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Group synchrony, parameter mismatches, and intragroup connections
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Group synchronization arises when two or more synchronization patterns coexist in a network formed of
oscillators of different types, with the systems in each group synchronizing on the same time evolution, but
systems in different groups synchronizing on distinct time evolutions. Group synchronization has been observed
and characterized when the systems in each group are identical and the couplings between the systems satisfy
specific conditions. By relaxing these constraints and allowing them to be satisfied in an approximate rather than
exact way, we observe that stable group synchronization may still occur in the presence of small deviations of
the parameters of the individual systems and of the couplings from their nominal values. We analyze this case
and provide necessary and sufficient conditions for stability through a master stability function approach, which
also allows us to quantify the synchronization error. We also investigate the stability of group synchronization in
the presence of intragroup connections and for this case extend some of the existing results in the literature. Our
analysis points out a broader class of matrices describing intragroup connections for which the stability problem
can be reduced in a low-dimensional form.
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I. INTRODUCTION

A large literature has considered synchronization in net-
works of coupled oscillators, see for example the review in
Ref. [1]. In the case of identical oscillators, stability of the
synchronous solution for arbitrary network topologies can be
investigated through the master stability function approach,
introduced in Ref. [2]. More complex patterns of synchronous
dynamics may arise in networks formed of different types
of oscillators. Group synchronization in networks of coupled
oscillators was first analyzed in Ref. [3], followed by further
analysis in Ref. [4] and an experimental realization of group
synchronization [5]. Moreover, group synchronization in net-
works of fractional-order chaotic oscillators was investigated
in Ref. [6].

According to the definition in Ref. [3], a group is a set
of oscillators characterized by the same (uncoupled) dynam-
ics, with oscillators of different types belonging to different
groups. Group synchronization is achieved when the oscilla-
tors in each group synchronize on the same time evolution,
with these synchronized dynamics being different from group
to group. Cluster synchronization can be considered as a
particular case of group synchronization but for which the
oscillators in different clusters are of the same type. Most
recently, a canonical transformation for simultaneous block
diagonalization of matrices has been proposed to decouple the
cluster synchronization stability problem into subproblems of
minimal dimensionality [7]. The more general case of cluster
synchronization in multilayer networks formed of oscillators
of different types has been studied in Ref. [8].

An experimental realization of group synchronization
was performed in Ref. [5], where stable group synchro-
nization was observed under different configurations for a

small network of four coupled optoelectronic oscillators. This
observation suggests that group synchronization is robust
with respect to small parametric mismatches that are in-
evitable in experiments. The analysis of stability of the
group-synchronous solution in the presence of such small
parametric mismatches (affecting both the individual nodes
being coupled and the strengths of the couplings between
them) is studied in this paper. The effects of parameter
mismatches in a network of identical oscillators achieving
complete synchronization have been studied in Refs. [9–11]
and achieving cluster synchronization in Refs. [12,13]. A
second-order expansion to study complete synchronization in
networks of identical nodes with parameter mismatches has
been studied in Refs. [14,15]. However, to the best of our
knowledge, no paper has investigated the role of parameter
mismatches in networks formed of systems of different types,
which is the main focus of this paper. The other subject of
this paper is the study of the conditions under which group
synchronization may arise in the presence of intragroup con-
nections, which was first considered in Ref. [4].

II. GROUP SYNCHRONIZATION IN THE PRESENCE
OF PARAMETRIC MISMATCHES

Though our results can be generalized to the case of an
arbitrary number of groups (for the case in which the sta-
bility of the group-synchronous solution can be reduced in
a low-dimensional form [4]), for simplicity in what follows
we will focus on the case of two groups. For the time being,
we also maintain the assumption introduced in Ref. [3] that
the network topology is bipartite, i.e., connections exist only
from group X to group Y and vice versa (this assumption will
be removed later in Sec. III).
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We first present the ideal case that parameter mismatches
are absent. For this very special case, the dynamical equations
are as follows:

ẋi = F
(
xi, ux

i

) = F

(
xi,

Ny∑
j=1

ANOM
i j H (y j )

)
, i = 1, . . . , Nx.

(1a)

ẏ j = G
(
y j, uy

j

) = G

(
y j,

Nx∑
i=1

BNOM
ji L(xi )

)
, j = 1, . . . , Ny.

(1b)

where xi (y j) is an nx-dimensional (ny-dimensional) state
vector of systems in group X and in group Y , respectively,
ux

i = ∑Ny

j=1 ANOM
i j H (y j ) [uy

j = ∑Nx
i=1 BNOM

ji L(xi )] is the input
received by node i in group X ( j in group Y ). The func-
tions F : Rnx × Rnx → Rnx and G : Rny × Rny → Rny define
the time evolution of the systems in group X and group Y ,
respectively, and the interaction functions H : Rny → Rnx and
L : Rnx → Rny define the output of systems in group Y and
group X , respectively. Nx is the number of systems in group
X and Ny is the number of systems in group Y . In what follows
we assume without loss of generality that Nx � Ny. The input
ux

i received by node i in group X (uy
j received by node j in

group Y ) corresponds to a superposition of the outputs from
the nodes in group Y (group X ) through the coefficients ANOM

i j

(BNOM
ji ). ANOM is an Nx × Ny coupling matrix, whose entries

ANOM
i j represent the nominal strength of the direct interaction

form system j in the Y group to system i in the X group. Anal-
ogously, BNOM

ji is an Ny × Nx coupling matrix, whose entries
BNOM

ji represent the nominal strength of the direct interaction
from system i in the X group to j in the Y group. Note that
Eqs. (1) are a generalization of those considered in Refs. [3,4].

In what follows, we consider the following two types
of small parameter mismatches from nominal conditions:
(i) deviations from identicality of the uncoupled dynamics
of the individual systems in each group and (ii) deviations
from nominal conditions of the coupling strengths between
systems.

