible phases,
namely, extinction of total population, survival of susceptible
rodents and extinction of infected rodents, and survival of the
total population. In Sec. IV, we show how the critical sizes and
the phase diagram are influenced by the environmental bias
and social nature of rodents separately. Analytical expressions
for the shift of the critical sizes are derived with a perturbative
scheme.

II. POPULATION MODEL FOR HANTAVIRUS INFECTION

A principal model describing hantavirus infection with ro-
dents was proposed by Abramson and Kenkre [8], in which
key facts are considered, such as mice being born free from
infection and the hantavirus not affecting the behavior of
mice. As the hantavirus spreads among rodents, the popula-
tion of mice is divided into two subpopulations, namely, the
population of susceptible mice and the population of infected
mice, respectively. The dynamical equations of the population
densities for these two subpopulations in one dimension are

∂MS

∂t
= D

∂2MS

∂X 2
+ bM − cMS − aMSMI − MSM

K
,

∂MI

∂t
= D

∂2MI

∂X 2
− cMI + aMSMI − MI M

K
, (1)

where MS and MI are population densities of susceptible mice
and infected mice, respectively. b and c represent the birth rate
and the death rate of mice. Note that the reproduction rates
of infected and susceptible mice are the same since the han-
tavirus does not have an effect on rodents. The same applies
to the death rates for infected and susceptible mice. However,
the hantavirus does not transmit from mothers to offspring
[6,7], therefore, all newborns are susceptible which breaks the
symmetry of the birth term in these equations. The parameter

a characterizes the probability of hantavirus transmission as
susceptible mice encounter infected mice. Furthermore, K is
the carrying capacity and M is the total population density
of mice, M = MS + MI . The spatial movement of mice is
assumed to be microscopically random, which leads to a dif-
fusion term at the macroscopic level. The mobility of mice is
characterized by the diffusion coefficient D which is assumed
to be the same for both populations.

The evolution of the infected population density is coupled
to the susceptible population density, and vice versa. This
complexity is readily reduced by identifying the fact that
the total population density is M = Ms + MI , and adding up
equations listed in Eq. (1), which gives the dynamics of the
total population density,

∂M

∂t
= D

∂2M

∂X 2
+ (b − c)M − M2

K
. (2)

It recovers the Fisher equation and is independent of indi-
vidual subpopulation density. The total population density
of mice is therefore determined independently as time
progresses, and the evolution of MI can then be solved
accordingly. The dimensionless forms of evolution equa-
tions for infected population density and total population
density are obtained by the following substitutions: τ =
(b − c)t , x = [D/(b − c)]−1/2X , α = aK , β = c/(b − c),
m = M/[(b − c)K], mi = MI/[(b − c)K]. The dimensionless
dynamical equations are

∂m

∂τ
= ∂2m

∂x2
+ m − m2,

∂mi

∂τ
= ∂2mi

∂x2
+ [(α − 1)m − β]mi − αm2

i , (3)

where m and mi are dimensionless total population density and
infected population density, respectively. Using this model,
Abramson and Kenkre showed a close relationship between
the temporal evolution of the infected population density and
a time-dependent carrying capacity (due to season changes or
rainfalls), and discussed the effect of spatial inhomogeneity
in carrying capacity (due to the nature of landscapes) on the
population density of infected mice. In this paper, we inves-
tigate how the spatial confinement could lead to extinction of
hantavirus-infected mice while letting uninfected mice thrive,
and we extend our discussions to include the nature of social-
ity of mice as well as environmental asymmetry.

III. CONFINEMENT EFFECTS ON
HANTAVIRUS INFECTION

As shown by Kierstead, Slobodkin, and Skellam, there
exists a lower bound of the system size (i.e., the critical do-
main size) for populations to survive when surrounded by a
deadly environment. Therefore, it is of interest to investigate
the confinement effect in the case of the hantavirus infection.
For simplicity, an infinite mortality rate is assumed for mice
moving out of the shelter, which reduces the problem to a
Dirichlet boundary-value problem. The shelter is set to extend
from x = 0 to x = L, and the population density of mice
is zero at the boundary. To determine the critical sizes for
the total population and the infected population, the Galerkin
truncation method is employed so that coupled PDEs shown
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FIG. 1. Bifurcation diagram of the steady state of the principal
modes obtained for α = 6 and β = 1. Solid lines are analytical solu-
tions of Eq. (5), and the amplitudes of the principal modes obtained
from simulation results of Eq. (3) are shown in symbols. The bifur-
cation lengths for the total population and the infected population are
Lc and Li

c, respectively. The shelter size gap is defined as the region
between Lc and Li

c, within which the infected population becomes
extinct while only the susceptible population survives.

