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Optimized two-dimensional networks with edge-crossing cost:
Frustrated antiferromagnetic spin system
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We consider a quasi-two-dimensional network connection growth model that minimizes the wiring cost while
maximizing the network connections, but at the same time edge crossings are penalized or forbidden. This
model is mapped to a dilute antiferromagnetic Ising spin system with frustrations. We obtain analytic results for
the order-parameter or mean degree of the optimized network using mean-field theories. The cost landscape is
analyzed in detail showing complex structures due to frustration as the crossing penalty increases. For the case
of strictly no edge crossing is allowed, the mean-field equations lead to a new algorithm that can effectively find
the (near) optimal solution even for this strongly frustrated system. All these results are also verified by Monte
Carlo simulations and numerical solution of the mean-field equations. Possible applications and relation to the
planar triangulation problem is also discussed.
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I. INTRODUCTION

Due to the availability of a large number of scientific,
technological, social, and financial data, research related to
complex networks have been vastly expanding in the last
couple of decades [1,2]. And the convenience the data banks
accessible through internet further encouraged the intensity
of research in these areas [3,4]. Several issues are of special
interest, one is how the network topology affects the function
of these complex networks, as in the case of biological net-
works. In order to grasp the fundamental understanding of the
structure and functions of complex networks, the principles
behind for the formation or growth of such networks need
to be investigated. This question is associated with evolution
of the network which involves the growth of nodes and con-
nections. Presumably the system is optimizing towards some
goal [5,6], but often constrained by some external or internal
conditions and also regulated by the feedback of the status
of the network. This is related to the selection and adaptation
in biology in a broad sense [7–9]. Also there are some recent
efforts on attempting to understand the designing principle for
network that optimize information flow [10,11] or robustness
against attacks [12,13].

Recently, we developed a theoretical framework for such
optimized networks and investigate the connection formation
models of some physical complex networks or bionetworks.
Our motivation is to understand the relation between the
energy cost and the connectivity in a network. We consider
undirected network connection growing models that aim at
minimizing the cost of connections while at the same time
maximizing the network connections or other important net-
work properties. Classical network models and statistical
mechanics methods were employed to study the growth of
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connections in networks under the principle of optimizing
some objective function [14]. These models are quite gen-
eral and applications could be found in various physical or
biological networks. By mapping the system to a spin model,
it was demonstrated that some version of these models can
be solved exactly, and in several cases exhibiting interesting
phase transition behaviors [14]. On the other hand, the growth
of connections in a network is often subjected to some pos-
sible constraints that strongly affect the resultant structure of
the optimized network. This is especially relevant for physical
network connections in which the connecting links exhibit
mutual interactions. Such constraints or interactions can lead
to frustrations in the course of finding the optimized network
which is a challenging problem, both theoretically and com-
putationally.

In this paper, we consider nodes embedded in a two-
dimensional (2D) plane and the network connections are
subjected to interactions of intersecting links or even under
the constraint of no edge crossing. This optimized network
connection problem has a broad applications on physical net-
works such as the designing principle in a two-dimensional
electric network, which is still an active research area. A
circuit network with minimal wire cost but can connect a
large number of nodes would be desirable. However, no bond
crossing is a necessary condition for electric circuit board
network since crossing of bare metallic wires will lead to a
short circuit. The topological constraint [15,16] of no crossing
between two strands is rather general and gives rise to the
entanglement interactions in polymer melts [15] and knots
[17,18]. The constraint of no bond crossing will have a strong
effect on the structure of the resulting two-dimensional net-
works. One can further generalized to quasi-two-dimensional
networks in which edge crossings are penalized or forbidden;
representing an extra cost of insulation at the wire crossing
junction for the case of an electric circuit. This model is also
of relevance to the growth of cultured neuronal network in
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vitro [19,20] or blood vessels in tissues. As will be shown
in this work, the edge-crossing penalty corresponds to the
frustrated antiferromagnetic spin system and for the strongly
edge-crossing interacting case, there are many near local opti-
mal solutions in the low-temperature regime that hinder the
finding the true optimized network. In this paper, we de-
rive analytic results using the mean-field theories and also
verified these results explicitly by Monte Carlo simulations
and numerical solutions of the mean-field equations. For the
challenging case of no bond crossing characterized by strong
frustrations, we further develop an efficient algorithm to find
the optimal network configurations.

II. EDGE CROSSING PENALTY IN 2D NETWORKS:
DILUTE ANTIFERROMAGNETIC ISING MODEL

AND THE MEAN-FIELD EQUATIONS

Consider an undirected network of N nodes which are
embedded in a two-dimensional plane, the connections are
described by the (symmetric) adjacency matrix Ai j which
takes the value of 1 if there is an edge connecting between
nodes i and j and 0 otherwise, and there is no self-connection
(Aii = 0). In general, each edge Ai j is associated with a weigh-
ing factor denoted by wi j which can be interpreted as the
energy or cost required to set up such a connection. The
maximal total number of possible edges is Nb ≡ N (N − 1)/2.
For convenience, the edge of the network is labeled by the
Greek index α (α = 1, 2, . . . , Nb) hereafter. The average over
the entire network is denoted by an overbar, so the mean
degree is k̄ ≡ 1

N

∑N
i=1 ki. The average can also be over the

edges and in this case · · · ≡ 1
Nb

∑Nb
α=1 · · · . By introducing the

Ising spin variables

Sα ≡ 2Aα − 1, (1)

which takes values ±1, the links of the network can be
described in terms of the Ising spins. The order-parameter
(magnetization in the spin system), denoted by xo, is

xo = 1

Nb

〈
Nb∑

α=1

Sα

〉
, (2)

where the thermodynamic (ensemble) average is denoted by
〈· · · 〉. The mean degree of the network, k̄, is related to {Sα} by
k̄ = N−1

2 + 1
N

∑
α Sα . xo = 1 and −1 corresponds to the case

of completely connected and unconnected networks respec-
tively. The ensemble average of the mean network degree is
related to the order-parameter and average mean connectivity
via

〈k̄〉
N − 1

= 〈Ā〉 = 1 + xo

2
. (3)

Thus by introducing a temperature (which corresponds to the
noise level of the system), the problem of finding the fully
optimized network is mapped to the search of the ground state
of the corresponding Ising spin system. In general, the spin
system can be conveniently simulated by Monte Carlo method
and annealed down to low temperatures to obtain the (near)
ground state optimized network configuration.