If the following conditions hold:

Ny∑
j=1

ANOM
i j = a �= 0, i = 1, . . . , Nx, (2a)

Nx∑
i=1

BNOM
ji = b �= 0, j = 1, . . . , Ny, (2b)

then the synchronous solution exists,

ẋs = F(xs, aH (ys)), (3a)

ẏs = G(ys, bL(xs)). (3b)

We note here that by replacing aH → H and ANOM/a →
ANOM (bL → L and BNOM/b → BNOM), it is always possible
to set a = b = 1. Hence, without loss of generality, in what
follows we set a = b = 1. This has the significant advantage
that the synchronous solution, which obeys Eqs. (3) with a =

b = 1, is independent of the particular choice of the bipartite
network.

Stability of this synchronized solution can be reduced in
a master stability form [3]. Unfortunately, exact satisfaction
of condition (2) is difficult to implement in experiments and
in real-world situations. The other requirement whose exact
satisfaction is hardly accomplished in experiments is that the
evolution of all the systems in the X group (in the Y group)
is exactly characterized by the same function F (G). What
can be realistically achieved is that F(xi, ux

i ) → F(xi, ux
i , μi ),

i = 1, . . . , Nx in Eq. (1a) and G(y j, uy
j ) → G(y j, uy

j, ν j ), j =
1, . . . , Ny in Eq. (1b) where μi and ν j are scalar parameters
that slightly vary from oscillator to oscillator.1 Analogously, it
is realistic to assume that the couplings Ai j and Bji are affected
by small mismatches with respect to their nominal values,

Ai j = ANOM
i j + δAi j, (4a)

Bji = BNOM
ji + δBji, (4b)

where δAi j and δBji are small deviations. Under these assump-
tions, Eqs. (1) become

ẋi = F

(
xi,

Ny∑
j=1

Ai jH (y j ), μi

)
, i = 1, . . . , Nx, (5a)

ẏ j = G

(
y j,

Nx∑
i=1

BjiL(xi ), ν j

)
, j = 1, . . . , Ny, (5b)

which describe the dynamics of the two groups under realistic
circumstances, such as those that would be observed in any
experimental setting.

We write μi = μ̄ + δμi where μ̄ = (Nx )−1 ∑Nx
i=1 μi and

δμi is a small deviation. Similarly, we write ν j = ν̄ + δν j

where ν̄ = (Ny)−1 ∑Ny

j=1 ν j and δν j is a small deviation. Note

that by construction
∑Nx

i=1 δμi = 0 and
∑Ny

j=1 δν j = 0.
We can also write

Ny∑
j=1

Ai j = a +
Ny∑
j=1

δAi j = a + δā + δai, (6a)

Nx∑
i=1

Bji = b +
Nx∑

i=1

δBji = b + δb̄ + δbj, (6b)

where

δā = N−1
x

Nx∑
i=1

Ny∑
j=1

δAi j, (7a)

δb̄ = N−1
y

Nx∑
i=1

Ny∑
j=1

δBji, (7b)

1Even though we do not consider the case of two or more parame-
ters that vary from system to system, the extension of our results to
this case is straightforward.
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are the average sums of the rows of the matrices A and B and

δai =
( Ny∑

j=1

δAi j

)
− δā =

( Ny∑
j=1

δAi j

)
− N−1

x

Nx∑
i=1

Ny∑
j=1

δAi j,

(8a)

δbj =
(

Nx∑
i=1

δBji

)
− δb̄ =

(
Nx∑

i=1

δBji

)
− N−1

y

Nx∑
i=1

Ny∑
j=1

δBji,

(8b)

are small deviations. The deviations δai and δb j are calculated
with respect to the average row-sums δā and δb̄ (hence they
sum to zero), that is,

∑Nx
i=1 δai = 0 and

∑Ny

j=1 δb j = 0.
Unfortunately, for the case of Eqs. (5), different from the

case of Eqs. (1), an exact synchronous solution does not exist.
It is possible, however, that the individual trajectories stabilize
in a nearly synchronous state, where the trajectories of the
nodes in the X group (and in the Y group) remain close to
each other, i.e., for which both

δxi(t ) = [xi(t ) − x̄(t )], (9a)

δy j (t ) = [y j (t ) − ȳ(t )], (9b)

remain small in time, where x̄(t ) and ȳ(t ) are the average
solutions,

x̄(t ) = (
N−1

x

) Nx∑
i=1

xi(t ), (10a)

ȳ(t ) = (
N−1

y

) Ny∑
j=1

y j (t ), (10b)

obeying

˙̄x = (Nx )−1
Nx∑

i=1

F

(
xi,

Ny∑
j=1

Ai jH (y j ), μi

)
, (11a)

˙̄y = (Ny)−1
Ny∑
j=1

G

(
y j,

Nx∑
i=1

BjiL(xi ), ν j

)
. (11b)

By differentiating (9) with respect to time, we obtain

δẋi =
[

F

(
xi,

Ny∑
j=1

Ai jH (y j ), μi

)
− (Nx )−1

Nx∑
i=1

F

(
xi,

Ny∑
j=1

Ai jH (y j ), μi

)]
, i = 1, . . . , Nx, (12a)

δẏ j =
[

G

(
y j,

Nx∑
i=1

BjiL(xi ), ν j

)
− (Ny)−1

Ny∑
j=1

G

(
y j,

Nx∑
i=1

BjiL(xi ), ν j

)]
, j = 1, . . . , Ny. (12b)

By expanding to first order the function F in (12) about the point (x̄, H (ȳ), μ̄) and the function G in (12b) about the point
(ȳ, L(x̄), ν̄ ), we obtain

F

(
xi,

Ny∑
j=1

Ai jH (y j ), μi

)
� F

(
x̄,

Ny∑
j=1

ANOM
i j H (ȳ), μ̄

)
+ DFx

(
x̄,

Ny∑
j=1

ANOM
i j H (ȳ), μ̄

)
δxi

+ DFu

(
x̄,

Ny∑
j=1

ANOM
i j H (ȳ), μ̄

)[ Ny∑
j=1

ANOM
i j DH (ȳ)δy j +

Ny∑
j=1

H (ȳ)δAi j

]

+ DFμ

(
x̄,

Ny∑
j=1

ANOM
i j H (ȳ), μ̄

)
δμi

G

(
y j,

Nx∑
i=1

BjiL(xi ), ν j

)
� G

(
ȳ,

Nx∑
i=1

BNOM
ji L(x̄), ν̄

)
+ DGy

(
ȳ,

Nx∑
i=1

BNOM
ji L(x̄), ν̄

)
δy j

+ DGu

(
ȳ,

Nx∑
i=1

BNOM
ji L(x̄), ν̄

)[
Nx∑

i=1

BNOM
ji DL(x̄)δxi +

Nx∑
i=1

L(x̄)δBji

]

+ DGν

(
ȳ,

Nx∑
i=1

BNOM
ji L(x̄), ν̄

)
δνi.