in Eq. (3) are readily reduced to a set of coupled ODEs. Owing
to the boundary condition, the total population density and the
infected population density are expanded in an infinite series
of sinusoidal functions,

m(x, τ ) =
∞∑

k=1

φk (τ ) sin

(
kπx

L

)
,

mi(x, τ ) =
∞∑

k=1

φi
k (τ ) sin

(
kπx

L

)
. (4)

Substituting Eq. (4) into Eq. (3), the evolution equations of
φk (τ ) and φi

k (τ ) can be obtained readily by multiplying both
sides of Eq. (3) by sin(kπx/L) and integrating it from x = 0 to
x = L. As the domain size is lowered to be close to the critical
value, the dominant mode is the principal mode while other
modes are negligible. Therefore, after truncating higher-order
terms, we obtain

dφ1

dτ
=

[
1 −

(
π

L

)2]
φ1 − 8

3π
φ2

1 ,

dφi
1

dτ
=

[
8(α − 1)

3π
φ1 − β −

(
π

L

)2]
φi

1 − 8α

3π

(
φi

1

)2
, (5)

which leads to the following nontrivial steady-state solutions:

φ1 = 3π

8

[
1 −

(
π

L

)2]
,

φi
1 = 3π

8α

[
8(α − 1)

3π
φ1 − β −

(
π

L

)2]
. (6)

The dependence of the steady-state solutions on the domain
size is plotted in Fig. 1. The analytical results are in good
agreement with numerical simulations of Eq. (3). The sim-
ulations are carried out using a finite element method with
boundary values set to 0, and a relaxation dynamics to bring
the system to the steady state. φ1 and φi

1 are readily obtained

FIG. 2. Phase diagram of extinction of the susceptible population
and the infected population with and without the environmental
asymmetry. And β is set to be 1. Lines represent solutions of ana-
lytical equations shown in Eq. (8), and symbols represent simulation
results of Eq. (3) with and without environmental asymmetry. Below
the horizontal solid line, both susceptible and infected populations
become extinct. In the region enclosed by the solid and the dashed
lines, only the susceptible population survives and the infected pop-
ulation becomes extinct. Above the dashed line, both populations
survives. The phase boundaries shift as the environmental asymmetry
is introduced. And the shelter size gap shrinks as α increases since a
high transmission rate and a dense population make it more difficult
to eliminate the infected population.

by a discrete sine transform of the simulated steady state.
It is clear that the total population would become extinct
(φ1 = 0) as L reduces to π (i.e., Lc = π ). Similarly, by re-
questing φi

1(Li
c) = 0, we obtain the critical domain size for

infected mice:

Li
c = π

√
α

α − β − 1
. (7)

It is interesting to note that the critical domain sizes for the
total population and the infected population are different,
which suggests three possible scenarios for mice populations
confined within a shelter of size L surrounded by a harsh envi-
ronment. If the shelter size is larger than Li

c, both susceptible
and infected mice would survive and coexist. If the size of
the shelter is in between Li

c and Lc, the hantavirus-infected
mice become extinct while only susceptible mice survive. And
mice would go extinct if the shelter size is smaller than Lc. The
critical domain sizes for the total population and the infected
population against α are plotted in Fig. 2. A decreased value of
α includes a combination of either a smaller infection rate or a
smaller carrying capacity, which would reduce the population
of infected mice that makes it vulnerable to extinction. As a
result, the infected mice requires a larger domain to support
its population, and thus a larger Li

c is obtained while Lc is
kept constant. On the other hand, the difference between Li

c
and Lc lessens for large values of α, since the hantavirus can
easily be transmitted to susceptible mice. Furthermore, from
Eq. (7), the critical domain size for infected mice exists only
if α − β − 1 > 0. This criterion gives rise to a threshold of
the carrying capacity Kc = b/[a(b − c)] below which infected
mice would become extinct, which is consistent with results
obtained by Abramson et al. [8].
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IV. EFFECTS DUE TO ENVIRONMENTAL
ASYMMETRY AND SOCIALITY