Here we consider a network embedded in a two-
dimensional plane with physical connections. The cost of

constructing the network would include the material cost of
the edge, which is simply proportional to the distances be-
tween two nodes (denoted by the matrix di j), and the cost
of making the connections which can obey some probability
distribution but is taken to be a fixed constant co (independent
of the separation of the nodes) in this paper for simplicity.
The connection cost between nodes i and j is denoted by the
weight wi j = di j + co and enters in the first term in Eq. (4)
below.

Similarly to Model A in Ref. [14], one wishes to design a
network that minimizes the connection cost and at the same
time maximizes the network connections. However the in-
plane confinement of the nodes would unavoidably lead to
the consideration of possible edge crossings, and in general
edge crossings would increase the total cost of the network.
Examples include the insulation for metal wires for crossings
in electrical circuit chips and the construction of flyover or
traffic junctions when road crossing occurs in road traffic. To
model the effect of the bond crossing, an edge-crossing cost
term [last term in (4)] is included in the total cost (CX ) of the
model as

CX =
∑

α

Aαwα − λNk + 4γ

Nb

∑
α′<α

Jα′αAα′Aα, (4)

where Jαα′ takes the value 1 if the α and α′ edges cross each
other, and takes the value 0 otherwise. Here λ and γ are
non-negative parameters of the model representing the drive
for making connections and the crossing penalty strength,
respectively. In terms of the Ising spin variables, (4) becomes
(apart from an additive constant)

H = −
∑

α

(
λ − wα

2
− γ

Nb

∑
α′

Jαα′

)
Sα

+ γ

2Nb

∑
α′ �=α

Jαα′Sα′Sα, (5)

which is a dilute antiferromagnetic Ising system under a local
external field hα ≡ λ − wα

2 − γ

Nb

∑
α′ Jαα′ . For further analyt-

ical calculations, we take wα = dα + co and assume dα’s are
drawn from some distance distribution Pd (dα ) (which can be
calculated theoretically), and the connection weight distribu-
tion is simply given by P(w) = Pd (w − co).

Using standard techniques in statistical mechanics, the
mean-field equations are obtained as

mα = tanh β

(
hα − γ

Nb

∑
α′

Jαα′mα′

)
α = 1, 2, . . . , Nb, (6)

where β is the “inverse temperature” parameter corresponding
to the inverse of intrinsic noise strength for the growth of the
optimized network. mα = 〈Sα〉 is the average local spin value.
(6) are Nb coupled nonlinear mean-field equations which can
be solved by standard numerically routines with a number of
initial guess trials to search for possible different solutions,
and the one with lowest cost is chosen. Here we focus on
the zero-temperature limit for the fully optimized network. In
the β → ∞ limit, it is more convenient to use the adjacency
variable Aα to describe the network connection properties, (6)
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FIG. 1. Monte Carlo simulation (symbols) results of the order-parameter xo vs. λ for N = 100 and γ = 1. (a) For various values of β. The
crude mean-field approximation theoretical results (curves) obtained from (11) are also shown. (b) Monte Carlo simulation results for large
values of β. The zero-temperature theoretical results obtained from crude mean-field approximation (13) (solid curves) and from the numerical
solutions of the mean-field equations (7) (dashed curve) are also displayed.

becomes

Aα = �

(
λ − wα

2
− 2γ

Nb

∑
α′

Jαα′Aα′

)
(7)

where � is the Heaviside step function. The solutions of the
mean-field equations give the network connection candidates
for the optimized network and the numerical results will be
presented in Sec. IV. Before that, we shall impose further
approximation to derive some analytic results in next section.

For the fully optimized case of zero temperature, there is
no edge crossing for sufficiently large γ , and the critical γ ∗
can be derived as follows. For γ > 0, the zero-temperature
mean-field equation (7) can be rewritten as

Aα = �

[
Nb

2γ

(
λ − wα

2

)
− nα

]
, where nα =

∑
α′

Jαα′Aα′

(8)

is the number of crossings of edge α whose possible values
are 0, 1, 2, . . . , Nb. Denote wmin as the minimal value of the
weights for this realization, we have Nb

2γ
(λ − wα

2 ) � Nb
2γ

(λ −
wmin

2 ). Hence if Nb
2γ

(λ − wmin
2 ) < 1, then any edge candidate that

has a finite number of crossings (nα � 1) will be impossible
to connect (i.e., Aα = 0). In other words, for

γ > γ ∗ ≡ Nb

2

(
λ − wmin

2

)
, (9)

the no edge-crossing constraint will be satisfied, and the op-
timized network will have the same configuration for γ ∈
(γ ∗,∞).

III. CRUDE MEAN-FIELD APPROXIMATION

To proceed analytically, we made further approximation by
replacing mα′ in the last term in (6) by its mean-field value,
namely the order-parameter xo ≡ 1

Nb

∑
α mα . We call such an

approximation the crude mean-field approximation, then xo

can be obtained from the self-consistent equation

xo = 1

Nb

∑
α

tanh

{
β

[
λ − wα

2
− γ (1 + xo)

nα

Nb

]}
, (10)

where nα ≡ ∑
α′ Jαα′ is the maximal possible crossings of

the edge α (which is a non-negative integer). Macroscopic
quantities, such as the order parameter, are then obtained by
taking the average over the distributions of nα and wα . Denote
the joint probability of that nα and wα by P(n,w), one has

xo =
Nb∑

n=0

∫
P(n,w)dw tanh

{
β

[
λ − w

2
− γ

n

Nb
(1 + xo)

]}
.