Then Eqs. (12) can be rewritten,

δẋi(t ) = DF∗
xδxi(t ) +

Ny∑
j=1

Ãi jDF∗
uDHy(ȳ)δy j + Ux

i , i = 1, . . . , Nx, (13a)
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δẏ j (t ) = DG∗
yδy j (t ) +

Nx∑
i=1

B̃ jiDG∗
uDLx(x̄)δxi + Uy

j, j = 1, . . . , Ny, (13b)

where Ux
i = DF∗

uH (ȳ)δai + DF∗
μδμi and Uy

j =
DG∗

uL(x̄)δb j + DG∗
νδν j , and the superscript ∗ denotes that

the partial derivatives of the functions F and G are evaluated
about (x̄, H (ȳ), μ̄) and (ȳ, L(x̄), ν̄ ), respectively. The matrices
Ã = {Ãi j} and B̃ = {B̃i j} in (13) are defined as follows:

Ãi j = (
ANOM

i j − a j
)
, i = 1, . . . , Nx, j = 1, . . . , Ny,

(14a)

B̃ ji = (
BNOM

ji − bi
)
, i = 1, . . . , Nx, j = 1, . . . , Ny,

(14b)

where a j = (Nx )−1 ∑Nx
i=1 ANOM

i j is the mean value over the
elements in the jth column of the matrix ANOM and bi =
(Ny)−1 ∑Ny

j=1 BNOM
ji is the mean value over the elements in

the ith column of the matrix BNOM. Note that in order to
obtain (13) we have used Eqs. (8) and the following properties∑Nx

i=1 δμi = 0,
∑Ny

j=1 δν j = 0,
∑Nx

i=1 δai = 0,
∑Ny

j=1 δb j = 0,∑Nx
i=1 δxi = 0, and

∑Ny

j=1 δy j = 0. Note also that the two ma-
trices Ã and B̃ have sums over both their columns and rows
equal to zero.

In what follows, we will study stability of the system (13).
If this system is found to be stable, then that implies that
the trajectories (1) will tend to remain close to the average
solution (10) [see the definition of the variations in (9)].

In what follows, we assume that for each connection from
node i in group X to node j in group Y , there is a connection
from node j in group Y to node i in group X and vice versa.
We note that we must still satisfy the assumption (which we
imposed at the beginning of the paper without loss of general-
ity) that the sums over the entries in the rows of both matrices
ANOM and BNOM are equal to 1. With these considerations
in mind, we take BNOM = eANOMT , where e = Ny/Nx. It then
follows that B̃ = eÃT .

We then rewrite Eq. (13) in vectorial form,

δẋ = [INx ⊗ DF∗
x ]δx + [Ã ⊗ DF∗

uDHy(ȳ)]δy + U x, (15a)

δẏ = [INy ⊗ DG∗
y ]δy + [eÃT ⊗ DG∗

uDLx(x̄)]δx + U y. (15b)

By the substitution δy ← δy/
√

e, Eq. (15) becomes

δẋ = [INx ⊗ DF∗
x ]δx + [

√
eÃ ⊗ DF∗

uDHy(ȳ)]δy + U x,

(16a)

δẏ = [INy ⊗ DG∗
y ]δy + [

√
eÃT ⊗ DG∗

uDLx(x̄)]δx + U y/
√

e.
(16b)

By stacking all perturbation vectors together in one
vector z = [δxT , δyT ]T and by introducing the vector

U = [UT
x ,UT

y /
√

e]T , Eq. (15) can be rewritten as

ż =
(

INx ⊗ DF∗
x 0

0 0Ny ⊗ DG∗
y

)
z

+
(

0Nx ⊗ DF∗
x 0

0 INy ⊗ DG∗
y

)
z

+ √
e

(
0 Ã ⊗ DF∗

uDHy(ȳ)
ÃT ⊗ DG∗

uDLx(x̄) 0

)
z + U.

(17)

We define the matrices,

Ex =
(

INx 0
0 0Ny

)
Ey =

(
0Nx 0
0 INy

)
M̃ =

(
0nx Ã
ÃT 0ny

)
(18)

and seek to compute the Nx + Ny-dimensional transformation
matrix T that simultaneously block diagonalizes the matrices
in Eq. (18),

T = SBD(Ex, Ey, M̃ ), (19)

where here by SBD we indicate that the transformed matrices
T ExT T , T EyT T , and T M̃T T are in the same block-diagonal
form with blocks of minimal dimension [16–20]. To compute
the matrix T we first need to find a matrix P that commutes
with the symmetric matrices Ex, Ey, and M̃. The matrix T has
for columns the eigenvectors of the matrix P [17]. In order for
the matrix P to commute with the diagonal matrices Ex and
Ey, it needs to be in the following block-diagonal form:

P =
(

P1 0
0 P2

)
, (20)

where the square block P1 has dimension Nx and the square
block P2 has dimension Ny. Finally, the matrix P in (20) needs
also to commute with M̃. Then the following two relations
must be satisfied:

ÃP2 = P1Ã, (21a)

ÃT P1 = P2ÃT . (21b)

A simple solution to the above set of equations is given by

P1 = ÃÃT , (22a)

P2 = ÃT Ã. (22b)

From Eq. (20) it follows that the matrix T has the following
block-diagonal structure:

T =
(

T x 0
0 T y

)
, (23)

where the columns of the matrix T x are the eigenvectors of
the matrix ÃÃT and the columns of the matrix T y are the
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eigenvectors of the matrix ÃT Ã. As both matrices ÃÃT and
ÃT Ã are symmetric, the matrices T x and T y are orthogonal.
Hence, T is also an orthogonal matrix.