A. Environmental bias

The spatial spread of populations density shown in Eq. (1)
is spatially isotropic and neglects intraspecies interactions for
simplicity, which is plausible for species living in a flat land-
scape. However, for deer mice, which are widely distributed
in North America, their habitat is found to be along the slope
of mountains [42–46] where the environmental symmetry
is broken due to the varying altitude along the slope. To
investigate the effect due to the asymmetry in landscapes,
we modify the diffusion terms in Eq. (3) with an additional
biased diffusion term. That is to substitute ∂2m

∂2x and ∂2mi
∂2x in

Eq. (3) by ∂
∂x [(χ + ∂

∂x )m] and ∂
∂x [(χ + ∂mi

∂x )mi], respectively;
χ represents the strength of environmental bias, and it is
assumed to be the same for infected mice and susceptible
mice since the hantavirus does not affect the behavior of mice.
Positive and negative values of χ represent biased tendency of
mice moving toward −x and +x directions, respectively, since
the biased flux is associated with −χm for the total population
and −χmi for the infected population. Similarly, the GTM is
employed to reduce the coupled PDEs to a set of coupled
ODEs. However, with the additional biased term, the spa-
tial symmetry is broken and asymmetric population density
profiles are expected. Therefore, not only the evolutions of
the principal modes [i.e., φ1 sin(πx/L) and φi

1 sin(πx/L)] are
important, but also the evolutions of the second modes [i.e.,
φ2 sin(2πx/L) and φi

2 sin(2πx/L)] have to be considered. One
obtains

dφ1

dτ
=

[
1 −

(
π

L

)2]
φ1 − 8

3π
φ2

1 − 8χ

3L
φ2 − 32

15π
φ2

2 ,

dφ2

dτ
=

[
1 −

(
2π

L

)2]
φ2 + 8χ

3L
φ1 − 64

15π
φ1φ2,

dφi
1

dτ
=

[
8(α − 1)

3π
φ1 − β −

(
π

L

)2]
φi

1 − 8α

3π

(
φi

1

)2

− 8χ

3L
φi

2 + 32(α − 1)

15π
φ2φ

i
2 − 32α

15π

(
φi

2

)2
,

dφi
2

dτ
=

[
−β −

(
2π

L

)2

+ 32(α − 1)

15π
φ1

]
φi

2 + 8χ

3L
φi

1

+ 32(α − 1)

15π
φ2φ

i
1 − 64α

15π
φi

1φ
i
2. (8)

The critical domain sizes of total population and infected
population subject to different degrees of environmental bi-
ases are plotted against various values of α in Fig. 2. As shown
in Fig. 2, both Lc and Li

c increase, for the parameters specified,
as the spatial symmetry is broken (χ �= 0). It is clear that
terms associated with χ in Eq. (8) have negative impacts on
φ1 and φi

1 which reduce populations. This negative effect on
populations results from an overall keener competition once
the population density profiles become asymmetric due to a
nonvanishing χ (that is, one expects a larger value of the
integration of m2 or m2

i over space if the bias is present).
Therefore, a larger shelter size is required for the species to

survive. However, for other choices of parameters, Li
c could

decrease while Lc always increases with χ .
The quantitative dependence of critical sizes on the envi-

ronmental bias is obtained by solving steady states of Eq. (8).
By requiring φ̇2 = 0, one obtains

φ2 = 8χφ1

3L

[
1 −

(
2π

L

)2

− 64

15π
φ1

]−1

, (9)

which shows a linear dependence of φ2 on χ , hence, the asym-
metry vanishes when χ = 0 as expected. Substitute Eq. (9)
into the dynamical equation for φ1 and require φ̇1 = 0, one
obtains an analytical relation between φ1, L, and χ . For small
values of χ , an approximated expression for φ1 is obtained
using a perturbation method,