(11)

One can also define Px(n) ≡ ∫
dwP(n,w) and Pw(w) ≡∑Nb

n=0 P(n,w) as the crossing probability and weight distri-
bution, respectively. For a given distribution of the nodes on
a plane, the distribution P(n,w) can be obtained by direct
sampling. It should be noted that since wα = dα + co depends
on the distance between two nodes on the plane, thus the num-
ber of possible crossings over an edge depends on its length
in general, i.e., n and d (and hence w also) are correlated,
namely P(n,w) �= Px(n)Pw(w). This can be directly verified
in simulations by plotting the number of possible crossing for
an edges versus its length for nodes randomly placed on a unit
square as displayed in Fig. 14(a), showing that n and d are
in general positively correlated. Px(n) can be obtained from
simulations of N nodes randomly distributed on a square or
from

∫
dwP(n,w) and the results are shown in Fig. 14(c).

Figure 1(a) shows xo solved from (11) as a function of λ

together with the Monte Carlo simulation results for γ = 1
and different values of β. xo (hence 〈Ā〉) increases with λ and
approaches the fully connected limit for sufficiently large λ.
The crude MF approximation agrees well with the simulation
results at higher temperatures but deviations are prominent at
low temperatures.

We then focus on the the fully optimized case of zero-
temperature. In the β → ∞ limit, in terms of the average of
the mean connection 〈Ā〉, the crude mean-field equation reads

〈Ā〉 =
Nb∑

n=0

∫ 2λ− 4γ n
Nb

〈Ā〉

−∞
P(n,w)dw, (12)

=
Nb∑

n=0

Pcum
w

(
n, 2λ − 4γ n

Nb
〈Ā〉

)
, (13)
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(a) (b)

FIG. 2. (a) Phase diagram of the mean connectivity 〈Ā〉 of a fully optimized (zero-temperature) two-dimensional network with bond-
crossing cost obtained from the solution of (13) under the crude mean-field approximation. N = 100 and c0 = 0. The straight line marks the
estimated phase boundary λ � 0.96γ + 1√

2
for the fully connected network with Ā = 1. (b) Similar to (a) but for the case of wα = c0 = 1

which corresponds to the case in Sec. III A. The vertical straight line marks the phase boundary λ � c0
2 for the unconnected network with

Ā = 0. The straight line marks the estimated phase boundary λ � c0
2 + 0.96γ for the fully connected network with Ā = 1.

where Pcum
w (n, u) ≡ ∫ u

−∞ dwP(n,w) is the cumulative proba-
bility of P(n,w). Under the crude mean-field approximation,
〈Ā〉 can be obtained from the root of Eq. (13) as a function of
λ and γ . Solving 〈Ā〉 from Eq. (13) with Pcum

w (n) recorded
from direct sampling, the crude mean-field results for the
zero temperature (β → ∞) is shown in Fig. 1(b) for the zero
temperature order parameter xo (solid curve) as a function
of λ for γ = 1 together with the Monte Carlo simulation
results (symbols) for large values of β, indicating that the
crude mean-field approximation is reasonably accurate, albeit
with noticeable deviations from simulation results. It is clear
that for sufficiently low values of γ and large enough λ, the
network is fully connected.

Figure 2 shows the zero-temperature phase diagram of
γ vs. λ for the mean connectivity obtained from the root
of Eq. (13). One can see that for sufficiently large λ, the
optimized network is completely connected and its phase
boundary can be deduced as follows. From (12), it is clear
that 〈Ā〉 = 1 is a root if the upper limit of the integral ex-
ceeds the maximal value of the weight, wmax. In addition,
the maximal number of crossings (denoted by nmax) can be
obtained from sampled cumulative distribution Pcum

x under the
condition Pcum

x (nmax) = 1. Hence the condition for 〈Ā〉 = 1
is 2λ � 4γ nmax/Nb + wmax. For instance with N = 100, from
the sampled Pcum

x (n) [see Fig. 14(d)], one gets nmax/N � 0.48
and for nodes randomly distributed on a unit square wmax =
dmax = √

2 (for c0 = 0), one obtains the phase boundary line
λ = 0.96γ + 1√

2
. This theoretical phase boundary line is also

plotted in Fig. 2 showing very good agreement.
The average material cost M ≡ 〈∑α dαAα〉 and number

of crossing Nx ≡ 〈∑α′<α Jα′αAα′Aα〉 are also measured from

simulations. Figures 3(a) and 3(b) show the Monte Carlo
results of the average material cost and number of crossings
as a function of λ with γ = 1 for several values of β. Both M
and Nx increases with λ, and more sharply at low temperature.
Under the crude mean-field approximation, it is easy to see
that M � (

∑
α dα )〈Ā〉 and Nx � (

∑
α′<α Jα′α )〈Ā〉2, for differ-

ent values of β, λ, and γ . Figure 3(c) plots the Monte Carlo
simulation results of M and Nx vs. 〈Ā〉 verifying the scaling of
M and Nx with 〈Ā〉 of the crude mean-field predictions.