We can then define the Nxnx + Nyny-dimensional orthogo-
nal matrix

T̂ = (
T x ⊗ Inx

) ⊕ (
T y ⊗ Iny

)
(24)

and use it to block-diagonalize Eq. (17). We introduce w =
T̂ z, then we have:

ẇ =
(

INx ⊗ DF∗
x 0

0 INy ⊗ DG∗
y

)
w

+ √
e

(
0 S1 ⊗ DF∗

uDHy(ȳ)
ST

1 ⊗ DG∗
uDLx(x̄) 0

)
w

+ TU , (25)

where

S1 = T xÃT yT
. (26)

As mentioned, both T x and T y are orthogonal matrices, and
hence T xT T x = INx and T yT T y = INy . From (26), we see that
S1 is the Nx by Ny matrix whose entries S1kk = sκ are equal
to the singular values of the matrix Ã (all the other entries are
zero).

There are many possible numerical methods to com-
pute the singular values of a matrix [21]. We note here
that the eigenvalues of the matrix M̃ in (18) are equal
to {±s1,±s2, . . . ,±sr} ∪ {0, 0, . . . , 0︸ ︷︷ ︸

Nx−Nytimes

} [3]. From a computa-

tional point of view the method of computing the singular
values from the eigenvalues of the matrix M̃ is more stable
than direct calculation of the matrix S1 in (26).

We note that through the transformation w = T̂ z, each row
of the matrix T x, say, T xκ , is associated with either a singular
value sκ or a zero value; analogously, each row of the matrix
T y, say, T yκ , is associated with a singular value sκ .

We then introduce the matrix:

Q =
(

0 S1

ST
1 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 0 · · · 0
0 s2 · · · 0

0 0 . . . 0
0 0 0 · · · sr

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
s1 0 0 0 0 · · · 0
0 s2 0 0 0 · · · 0
...

...
. . .

...
...

. . .
... 0

0 0 0 sr 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Based on our assumption that Nx � Ny, we have that r = Ny. We call d = (Nx − Ny), d + r = Nx.
Now by permuting rows and columns of matrix Q, we obtain the block-diagonal matrix,

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q̃1 0 0 · · · 0 0 · · · 0
0 Q̃2 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...

0 0 0 · · · Q̃r 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...

0 0 0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

where each Q̃i i = 1, 2, · · · , r is a 2 by 2 block,

Q̃κ =
(

0 sκ

sκ 0

)
κ = 1, 2, . . . , r. (29)

One of the blocks κ = 1 corresponds to motion parallel to synchronization manifold and the other r − 1 blocks, i = 2, . . . , r
correspond to motion transverse to the synchronization manifold [3]. By applying the same permutation to the first term on the
right-hand side of Eq. (25), for each κ = 1, . . . , r we can write:

ṗκ =
[(

DF∗
x 0

0 DG∗
y

)
+

(
0 λκDF∗

uDHy(ȳ)
λκDG∗

uDLx(x̄) 0

)]
pκ +

[(∑Nx
i Ti

xκδai

)
DF∗

uH (ȳ) +
( ∑Nx

i Ti
xκδμi

)
DF∗

μ(∑Ny
i Ti

yκ δbi√
e

)
DG∗

uL(x̄) +
(∑Ny

i Ti
yκ δνi√
e

)
DG∗

ν

]
,

(30)
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where λκ = √
esκ , T xκ

i (T xκ
i ) is entry i of row T xκ (T xκ ). Analogously, to the right-lower block of the matrix Q̃ [Eq. (28)], we

can associate d equations,

q̇κ = DF∗
xqκ +

(∑
i

T xκ
i δai

)
DF∗

uH (ȳ) +
(∑

i

T xκ
i δμi

)
DF∗

μ, κ = 1, 2, . . . , d. (31)

The homogeneous part of Eqs. (30) and (31) coincides with
the reduction obtained in Ref. [3].

The vector w can be written as
[pT

1 , pT
2 , . . . , pT

r , qT
1 , qT

2 , . . . , qT
p ]T , where pT

1 is a parallel
perturbation and all the remaining perturbations are
transverse.

We now define the following master stability functions
associated with Eqs. (30) and (31):

Mκ (sκ , ακ, βκ, γk, δκ ) = lim
τ→∞

√
τ−1

∫ τ

0
‖pκ (t )‖2dt, (32a)

M0(0, ακ, βκ ) = lim
τ→∞

√
τ−1

∫ τ

0
‖qκ (t )‖2dt, (32b)

where ακ = (
∑

i T xκ
i δai ), βκ = (

∑
i T xκ

i δμi ), γκ =
(
∑

i T yκ
i δbi )/

√
e, and δκ = (

∑
i T yκ

i δνi )/
√

e.
Moreover, as the system of Eqs. (30) and (31) is linear,

in case of stability, the master stability functions (32) can be
approximated as follows:

Mκ = cα1(s)|ακ | + cβ1(s)|βκ | + cγ 1(s)|γκ | + cδ1(s)|δκ |,
(33a)

M0 = cα2|ακ | + cβ2|βκ |, (33b)

where cα1, cβ1, cγ 1, cδ1, cα2, and cβ2 are appropriate coeffi-
cients (see also Ref. [11]). Note that Eqs. (33) relate the master
stability functions with the parameter mismatches through the
coefficients ακ, βκ, γκ , and δκ defined above.