φ1 � 3π

8

[
1 −

(
π

L

)2]
− 40π

27L2

7 + 8(π/L)2

[1 + 4(π/L)2]2
χ2. (10)

To determine the change in the critical domain size of the total
population due to χ , we further expand L around the critical
size for which the spatial asymmetry is absent, L = Lc

0 + δL,
and substitute it into Eq. (10); note that Lc

0 = π . The critical
size is then determined as φ1 decreases to zero, we obtain
δLc = (32/27π2)Lc

0 χ2. Similarly, we solve the change in the
critical size for the infected population,

δLi
c = 160

27π2

α[5α2(β ′ + 15) − αβ ′(8β ′ + 125) + 56β ′2]

(4β ′ − 5α)2[α(β ′ + 15) − 16β ′]

× Li
c

0
χ2, (11)

where β ′ ≡ β + 1 and Li
c

0 is the critical domain size for the
infected population when the environmental bias is absent,
see Eq. (7). Therefore, it is expected that the hantavirus-free
shelter size gap, within which the infected population be-
comes extinct while only the susceptible population survives,
changes with χ . This shelter size gap is simply 
Lc(χ ) =
(Li

c
0 − Lc

0) + (δLi
c − δLc), and the fractional change in the

shelter size gap is δL̄ ≡ (δLi
c − δLc)/
Lc(0), see Fig. 3. To

see whether the environmental bias increases or decreases the
shelter size gap for the population confined by a hazard envi-
ronment, Fig. 4 plots the prefactor σ , defined as δL̄ = σχ2,
for various values of α and β while L0

c and Li
c

0 are held fixed.
It is shown that the shelter size gap could either shrink or
expand as the environmental bias is introduced. For systems
with a smaller shelter size gap at χ = 0, the fractional change
in the shelter size gap is expanded as the environmental bias is
present, see Fig. 3. However, the shelter size gap could shrink
for systems with a larger Li

c
0, in particular, as α gets larger.

It is intuitive since a larger value of α corresponds to a larger
transmission rate and a larger death rate which reduces the
susceptible population and promotes the infected population.
As a result, the shelter size gap monotonically decreases with
α as shown in Fig. 4.

B. Intraspecies interaction

Apart from the environmental bias, the social nature of
animals also has an impact on their movement preference.
Rodents are highly social animals, which means there exists
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FIG. 3. The fractional change in the shelter size gap, δL̄, with
respect to the biased strength, χ . Here, α = 6 and β = 1 are con-
sidered. The solid line is the analytical solution obtained using a
perturbation method, and circles are simulations results of Eq. (3)
with environmental bias. A quadratic relation is expected since the
system is invariant through the following transformation: χ → −χ

and x → −x.

a non-negligible intraspecies attractive interaction [47]. Intu-
itively, the sociality of rodents would lead to a more serious
infectious state which makes it more difficult to eliminate
the hantavirus. For simplicity, if one treats rodents as weakly
interacting Brownian particles, through the framework of the
nonlinear Fokker-Planck equation introduced in Refs. [48,49],
the spatial spread of rodents can be described by additional
nonlinear diffusion terms. Take the susceptible population for
example, two nonlinear diffusion terms, namely, ∂

∂x (MS
∂MS
∂x )

and ∂
∂x (MS

∂MI
∂x ), are required in Eq. (1) to describe the

social nature of rodents. The physical interpretation of these
terms is that the susceptible population is driven by spatial
gradients of MS and MI due to sociality, and the flux also
depends on the local population of susceptible rodents. Simi-
larly, the evolution equation of the infected population density
is modified accordingly with two additional terms, namely,
∂
∂x (MI

∂MS
∂x ) and ∂

∂x (MI
∂MI
∂x ). Therefore, two additional terms,

FIG. 4. The value of σ , which characterizes whether the frac-
tional change of the shelter size gap increases or decreases, is plotted
as a function of α for different values of Li

c
0. The value of σ is shown

to decrease monotonically as α increases, since a larger value of
α promotes the spread of the hantavirus.