A. Case of c0 � dα

On the other hand, the correlation between nα and wα can
be negligible under some special condition. For instance, if the
node connection cost outweighs the wiring cost, i.e., c0  dα ,
then wα � c0 leading to the independence between nα and wα:
P(n,w) = Px(n)Pc0 (w), where Pc0 is the distribution function
of c0. In this case the zero-temperature crude mean-field equa-
tion (13) becomes

〈Ā〉 =
Nb∑

n=0

Px(n)
∫ 2λ− 4γ n

Nb
〈Ā〉

0
Pc0 (u)du, (14)

=
Nb∑

n=0

Px(n)�

(
λ − c0

2
− 2γ n

Nb
〈Ā〉

)

for Pc0 (u) = δ(u − c0), (15)

= Pcum
x (n∗), (16)

where the case of a fixed c0 is considered in above, and
Pcum

x (m) ≡ ∑m
n=0 Px(n) is the cumulative probability of the
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FIG. 3. Monte Carlo simulation results of the (a) material cost M and (b) mean crossing number as a function of λ for different values of
β with γ = 1. (c) Log-log plot of the data in (a) and (b) versus 〈Ā〉 to verify the scaling prediction from the crude mean-field approximation.
The dotted and solid lines are of slopes 1 and 2, respectively.

crossing of the possible edges. n∗ is given by the largest
integer that n∗Pcum

x (n∗) is smaller than Nb
2γ

(λ − c0
2 ). It is clear

for this case that 〈Ā〉 is a function of a single scaled parameter
λ− c0

2
2γ

. This can be verified from the Monte Carlo simulation
results of xo at low temperatures for various values of γ and λ

which all collapse onto a master curve close to the theoretical
curve from the zero-temperature crude mean-field approxima-
tion as shown in Fig. 4(a). The phase diagram for the mean
connectivity in this case obtained from the root of Eq. (13) is
shown in Fig. 2(b). It is easy to see from (15) that 〈Ā〉 = 0
(unconnected network) is the solution if λ � c0

2 . Also from
(16) that 〈Ā〉 = 1 (fully connected network) is the solution for
λ � c0

2 + 2γ nmax
Nb

. These two phase boundaries are also plotted
in Fig. 2(b) showing nice agreement.

B. Case of small γ

Obviously, there will be no edge-crossing penalty if γ = 0.
Consider the zero-temperature crude mean-field equation (12)
under the condition of γ � λ/2, since n

Nb
< 1 and 〈Ā〉 �

1, one can expand the right-hand side of (12) for small γ

to give

〈Ā〉 = Pcum
d (2λ − c0) − 2γ 〈Ā〉

λ
g(2λ) + O

[(
γ

λ

)2]
,

(17)

=
[

1 − 2γ

λ
g(2λ)

]
Pcum

d (2λ − c0) + O
[(

γ

λ

)2]
,

(18)

where g(x) ≡ x

Nb

Nb∑
n=0

nP(n, x), (19)

which can be computed from the sampled P(n,w), and is
shown in Fig. 14(e). Thus to lowest order, one has

〈Ā〉 � Pcum
d (2λ − c0) + O

(
γ

λ

)
, (20)

which essential says that the crossing penalty is negligible and
the cost reduces to Model A in Ref. [14].

Furthermore, Pd (d ) can be calculated analytically in some
case, otherwise it can be measured once the position of the
nodes are given. For example, if the N nodes are uniform and
randomly fall on a unit square, then Pd (d ) can be calculated
(see Appendix A for derivation) to be

Pd (X ) =
{

2X (π − 4X + X 2), 0 < X � 1

2X {2[csc−1 X − tan−1
√

X 2 − 1 − 1] + 4
√

X 2 − 1 − X 2}, 1 < X <
√

2.
(21)

The analytic results of (21) together with the measured Pd (d ) from simulations are shown in Fig. 14(f) in Appendix A. The
cumulative distance distribution, Pcum

d (z) ≡ ∫ z
0 Pd (u)du, can be evaluated to give

Pcum
d (z) =

{
z2

(
π − 8

3 z + z2

2

)
, 0 < z � 1

1
3 + 4

3

√
z2 − 1(2z2 + 1) + 2z2

[
csc−1 z − tan−1

√
z2 − 1 − z2

4 − 1
]
, 1 < z �

√
2.

(22)

Using the explicit result for Pd in (21) for nodes that are
uniformly distributed randomly in a square domain, Fig. 4(b)
shows the order-parameter as a function of λ obtained from

the root of (13) together with the zero and first-order results
calculated using (20) and (19), indicating that the first-order
expansion gives very accurate agreement.
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FIG. 4. (a) The case of c0  dα: Monte Carlo simulation results for the case of wα = c0 showing xo vs. the scaled parameter λ−c0/2
2γ

for
various values of γ at low temperature β = 10. The crude mean-field theoretical approximation of (16) at zero temperature is also shown
(curve). (b) Crude mean-field approximation result of xo vs. λ for γ = 0.1 (curve). Explicit approximations of zero and first order calculated
from (20) and (19) (symbols) respectively are also shown to verify the analytic formulas for small values of γ .

C. No-bond-crossing constraint

For fixed values of λ and β, the connectivity of the opti-
mized network decreases as the crossing penalty γ increases,
as shown by the Monte Carlo simulation and crude mean-field
results in Fig. 5(a). For small values of γ , the crude mean-field
results agrees well with the simulations but deviation becomes
more significant as γ increases. The total number of crossing
of the resultant network decreases with γ .

For the case of strictly no bond crossing is allowed, it is
anticipated that the number of links will be suppressed, and
the optimization would be strongly frustrated due to the strong
interaction for the crossings between the edge candidates.
The strictly no-bond-crossing constraint corresponds to the
strongly frustrated antiferromagnetic spin system. One may
expect there are many solutions with near costs in the low-
temperature regime. To gain some insights, the network is
first studied by Monte Carlo simulations under the constraint
that there is strictly no bond crossing. Starting with β = 1, the
network is annealed down to β = 10 slowly. Since under the
no-bond-crossing constraint, the connectivity of the optimized
network is low and hence it would be better to examine the
mean degree k̄ directly. Figure 5(b) shows the variation of

average mean degree as a function of λ as the temperature
is lowered from β = 1 to β = 10. k̄ increases with λ and
saturates for large values of λ. The saturation to the maximal
value of 〈k̄〉 occurs for smaller λ for lower temperatures and
at zero temperature 〈k̄〉 � 5.7 for λ � 0.2.