Next, following Refs. [10,11], we will show how the
low-dimensional approach [and the master stability functions
defined in (32)] can be used to quantify the synchronization
error observed in the high-dimensional system. The main mo-
tivation for performing this analysis is that typically dealing
with the low-dimensional systems (30) and (31) is compu-
tationally more convenient than with the high-dimensional
system (13) (see also Refs. [10,11]).

We define the synchronization error,

E (t ) =
√√√√ Nx∑

i=1

δxT
i (t )δxi(t ) +

Ny∑
i=1

δyT
i (t )δyi(t )

=
√√√√ r∑

κ=2

pT
κ (t )pκ (t ) +

d∑
κ=1

qT
κ (t )qκ (t ). (34)

Assuming stability, the time average of the synchroniza-
tion error can be computed in terms of the master stability
functions,

〈E (t )〉t =
√√√√ r∑

κ=2

Mκ
2 +

d∑
κ=1

M0
2, (35)

where with the symbol 〈...〉t , we indicate a time average.
Note that M0(0, ακ, βκ ) still depends on κ through both the
arguments ακ and βκ , see Eq. (32b).

A. Spectrum of the matrix M̃

We have already stated that the singular values of the ma-
trix Ã can be computed from the eigenvalues of the matrix M̃.
We want to show that there is a direct relation between the
eigenvalues of the matrix M̃ and those of the nominal matrix

MNOM =
(

0 ANOM

ANOMT 0

)
, (36)

where here we retain the assumption (with no loss of gen-
erality) that the sum of the entries in the rows of the matrix
ANOM is equal to 1. This also implies that the sum of the
entries in the columns of the matrix ANOM is equal to 1/e. We
know from Ref. [3] that the spectrum of the matrix MNOM is
characterized by the following properties: (i) the spectrum is
symmetric with respect to the real and imaginary axes, (ii) at
least d = (Nx − Ny) eigenvalues are equal to zero, (iii) two
eigenvalues are equal to +

√
e−1 and −

√
e−1, and (iv) the

eigenvectors of the matrix MNOM, vκ = [vxκ vyκ ]T can be
of either one of two different types:

(1) Type I eigenvectors associated with eigenval-
ues ±

√
e−1, v1 = [1, 1, . . . , 1︸ ︷︷ ︸

Nx times

, 0, 0, . . . , 0︸ ︷︷ ︸
Ny times

] and v2 =

[0, 0, . . . , 0︸ ︷︷ ︸
Nx times

, 1, 1, . . . , 1︸ ︷︷ ︸
Ny times

]. These correspond to modes parallel

to the synchronization manifold.
(2) Type II eigenvectors associated with the remain-

ing (Nx + Ny − 2) eigenvalues, for which
∑Nx

l=1 vxκ
l = 0

and
∑Ny

l=1 v
yκ
l = 0, κ = 3, . . . , Nx + Ny. These correspond to

modes orthogonal to the synchronization manifold.
In the first part of this section we have seen that, in case

of parametric mismatches, the master stability function (32)
and the extended master stability function (33) depend on the
eigenvalues of the matrix M̃ rather than those of the nominal
matrix MNOM. We want to show that the spectrum of the ma-
trix M̃ is closely related to that of the matrix MNOM, namely,

MNOMvκ = ςκvκ ⇔ M̃vκ = ϑkvκ , (37)

where (a) ϑ1 = ϑ2 = 0 and (b) ϑκ = ςκ , κ = 3, . . . , Nx +
Ny.

To prove property (a) we just need to observe that from
the structure of the matrix M̃ in (18) and the property that
the sums over the entries in the rows and in the columns of the
matrix Ã is equal to zero, it follows that M̃vκ = 0 for κ = 1, 2.
Hence, v1 and v2 are still eigenvectors for the matrix M̃ but
with associated eigenvalue 0.

To prove property (b), we see that the left eigenvalue
equation for the matrix M̃ corresponds to the following

054314-6



GROUP SYNCHRONY, PARAMETER MISMATCHES, AND … PHYSICAL REVIEW E 104, 054314 (2021)

FIG. 1. A bipartite network with Nx = 12 nodes in the X group, shown in light green, and Ny = 6 nodes in the Y group, shown in dark
green. The network is bipartite so it contains just inter group connections.

equations: vxκT
Ã = ςκvyκT

and vyκT
ÃT = ςκvxκT

. We then
note that from Eq. (14) we can write that the matrix Ã =
(ANOM − �), where the entries over column j of the matrix
� are all the same and equal to aj , j = 1, . . . , Ny. Then
for κ = 3, . . . , Nx + Ny, vxκT

Ã = vxκT
(ANOM − �) = ςκvyκT

since vxκT
� = 0 from the property that the sum over the en-

tries of the vector vxκ is equal to zero, for κ = 3, . . . , Nx + Ny.
Hence, for κ = 3, . . . , Nx + Ny, vκ is still an eigenvector for
the matrix M̃ with associated eigenvalue ςκ .

B. Example

Consider the example of the bipartite network with two
groups, Nx = 12, Ny = 6 shown in Fig. 1.

The matrix ANOM for this network is

ANOM = 0.2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

r = d = 6. By calculating the transformation matrix T and
following Eq. (25), the matrix Q̃ for this network is

Q̃ = 0.2√
1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where each one of the r two-dimensional Qi blocks is shown in a box. The first box (Q1) corresponds to the parallel motion,
with associated singular value s1 = 0. The other blocks correspond to the transverse motions with associated singular values
s2 = s3 = · · · = s6 = 0.2/

√
1/2. By applying the same permutation applied to the matrix Q to the first term on the right-hand
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side of Eq. (25), we have:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DF∗
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 DG∗
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 DF∗
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 DG∗
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 DF∗
x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 DG∗
y 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 DF∗
x 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 DG∗
y 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 DF∗
x 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 DG∗
y 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 DF∗
x 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 DG∗
y 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DF∗
x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(40)

We further note that in case there are no mismatches,
that is, δai = 0, δb j = 0, δμi = 0, and δν j = 0, the low-
dimensional system (30) reduces to the unforced system

˙̃x(t ) = DF∗
x x̃(t ) + λκDF∗

uDH∗
y ỹ(t ), (41a)

˙̃y(t ) = DG∗
y ỹ(t ) + λκDG∗

uDL∗
x x̃(t ), (41b)

which is the low-dimensional solution found in Ref. [3]. Note
that Eqs. (25) is a system of linear time-varying nonhomo-
geneous differential equations and is characterized by the
same stability range as the associated homogeneous system
(41) [22]. The condition for stability is that the maximum
Lyapunov exponents of (41) are negative for κ = 2, . . . , r, ex-
cluding λ1 = 0, which is associated with perturbations tangent
to the synchronization manifold [3].