FIG. 5. Phase diagram of extinction of the susceptible population
and the infected population for β = 1 and different degree of social-
ity. Lines and symbols represent solutions of Eq. (12) and numerical
simulations of Eq. (3) with intraspecies interactions, respectively.
The solid line (that is Lc) is shown to be independent of �, while
the dashed line (that is Li

c) is lower as the social nature intensifies.

namely, ∂
∂x (�m ∂m

∂x ) and ∂
∂x (�mi

∂m
∂x ), are required for the evolu-

tion equations of m and mi shown in Eq. (3), respectively. The
parameter � characterizes the interaction between rodents.
Since the additional flux induced by the intraspecies interac-
tion for the total population is associated with −�m(∂m/∂x),
the population tends to get away from (move toward) crowded
regions if � > 0 (� < 0). Therefore, the value of � is taken to
be negative in the following discussion. In Fig. 5, numerical
simulations show that the critical domain size for the total
population remains the same while the critical domain size
for the infected population shrinks as sociality is introduced.
And the shelter size gap shrinks as the transmission rate in-
creases. Unlike the case considering the environmental bias,
the modified diffusion terms here preserve the spatial symme-
try with respect to the center of the shelter; thus, harmonics
in the population expansion with odd symmetry with respect
to the center of the shelter must vanish, and let us take only
the first harmonic with even symmetry into consideration for
simplicity. By employing the GTM, one obtains

dφ1

dτ
=

[
1 −

(
π

L

)2]
φ1 −

[
8

3π
+ 4π�

3L2

]
φ2

1 ,

dφi
1

dτ
=

[
−

(
π

L

)2

− β +
(

8(α − 1)

3π
− 4π�

3L2

)
φ1

]
φi

1

− 8α

3π

(
φi

1

)2
. (12)

Once again, since the evolution of the total population is
independent of the infected population, the steady state of φ1

is readily obtained when the values of L and � are specified.
And since the critical domain size is determined by the linear
term, the critical domain size of the total population remains to
be π regardless of the value of �. Similarly, the steady state of
φi

1 is obtained by requesting φ̇i
1 = 0, and the critical domain

size of the infected population is obtained approximately by
treating � as a perturbation parameter. One gets

Li
c(�) = Li

c
0 + �

4Li
c

0

(
Li

c
0 + Lc

0
)(

Li
c

0 − Lc
0
)
, (13)

054401-5



CHEN, GU, AND WU PHYSICAL REVIEW E 104, 054401 (2021)

FIG. 6. Variation of δL̄ with respect to the interacting strength �.
The parameters are set to be (α, β ) = (6, 1). The simulation results
(circles) of Eq. (3) with intraspecies interactions are in good agree-
ment with analytical result (solid line) obtained using a perturbation
method.

and the fractional change in the shelter size gap is

δL̄ ≡ δLi
c(�) − δLc(�)

Li
c(0) − Lc(0)

= �

4

(
1 + L0

c

Li0

c

)
. (14)

Note that the nonlinear diffusion term ∂
∂x (�m ∂m

∂x ) for the total
population is negligible as the total population is close to
extinction, thus Lc(�) = Lc(0) = π , which is independent of
�. However, for the infected population, the nonlinear dif-
fusion term ∂

∂x (�mi
∂m
∂x ) is of the same order of mi as the

infected population is close to extinction, hence, Li
c is reduced

as � is introduced. Therefore, it is clear that sociality of
rodents makes it more difficult to eliminate the hantavirus
because the rodents have the tendency to gather together,
which increases the chance for hantavirus transmission. It
shows consistent and intuitive results that the shelter size
gap shrinks more rapidly for larger values of α, as seen in
Fig. 5, since higher transmission rates promote the spread of
the hantavirus. Figure 6 plots the fractional change of the
shelter size gap as a function of � which is in good quan-
titative agreement with Eq. (14). The constant slope of the
function δL̄(�) can be expressed in terms of α and β, one gets
δL̄/� = [1 + √

(α − β − 1)/α]/4.