To proceed analytically, for the fully optimized network
in the zero-temperature limit, the no-bond-crossing constraint
can be considered by taking the γ → ∞ limit. Using the
crude mean-field approximation, the saddle-point equation
(11) gives

xo + 1 = Px(0) +
∫

P(0, u) tanh β
(
λ − u

2

)
du. (23)

Further take the β → ∞ limit in (23) for fully optimized
network, one gets

xo + 1

2
= 〈Ā〉 = Pcum

w (0, 2λ). (24)

For nodes that are uniformly random distributed in a unit
square, Pcum

w (0, 2λ) is recorded by direct sampling. Thus the
average mean degree is given by 〈k̄〉 = (N − 1)Pcum

w (0, 2λ).
This implies that for sufficiently large λ, 〈k̄〉 = (N − 1)Px(0).

0 2 4 6
 γ

-0.5

0

0.5

1

x o

β=1  
β=10  
β=1 crude MF 
β=10 crude MF 

(a)

0.0 0.2 0.4 0.6 0.8 1.0

λ
0

1

2

3

4

5

6

<
k_  > β=1

   2
   5
   10
β=∞ 

(b)

FIG. 5. Monte Carlo simulation results of xo (symbols) as a function of γ for λ = 1 and β = 1 and 10. N = 100. The corresponding
theoretical results of crude mean-field approximation are also shown (curves). (b) Monte Carlo simulation results of the mean degree 〈k̄〉
(symbols) as a function of λ for various values of β, for optimized network under no-bond-crossing constraint. The result for the fully
optimized network (zero temperature) using our algorithm in Sec. IV is also shown (dashed curve).
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Using the measured value of Px(0) for N = 100, the above
result gives 〈k〉 � 0.44 which is much less than that obtained
from Monte Carlo simulations of 〈k̄〉 � 5.7 [see Fig. 5(b)].
Such a discrepancy can be understood as follows: The crude
mean-field approximation by taking A′

α to be a constant in (7)
in the large γ limit will suppress the Aα links for Jαα′ = 1 even
if Aα′ vanishes and hence will underestimate k. Therefore,
for networks obeying the strict no-edge-crossing constraint,
i.e., genuine planar networks, one needs to abandon the crude
mean-field approximation and look for the solutions of the
system of mean-field equations which is considered in next
section.

IV. SOLUTION OF THE MEAN-FIELD EQUATIONS,
GROUND-STATE COST LANDSCAPE, AND OPTIMAL

ALGORITHM FOR NO-CROSSING SOLUTION

In this section, we shall solve the zero-temperature mean-
field equations (7) numerically and will show that the minimal
cost solution indeed gives very accurate results for the order-
parameter measured from Monte Carlo simulations at low
temperatures. In addition, the solution of the mean-field equa-
tion provides the precise network connections for the fully
optimized network, which is essential for practical applica-
tions. The mean-field equations (7) are Nb coupled nonlinear
equations with discrete binary variables Aα = 0 or 1. One can
attempt to solve Eqs. (7) iteratively, i.e., starting with some
initial �A and evaluate an improved �A′ using the right-hand side
of (7) and repeat the process until it converges to the solution.
To gain more insight, consider the component Aα is changed
to A′

α on one iteration. From (4), one gets the corresponding
change in the cost, 	Cα/	Aα = −2λ + dα + 4γ

Nb

∑
α′ Jαα′Aα′ ,

and 	Cα = 0 if 	Aα = 0. Thus 	Cα < 0 for 	Aα �= 0 on
iterating (7), which suggests that the cost will be decreased
on the iteration dynamics of connecting or disconnecting a
single link. In practice, the mean-field equations are solved
iteratively with a large number of initially trials and attempt
to exhaust all the solutions, then the solution with the low-
est cost is chosen. Figure 1(b) displays the results of the
order-parameter xo [related to the mean connectivity via (3)],
obtained from solution of the mean-field equations (dashed
curve), as a function of λ for γ = 1, showing significant
improvement over the crude mean-field approximation and
excellent agreement with the low temperature Monte Carlo
simulation results. However, in some situations, especially
for larger γ , attempt to find the solution iteratively or by
other standard system of nonlinear equations solver may not
converge in affordable computational times.

As shown Fig. 1(b), the crude mean-field approximation
at β → ∞ can predict the gross variation of the order pa-
rameter with λ. However, for large values of γ , deviations
become rather significant. Figure 5(a) plots the Monte Carlo
simulation results together with the crude mean-field results
as a function of γ for λ = 1, showing increasing deviations
as γ becomes larger even for β = 1. In addition, numerical
solutions of the full mean-field equations for the lowest cost
solution become inefficient as γ becomes large and in practice
very difficult to find the mean-field solution(s) unless N is
small (�10).

As γ increases, the antiferromagnetic interaction leads
to strong frustrations, resulting in a highly complex ground
state energy landscape. This is echoed by the decrease in
the number of convergent solutions obtained by iteration as
the landscape gets more rugged. For the case of strictly no
bond crossing, attempt to find the solutions of the mean-field
equations (7) for γ > γ ∗ by iterations can lead to period-2
orbits and will not converge unless the initial trial hits the
solution by chance (but with a low probability that decays
exponentially with Nb). Nevertheless, one can still gain further
insights by examining the cost landscape in detail for small
N . For small values of N , one can enumerate all possible
zero-temperature mean-field solutions and examine their costs
to gain some insight of the cost landscape of the system.
Figure 6(a) plots the cost of all the mean-field solutions for
N = 8 in descending order of the cost, for a certain realization
of nodes, and for several large values of γ . The number of
mean-field solutions increase with γ and reaches a maximal
number of 107 when γ > γ ∗. The cost landscape becomes
more rugged and the cost spacings are more closely packed
as γ increases and the system becomes more frustrated. As
shown in Fig. 6(b), the number of crossings vanishes when
γ > γ ∗. In addition, the total number of edges Ne (and hence
the mean degree) are identical for all these mean-field so-
lutions under the no-bond-crossing constraint, which can be
proved theoretically later. Similar behavior is observed for
N = 10 (also by enumeration) under the no-bond-crossing
constraint, as shown in Fig. 6(c). The cost landscape indicates
that the solutions can have very close energies, as shown in
Fig. 6(d) more clearly under magnification. To gain further
insights on the nature of the complex cost landscape due
to frustration as the crossing penalty increases, we examine
how the number of mean-field solutions (NMFS) changes with
γ , computed by enumeration for N = 8. It would be more
intuitive to first consider the simplified case of a constant edge
weight, i.e., wα = c0, (c0 can be taken to be 0 without loss of
generality) as in Sec. III A. As shown in Fig. 7(a), NMFS shows
a stepwise decrease whenever Nb