It is important to emphasize that Eqs. (41) depend on x̄(t )
and ȳ(t ), which are averaged trajectories over all the systems
in the network. In a large network, calculating x̄(t ) and ȳ(t )
may be computationally expensive, as it requires full integra-
tion of (Nx + Ny) individual systems, see Eq. (11). However,
for practical purposes, x̄(t ) and ȳ(t ) in (41) can be replaced by
xs(t ) and ys(t ) obeying Eq. (3) (see also Ref. [11]).

We conclude that in the presence of small parametric
mismatches, we can still use (41) to determine whether the
synchronous solution is stable. That also explains the excel-
lent agreement found between the stability region predicted
by the theory and experimentally observed in Ref. [5]. While
this is not a surprising result, as it is expected that linear
stability of a smooth dynamical system is not affected by
small parametric variations, by using this approach we will
be able to quantify the synchronization error as a function
of the parameter mismatches, based on the low-dimensional
reduction (30) and (31).

We now consider the following set of equations:

ẋi1 = − σixi1 + σi

Ny∑
j=1

Ai jy j, (42a)

ẋi2 =xi1

Ny∑
j=1

Ai jy j − ξxi2, (42b)

i = 1, . . . , Nx,

ẏ j = −y j +
Nx∑

i=1

Bjixi1

(
ρ −

Nx∑
i=1

Bjixi2

)
, (43)

j = 1, . . . , Ny.
We set the nominal parameters as follows: σi = σ =

10, i = 1, . . . , Nx, ρ = 28, and ξ = 2. If
∑

j Ai j = 1 and∑
i B ji = 1, then the synchronous dynamics corresponds to

that of the chaotic Lorenz system [23]. Given the set of equa-
tions (42) and (43), Eqs. (41) become

˙̃x1 = −σ x̃1 + σλκ ỹ,

˙̃x2 = ȳx̃1 + x̄1λκ ỹ − ξ x̃2,

˙̃y = −ỹ + (ρ − x̄2)λκ x̃1 − x̄1λκ x̃2.

The maximum Lyapunov exponent of this system is plotted
versus λκ in Fig. 2, from which we see that the synchronous
solution is stable for λ approximately less than 0.435.

Figure 3 shows cα1 , cβ1 , cγ , and cδ as functions of λκ .
The two constant values cα2 = 51.75 and cβ2 = 0.8002. Using
this information and Eqs. (33), we can compute the master
stability function as a function of λκ . This in turn allows us
to approximate the synchronization error, using Eq. (35) from
knowledge of ακ , βκ , γκ , and δκ , as long as all the λκ ’s are in
the region of stability, 0 � λκ � 0.435. We wish to emphasize
that this result is general and applies to any bipartite network
with bidirectional connections, whose time evolution obeys
Eqs. (42) and (43).
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FIG. 2. Maximum Lyapunov exponent for the system (41) as a
function of the parameter λk . The dashed line is the 0-ordinate line.

FIG. 3. cα1 , cβ1 , cγ , and cδ versus λκ . The vertical lines highlight
the values of the cα1 , cβ1 , cγ , and cδ for λκ = 0.2.

TABLE I. The synchronization error observed in the high-
dimensional system and the estimated synchronization error using
the master stability function defined in Eq. (32) for two different
cases.

Case 〈E (t )〉t

√∑r
κ=2 Mκ

2 + ∑d
κ=1 M0

2

(I) 1.529 × 10−3 1.498 × 10−3

(II) 1.609 × 10−3 1.614 × 10−3

In order to validate the theory, we consider the set of
Eqs. (42) and (43) for the network topology in Fig. 1 [ANOM

in Eq. (38)] and study the following two cases:
(I) Small mismatches affecting the couplings, namely

Ai j = ANOM
i j (1 + 5 × 10−5φi j ), where φi j is a random number

from a standard normal distribution.
(II) Small mismatches affecting both the couplings and the

individual system parameters, namely Ai j = ANOM
i j (1 + 5 ×

10−5φi j ) and σi in Eq. (42) is given by σi = 10(1 + 10−6ψi ),
where both φi j and ψi are random numbers from a standard
normal distribution.

All the transverse singular values of the matrix ANOM

in Eq. (38) are equal to sκ = 0.2/
√

1/2. To these corre-
spond only one value of λκ = 0.2. Table I compares the
synchronization error obtained from integration of the full
high-dimensional system (42) and (43) [left-hand side of
Eq. (32)] and the estimated synchronization error using the
master stability function [right-hand side of Eq. (32)] for both
cases described above.

III. COUPLINGS AMONG MEMBERS
OF THE SAME GROUP

So far we have only considered coupling from the X
group to the Y group and vice versa. While in general group
synchronization is possible in the presence of intragroup con-
nections, stability of the group synchronous solution when
also intragroup connections are present has not been fully
elucidated. This problem was investigated in Ref. [4], where
conditions were presented for the dimensionality reduction
of the stability problem. Here we will extend some of the
results in Ref. [4] and we will show that the stability of group
synchronization can be reduced in a low-dimensional form for
a broader class of networks.