V. SUMMARY AND DISCUSSIONS

In this paper, we investigate the extinction criterion for
rodents infected with the hantavirus surrounded by a hazard
environment analytically and numerically. Owing to the fact
that the hantavirus does not transmit from mothers to newborn
mice, which breaks the symmetry between susceptible and
infected population, the requirement of the minimum domain
size in order for mice to survive (that is, the KiSS size) is
different. We show that this asymmetry gives rise to the possi-
bility of eliminating the infected population while letting the
susceptible population thrive as one confines rodents in a shel-
ter of certain size. It preserves the integrity of the food web
while eradicating the infectious disease. The shelter size gap,
within which the infected population becomes extinct while
only the susceptible population survives, is shown analytically
to depend closely on the transmission rate, the carrying capac-

ity, and the birth and death rate of rodents. The shelter size
gap broadens if the transmission rate or the carrying capacity
is low, since both reduce the increase in the rate of infected
population.

In addition, two common factors observed in nature,
namely, environmental bias and intraspecies interaction, that
influence the spatial movement of rodents are introduced to
see how these affect the shelter size gap. The impact of the
existence of the environmental bias such as a tilted landscape
on the critical domain sizes is the following: It creates an
asymmetric spatial population distribution that results in an
overall keener competition for the total population which
increases its critical domain size. However, for the infected
population, the critical domain size could increase due to
keener competition caused by the spatial asymmetry, but the
critical domain size could decrease as well since more densely
populated region due to the spatial asymmetry promotes the
spread of the hantavirus. As to the social nature of rodents,
the critical domain size is shown to be invariant for the total
population since the effect of sociality is negligible because
the total population is near extinction. And the critical domain
size for the infected population decreases since the population
flux of the infected population driven by the sociality is cou-
pled to the spatial gradient of the total population which is still
pronounced as the infected population is near extinction. The
shelter size gap then decreases as the social nature intensifies,
which is intuitive, since sociality drives the population to be
more localized that favors the spread of the hantavirus.

The present theory, although in one dimension, is appli-
cable to rodents in a two-dimensional stripe area where the
aspect ratio of the domain is sufficiently large. Since the spa-
tial variation of the population along the extended dimension
is negligible over the length scale of the shorter dimension,
the population can be treated as homogeneous along the ex-
tended dimension. Therefore, our theory simply describes the
population dynamics along the shorter dimension. To examine
the validity of the proposed strategy, we estimate the param-
eters of rodent population and the hantavirus transmission
with field data reported in Ref. [7]. The birth rate b and
the death rate c are obtained by the reported exponential-
like growth from a small population over a few months and
the reported longevity of deer mice; one gets approximately
b � 20 per year and c � 4 per year. Using the incidence
rate and the number of infected and susceptible rodents be-
ing captured, the transmission coefficient a is estimated to
be 0.02/A per mouse per year for a trapping area A if a
10% capture rate is assumed. By assuming a saturated total
population to be on the order of thousands during outbreaks,
the carrying capacity KA is estimated to be on the order of
hundreds mice·year. With these parameters estimated from
the field research, we readily obtain key dimensionless pa-
rameters used in the paper: α = 2 and β ≡ c/(b − c) � 0.25.
The dimensionless critical domain size for infected mice is
then 1.6π , while the dimensionless critical domain size for
susceptible mice is π . The physical length dimension can be
restored once we know the mobility of rodents. D is reported
to be about 500 m2 per day for deer mice [50]. Therefore,
the critical domain size for the susceptible mice is about
335.5 m, and the critical domain size for the infected mice
is about 547.9 m. The uncertainty of the shelter sizes can be
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estimated as we assume a 10% error in the parameters. That is,
according to our theoretical work, if one confines the rodent
population within a stripe region surrounded by a deadly envi-
ronment with the shorter dimension between 335.5 ± 27.2 m
and 547.9 ± 78.3 m, the infected population would become
extinct.

It is worth noting that, although the continuum approach
employed here sheds light on the confinement effects on the
extinction condition, the framework of the model is not appli-
cable when the rodent population is sparse. It is of interest to
employ discrete models that consider fluctuation in population
[51,52], and probabilistic migration and interaction [53] to

examine the critical size. It has been shown that the stochas-
ticity is crucial in predicting the critical size. Nevertheless, the
analytical results obtained from the continuum model serves
as a guideline for the critical size.
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