2γ
(λ − c0

2 ) passes an integer
value. This can be understood from (8) with wα = c0, since nα

are non-negative integers, right-hand side of (8) remains the
same when Nb

2γ
(λ − c0

2 ) lies between two consecutive integers.

More precisely, for m � Nb
2γ

(λ − c0
2 ) < m + 1 (m is a non-

negative integer) the number of crossings in the network is at
most m. For the general case of wα = dα + c0, NMFS shows
modulations due to the variations in the distances between
two nodes. For m � Nb

2γ
(λ − c0

2 ) < m + 1, a fraction of the
edges has at most m crossings while the remaining portion
of the edges have at most m + 1 crossings. Figure 7(b) plots
NMFS vs. 2γ

Nb(λ− c0
2 )

showing the stepwise increase in NMFS as

frustration becomes stronger, agreeing with the idea that the
cost landscape is filled with more local minima leading to the
difficulty in searching for the global minimal cost in such a
complex rugged landscape.

We then further look into the landscape structure by per-
turbing each mean-field solution by flipping one bit in �A
(i.e., by deleting or adding one edge) a time and probe the
cost/energy changes. As shown in the beginning of this sec-
tion, the energy always increases when any one bit of any
mean-field solution is flipped indicating that each mean-field
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(a) (b)

(c) (d)

FIG. 6. Cost landscape of all mean-field solutions obtained by enumeration for various bond-crossing penalty and λ = 2. (a) The
normalized cost landscape for N = 8 with γ = 10, 20, 30 for the same realization of the node positions. In this case, γ = 30 exceeds the
critical γ ∗ and the resultant network satisfy the no-bond-crossing condition. (b) N = 8 (Nb = 28) with γ = 30 (large enough so that there is
no bond crossing). The number of edges (Ne) and crossings (Nx) are also shown on the right vertical axis. The number of crossings is zero.
Notice that the number of edges for all distinct solutions are identical. (c) Similarly to (a) but for N = 10 (Nb = 45) and a sufficiently large
γ = 100 > γ ∗ that no bond crossing is allowed. In this realization, there are altogether 1236 mean-field solutions with indices arranged in
decreasing order of cost. (d) A zoom-in near the regime of lowest cost solutions to show more clearly the complex rugged landscape.

solution possesses the characteristics of a local energy min-
imum in this high-dimensional cost landscape. Denote the
energy change of flipping one bit of the mean-field solution
averaged over Nb bits and also averaged over all the mean-
field solutions by 	EF , Fig. 7(c) plots 	EF as a function
of 2γ

Nb(λ− c0
2 )

for the cases of wα = c0 and wα = dα + c0. For

larger values of γ , 	EF shows a general increasing trend
with γ , agreeing with the anticipation that the average lo-
cal minimum well depth increases with frustration. We also
examine the first energy gap, 	Eg defined as the cost gap
between the global minimal cost and the second lowest cost
of the mean-field solutions. Figure 7(d) plots 	Eg as function
of 2γ

Nb(λ− c0
2 )

for the cases of wα = c0 and wα = dα + c0. For

the case of wα = c0, 	Eg = 0 for γ > γ ∗ (no bond crossing),
indicating that all mean-field solutions are degenerate with the
cost C = (c0 − 2λ)Ne. For edge dependent weights, such as
wα = dα + c0, 	Eg shows a general decreasing trend with γ

for 2γ

Nb(λ− c0
2 )

� 0.5, indicating the low energy states have en-

ergy level more closely spaced as frustration grows, resulting
in more complex landscape.

Instead of trying to find the solution of (7) by brute-force
method such as enumeration or random initial guesses(which
can only work for small N), we proposed a new way to find
the (near) optimal solution of (7), outlined as follows. We
first resort back to the original mean-field equations and look
for other more practical algorithm for the strictly no-bond-
crossing case. Taking the γ → ∞ limit, Eq. (7) reduces to

Aα = �
(
λ − wα

2

)
{1 − �(nα )}. (25)

We first show that the total number of edges (Ne) of different
networks satisfying (25) have the same value, which was
verified in Figs. 6(b) and 6(c). Using (25), one gets Ne =∑

α Aα = ∑
nα=0&wα<2λ, i.e., Ne is simply obtained by count-

ing the number of edge candidates that satisfy nα = 0 and
wα < 2λ, which is a fixed integer for give nodes and weights
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(a) (b)

(c) (d)

FIG. 7. Analysis of the solutions of the mean-field equations by enumeration for N = 8, as a function of the scaled parameter Nb
2γ

(λ − c0
2 )

or its inverse. c0 = 0 is taken without loss of generality. � refers to the simplified case of zero edge weights, i.e., wα ≡ 0, and ◦ corresponds
to the usual case of the edge cost is the distance between the two nodes, wα = dα . An average of 200 realizations of randomly placed node
location is performed. (a) The number of mean-field solution, NMFS vs. Nb

2γ
(λ − c0

2 ). The vertical lines mark the integer values of 1,2,3 . . . .