Consider two groups of coupled oscillators, described by
the following equations:

ẋi = F (xi ) +
Ny∑
j=1

Ai jH (y j ) +
Nx∑

�=1

Ci�R(x�), i = 1, . . . , Nx,

(44a)

ẏ j = G(y j ) +
Nx∑

i=1

BjiL(yi ) +
Ny∑

�=1

Dj�S(y�), j = 1, . . . , Ny,

(44b)

where the output functions R : Rnx → Rnx and S : Rny → Rny

and the Nx-square matrix C and the Ny-square matrix D define
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the intragroup connections of group X and group Y , respec-
tively.

If
∑Ny

j=1 Ai j = a �= 0 and
∑Nx

�=1 Ci� = c �= 0 independent

of i and
∑Nx

i B ji = b �= 0 and
∑Ny

�=1 Dj� = d �= 0 indepen-
dent of j, then a synchronous solution exists, x1 = x2 = · · · =
xNx = xs, y1 = y2 = · · · = yNy = ys, obeying

ẋs = F (xs) + aH (ys) + cR(xs), (45a)

ẏs = G(ys) + bL(xs) + dS(ys). (45b)

Note that by appropriately rescaling the functions
H, L, R, S it is always possible to set a = b = c = d = 1.
Therefore, without loss of generality, in what follows we will
proceed under this assumption.

In order to analyze stability, we linearize (44) about the
synchronous solution,

δẋi = DF (xs)δxi +
Ny∑
j=1

Ai jDH (ys)δy j +
Nx∑

�=1

Ci�DR(xs)δx�,

i = 1, . . . , Nx (46a)

δẏ j = DG(ys)δy j +
Ny∑

i=1

BjiDL(xs)δxi +
Ny∑

�=1

Dj�DS(ys)δy�,

j = 1, . . . , Ny. (46b)

In Ref. [4] it was shown that Eq. (46) can be reduced in a
low-dimensional form, provided that the matrix N = [C 0

0 D]

has the same set of eigenvectors as the matrix M = [0 A
B 0].

It was thus concluded in Ref. [4] that if this condition is
satisfied, in a similar way to the case of bipartite topologies,
then stability of the synchronous solution can be reduced in
the following low-dimensional form,

˙̄xκ = DF (xs)x̄κ + λκDH (ys)ȳκ + ηκDR(xs)x̄κ , (47a)

˙̄yκ = DG(ys)ȳκ + λκDL(xs)x̄κ + ηκDS(ys)ȳκ , (47b)

κ = 1, . . . , Nx + Ny, where λκ and ηκ are the eigenvalues
associated with the same eigenvector of the matrices M and N ,
respectively. By construction, there are always two κ eigen-
vectors which are associated with perturbations tangent to
the synchronization manifold, and the corresponding pairs of
eigenvalues (λκ, ηκ ) do not need to be considered in order to
assess stability. Without loss of generality, we label κ = 1 and
κ = 2 the two tangent eigenmodes and κ = 3, . . . , Nx + Ny

the remaining transverse eigenmodes.
In what follows we extend the results in Ref. [4] and show

that a reduction in a low-dimensional form is possible for any
pair of matrices,

C = C′ + Jx, (48a)

D = D′ + Jy. (48b)

where (i) the matrix [C′ 0
0 D′] has the same set of eigenvectors

as the matrix M and (ii) Jx and Jy are any two Nx-square and

Ny-square matrices whose columns are composed of entries
that are all the same. This form of the matrices Jx and Jy

corresponds to a particular coupling configuration for which
for any pair of nodes (i, j) in either group X or group Y , the
coupling strength from node i to node j is a function of i but
not of j.

Using the ansatz δxi(t ) = pκ
i x̂κ (t ) and δy j (t ) = qκ

j ŷκ (t ) in
(46), we obtain

pκ
i

˙̂xκ = DF (xs)pκ
i x̂κ +

Ny∑
j=1

Ai jq
κ
j DH (ys)ŷκ

+
Nx∑

�=1

Ci�DR(xs)pκ
� x̂κ , (49a)

qκ
j
˙̂yκ = DG(ys)qκ

j ŷκ +
Nx∑

i=1

Bji p
κ
i DL(xs)x̂κ

+
Ny∑

�=1

Dj�DS(ys)qκ
� ŷκ . (49b)

We now consider the left eigenvalue equation,

ωκT
M = λκωκT

, (50)

where the left eigenvectors ωκT = (pκ l

1 , pκ l

2 , . . . , pκ l

Nx
,

qκ l

1 , qκ l

2 , . . . , qκ l

Ny
). By multiplying (49a) by pκ l

i , summing

over i, and dividing by (
∑

i pκ l

i pκ
i ) [by multiplying (49b) by

qκ l

j , summing over j, and dividing by (
∑

j qκ l

j qκ
j )], we obtain,

˙̂xκ = DF (xs)x̂κ + λκDH (ys)ŷκ + ηκDR(xs)x̂κ

+
(∑

�

∑
i pκ l

i Jx
i� pκ

�

)( ∑
i pκ l

i pκ
i

) DR(xs)x̂κ , (51a)

˙̂yκ = DG(ys)ŷκ + λκDL(xs)x̂κ + ηκDS(ys)ŷκ

+
(∑

�

∑
j qκ l

j Jy
j�qκ

�

)
( ∑

j qκ l

j qκ
j

) DS(ys)ŷκ , (51b)

κ = 1, . . . , Nx + Ny.
We shall now show that

∑
i pκ l

i Jx
i� = 0, for κ =

3, . . . , (Nx + Ny) in Eq. (51a) and
∑

j qκ l

j Jy
j� = 0, for

κ = 3, . . . , (Nx + Ny) in Eq. (51b). Since by definition
the matrices Jx and Jy have columns whose entries are
all the same, it suffices to show that

∑
i pκ l

i = 0, for κ =
3, . . . , (Nx + Ny) and

∑
j qκ l

j = 0, for κ = 3, . . . , (Nx + Ny).
We will prove that this latter property is satisfied by the
(Nx + Ny − 2) eigenvectors that are associated with the
transverse eigenmodes of the matrix M.