(b) The results in (a) with NMFS plotted against 2γ

Nb(λ− c0
2 )

showing the increasing trend of NMFS with γ . The vertical lines mark the fractional

values of 1, 1
2 , 1

3 , . . . . (c) The average cost or energy change due to the flip of a bit in the mean-field solution, 	EF vs. 2γ

Nb(λ− c0
2 )

. (d) The cost

difference or energy gap between the ground-state (lowest cost) first excited state (second lowest cost) mean-field solutions, 	Eg vs. 2γ

Nb(λ− c0
2 )

.

realization. The optimized cost is simply Copt = ∑
α (wα −

2λ)Aα = ∑
α wαAα − 2λNe.

Motivated by the no-bond-crossing mean-field equation
(25), here we propose an efficient algorithm of finding the
(near) lowest cost solution as follows: With a fully connected
network (all Aα’s = 1), starting with the edge of minimal w

(say wσ ), remove this connection if wσ > 2λ, otherwise for
those Jσα′ = 1 put A′

α = 0. Repeat the above process for the
next minimal weight edge till all edges are gone through once.
Although there is no guarantee that the solution obtained by
the above algorithm is the ground state solution, but it will
always give a solution much much faster than solving the cou-
pled nonlinear equations and has no problem of convergence.
Figure 8 shows the minimal cost found by enumeration for
N = 8 (Nb = 28 and 2Nb = 268 435 456) compared with the
cost obtained by our method, for three different realizations
of the nodes on the unit square, with various values of λ. The

results clearly verify that our method finds the minimal cost
in all cases, but with a computational time several orders of
magnitude faster. In addition, in all the cases we studied, we
found that the solution obtained by our efficient algorithm al-
ways has a lower cost as compared to that found by solving the
coupled nonlinear equations or by Monte Carlo simulations
annealed to low temperatures.

V. OPTIMIZED NETWORK PROPERTIES

In this section, we examine the properties of the fully
optimized network. We shall focus on the situation that the
edge weights are the planar distance between two nodes,
i.e., wα = dα . Standard network properties such as clustering
coefficients, shortest path lengths, mean degree and degree
distribution, and the distribution of the distances of the opti-
mized networks are measured from Monte Carlo simulations,
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FIG. 8. Minimal cost of the optimized network with no bond
crossing found by enumeration for N = 8 vs. the minimal cost ob-
tained by our algorithm, for three different realizations (denoted by
different symbols) of the nodes on the unit square, with various
values of λ.

numerical solution of the mean-field equations, and by our
optimal algorithm in Sec. IV; N = 100 nodes are randomly
distributed on a unit square, the optimized connectivity con-
figuration is obtained by the methods mentioned above and
various network quantities are measured. We first look into
the fully optimized (zero-temperature) network configurations
under different crossing penalty, as displayed in Fig. 9 for
a fixed value of λ and the same realization of the nodes.
For finite values of γ , the optimized solution is obtained by
solving the mean-field equation numerically and the connec-
tions maps are shown in Figs. 9(a) and 9(b). In general long
distance connections are less frequent and both the number
of edges and number of crossings decrease with γ . Under
the strict no-bond-crossing constraint, only the optimal algo-
rithm in Sec. IV can find the solution quickly, whose planar
network connection map is shown in Fig. 9(c). For the case
of no-bond-crossing case, there is almost a full triangulation
of the 2D plane, except for a few long distance nodes that
are not connected. And if λ is sufficiently large, all possible
edges with no bond crossing are connected. For the case of no
bond crossing, one can further compare the resultant planar
network configurations obtained by traditional Monte Carlo
simulations annealed to a very low temperature and by our op-

timal algorithm. Figures 10(a) and 10(b) show the two planar
networks of the same node realization obtained from these two
methods. Careful examination reveals that the Monte Carlo
algorithm gives rise to the unsatisfactory scenario of having
some longer distance connections that forbid other shorter
distance connections due to the no-bond-crossing constraint.
The optimized costs are −527.735 and −533.967 for the
networks in Figs. 10(a) and 10(b), respectively, indicating
that our optimal algorithm can search a lower cost solution
with a very small cost difference (about 1%). The distance
distributions of the optimized network are also shown in
Fig. 10(c), indicating that the optimal algorithm finds more
shorter connections.

A. Optimized distance and degree distributions

After the network has been optimized, the distribution of
the weighs with Ai j = 1 are then measured to give the opti-
mized degree and weight (distance) distributions. For the case
of c0 = 0 the weights are simply the distances of the con-
necting nodes. Figure 11(a) shows the distance distribution,
P(d∗), of the optimized network with crossing penalty γ =
1 obtained by Monte Carlo simulations at low temperature
(β = 10) and from solution of the zero-temperature mean-
field equations. The original distribution of all the distances
between two nodes is also shown for comparison, indicat-
ing that the optimized network tends to avoid long distance
connections. The effect of crossing penalty on the optimized
distance distribution is shown in Fig. 11(b) for the same
node realization and λ = 0.4. As γ increases, P(d∗) becomes
skewed with substantial decrease near the tail. And in the
no-bond-crossing case, P(d∗) becomes a narrow distribution
peak at the value of mean nearest internode separation, given
by 1/

√
N = 0.1 for N = 100.