Note that the left eigenvalue equation ωκT
M = λκωκT

im-
plies the following two equations: qκT

B = λκ pκT
and pκT

A =
λκqκT

where the vectors pκT = (pκ l

1 , pκ l

2 , . . . , pκ l

Nx
) and
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qκT = (qκ l

1 , qκ l

2 , . . . , qκ l

Ny
), or, equivalently,

Ny∑
j=1

qκ l

j B ji = λκ pκ l

i , (52a)

Nx∑
i=1

pκ l

i Ai j = λκqκ l

j . (52b)

By summing Eq. (52a) over i = 1, . . . , Nx and Eq. (52b)
over j = 1, . . . , Ny, we obtain

Ny∑
j=1

qκ l

j = λκ

Nx∑
i=1

pκ l

i , (53a)

Nx∑
i=1

pκ l

i = λκ

Ny∑
j=1

qκ l

j . (53b)

By plugging (53b) into (53a) we obtain
∑Ny

j=1 qκ l

j =
(λκ )2 ∑Ny

j=1 qκ l

j , which can be satisfied in two possible ways:
either λκ = ±1, which applies to the parallel eigenmodes
κ = 1, 2 of the matrix M, or

∑Ny

j=1 qκ l

j = 0, which applies to
the transverse eigenmodes κ = 3, . . . , (Nx + Ny) of the matrix
M. Analogously, by plugging (53a) into (53b), we can show
that

∑Nx
i=1 pκ l

j = 0 for κ = 3, . . . , (Nx + Ny).
We can thus conclude that Eq. (51) reduces to (47) for κ =

3, . . . , (Nx + Ny) (while in general it does not reduce to (47)
for κ = 1, 2). This implies that when intragroup connections
are in the general form of Eq. (48), transverse stability is still
determined by the low-dimensional system (47).

Finally, we note that the analysis of parameter mismatches
presented in Sec. II can be extended to the case that small
mismatches affect the intragroup connections. In particular, if
the intragroup connections are affected by small mismatches
but are in a form that approximately satisfies Eq. (48), then
the low-dimensional system (47) can still be used to predict
stability of the synchronous state.

A. Numerical example

As a numerical example, we considered a small network
for which Nx = 2, Ny = 3, and

A =
(

w 1 − w 0
0 1 − w w

)
, B =

⎛
⎝1 0

1
2

1
2

0 1

⎞
⎠. (54)

In Ref. [3] we showed that for this choice of the coupling ma-
trices A and B, the eigenvalues λκ were equal to 0,±√

w,±1.
Then, by setting w = 0.64 stability is only affected by the
pair of eigenvalues λκ , 0, and

√
w = 0.8 [3]. In our numerical

experiments, we retained the set of Eq. (42) and replaced (43)
by the following:

ẏ j = −y j +
Nx∑

i=1

Bjixi1

(
ρ −

Nx∑
i=1

Bjixi2

)
+

Ny∑
�=1

Dj�S(y�),

(55)
j = 1, . . . , Ny, where the last term on the right-hand side of
(55) represents coupling between systems of the same group

FIG. 4. (a) Maximum Lyapunov exponent (MLE) for the system
(47) vs. s for λκ = 0 and λκ = 0.8. The dashed line corresponds to
the 0-ordinate line. (b) Synchronization error Ey vs. s for the two
choices of the matrix D in Eq. (56).

Y and we set the coupling function S(y�) = sy�, with s being
a variable scalar quantity.

We considered the following two cases of intragroup cou-
pling matrices D:⎛

⎝1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

⎞
⎠,

⎛
⎝0 1 0

0 1 0
0 1 0

⎞
⎠, (56)

which we label case 1 and case 2, respectively. For both
cases 1 and 2, the corresponding matrices M and N do not
commute, so neither case can be studied within the framework
presented in Ref. [4]. Note that both choices of D above are
matrices whose columns are composed of entries that are all
the same. Therefore, in both cases we expect stability to be
described by the low-dimensional system (47) with ηκ = 0.
Figure 4(a) shows the maximum Lyapunov exponent (MLE)
for the system (47) as a function of the parameter s for λκ = 0
and λκ = 0.8, from which we see that stability is expected for
s � 1.5.

In Fig. 4(b) we run full numerical simulations of the net-
work dynamics [Eqs. (42) and (55)] as we vary the parameter
s. For each run, the network systems are evolved from initial
conditions that are close to the synchronization manifold. The
figure shows the final synchronization error,

Ey = N−1
y (τ )−1

∫ t1+τ

t1

Ny∑
i=1

[yi(t ) − ȳ(t )]2dt, (57)

with t1 a large-enough time past the initial transient dynamics
and τ a large-enough averaging window, versus s. As can be
seen, perfect agreement is attained with the low-dimensional
predictions of Fig. 4(a).

IV. CONCLUSIONS

The main contribution of this paper is to extend the analysis
of the effects of parameter mismatches on the stability of the
network synchronous solution [9–15] to the case of networks
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formed of systems of different types. An important reference
for our work is Ref. [10], which introduced a master stability
function to characterize the synchronization error in networks
with parameter mismatches.

Group synchronization was first studied in Ref. [3] and has
been the subject of both theoretical [4] and experimental [5]
investigations. Group synchronization has been observed and
characterized when the systems in each group are identical
and the couplings between the systems satisfy specific condi-
tions. In this paper, we have defined a master stability function
that describes stability of the group synchronization solution
in the presence of mismatches on the individual parameters
of the network oscillators and on the couplings between the
oscillators in the groups. This is relevant to experimental
realizations of group synchrony [5], for which parameter

mismatches are practically unavoidable. Our analysis applies
to the case that for each connection from node i in group X to
node j in group Y , there is a connection from node j in group
Y to node i in group X . We have also extended the analysis
presented in Ref. [4] to study stability of the group synchro-
nization solution in the presence of intragroup couplings. Our
analysis has pointed out a broader class of matrices describing
intragroup connectivity for which the stability problem can be
reduced in a low-dimensional form.
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