The number of connections or local degree of each node of
the optimized network is also measured. The fully optimized
degree distributions Popt (k), for λ = 0.4 with various values
of γ are shown in Fig. 12(a). Average over 100 to 200 node
realizations are performed to give a smoother Popt (k). As γ

increases, the peak of Popt (k) shifts to lower degrees and
for the case of no-bond-crossing constraint Popt (k) becomes
rather narrow and peak at k � 6 [see Fig. 12(b)]. The degree
distribution for a random network of the same k̄, which is a
binomial distribution, is also shown for comparison, indicat-

(a) (b) (c)

FIG. 9. Results of the fully optimized (zero-temperature) network configurations with N = 100 and λ = 0.2 obtained from the solution of
the mean-field equations for (a) γ = 0.2, (b) γ = 1, and (c) strictly no bond crossing (γ = ∞), using the optimal algorithm in Sec. IV.
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FIG. 10. Results of the optimized planar 2D network configurations with no-bond-crossing constraint. N = 100 and λ = 1 (a) Monte
Carlo simulation result annealed down to β = 50. Cost = −527.735. (b) Simulation results of the fully optimized (zero-temperature) using the
optimal algorithm for no bond crossing in Sec. IV. Cost = −533.967. (c) Distance distributions of the optimized network P(d∗) for the cases
in (a) and (b).

ing that Popt (k) is substantially narrower than that of a random
network.

The mean degree k̄ of the optimized network can also
be measured and some results under no-bond-crossing con-
straints are shown in Fig. 5(b). Here we present an analytic
result of k̄ for the fully optimized network with no bond
crossing by exploiting results in planar triangulation [21], one
can show (see Appendix B for a derivation)

k̄ = 6 − 16

3N

(
γE + ln

N

2

)
− 6

N
, (26)

where γE = 0.5772156649 is the Euler’s constant.
Figure 12(c) shows the mean degree k̄ vs. N of the optimized
network with the strictly no-bond-crossing constraint
measured from simulations using our optimal algorithm
together with the theoretical result Eq. (26), showing perfect
agreement. When the number of nodes N=100, k̄ � 5.7
[which compares well with the result in Fig. 5(b)] and tends
to 6 as N → ∞.

B. Clustering coefficients and minimal path length

The clustering coefficient (CC) and the minimal path
length (Lm) of the optimized network are also measured from
the optimized network configurations. Figure 13 plots the

CC and Lm vs. λ for γ = 1 and under the no-bond-crossing
constraint. For finite γ , CC increases with λ and saturates
to unity for sufficiently large λ as the network tends to be
completely connected, at the same time Lm decreases and
approaches unity. On the other hand, for the case of no bond
crossing, CC increases and rapidly saturates to a value of
∼0.5 and Lm decreases to about 4, for moderate values of λ.
The relatively low value of CC can be attributed to the fact
that the optimized network is filled with planar triangulation
for sufficiently large λ. A network with a large CC/Lm ratio
would possesses small-world characteristics [24] which can
be quantified by the small-worldness, S, defined as the ratio
of CC/Lm relative to that of a random network [22,23] of the
same mean degree,

S =
CC

CCrand

Lm
Lmrand

, (27)

where CCrand and Lmrand are the clustering coefficient and the
average minimal path length of the random network with the
same mean degree. The small-worldness of the optimized
network is also plotted in Fig. 13, indicating a small-world
signature of the optimized network with S � 6 under the no-
bond-crossing constraint.
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P

d
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(a)
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FIG. 11. Optimized distance distribution function for the optimized network; N = 100 nodes are distributed uniformly on a unit square.
The distance distribution for all distances between two nodes [Eq. (21), solid curve] is also shown for comparison. (a) λ = 1, γ = 1 for β = 10
(by Monte Carlo simulations) and zero-temperature (solution of the mean-field equation). (b) The fully optimized (zero-temperature) distance
distribution with λ = 0.4 for different values of γ .
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FIG. 12. (a) Degree distributions of the fully optimized network with λ = 0.4 and γ = 0, 0.2, 0.5, 0.8. (b) Degree distributions of the fully
optimized network with λ = 0.4 under no-bond-crossing constraint. The degree distribution of a random network with the same mean degree
(k̄ = 5.7, dashed curve) is also shown for comparison. (c) The mean degree k̄ of the optimized network with the strictly no-bond-crossing
constraint vs. N . The theoretical result (26) (curve) is also shown.

VI. SUMMARY AND OUTLOOK

In this paper, we investigated in detail on the problem
of network connection growth for nodes embedded on a
two-dimensional plane that aims to maximize connections be-
tween the nodes but also minimize connection cost with edge
crossing penalized. By mapping the network links to Ising
spins, the system can be investigated in the statistical me-
chanics framework of a dilute antiferromagnetic spin system
whose low-temperature (fully optimized) behavior is domi-
nated by frustrations which originated from the edge-crossing
penalty. Using mean-field theories, we derived analytic re-
sults for the order-parameter (related to the mean degree of
the network) and the associated phase diagram under the
crude mean-field approximation. The results are also verified
explicitly by Monte Carlo simulations. The crude mean-
field approximation give rather satisfactory results except for
strong bond-crossing penalty cases. The optimized network
configuration can be obtained from the numerical solutions of
the full local mean-field equations with the optimized solu-
tion chosen to be the lowest cost solution found. However,
as bond-crossing penalty that causes the frustration of the

system to be stronger, finding the solutions of the mean-field
equations becomes a formidable task in practice, even for
systems of moderate sizes, as the cost landscape gets more
complex and rugged. The complex cost landscape makes the
traditional Monte Carlo algorithm to search for the optimized
(ground) state difficult as in other frustrated spin systems
[25–27]. Hence, for the challenging case of no bond crossing
characterized by strong frustrations, based on the mean-field
equations, we further developed an efficient algorithm to find
the optimal network configurations that can satisfactorily find
the optimized network configurations. It is worth to note that
in the limit of strictly no bond crossing, our model in the large
λ limit can be mapped exactly to the problem of minimal
length planar triangulation. Finding the optimized network
with the strictly no-bond-crossing constraint and maximal
possible connections is equivalent to the problem of minimum
length triangulation, which has been shown to be a NP-hard
problem [21,28].

There are some possible improvement or extension for the
present approach. For example, the crude mean-field approxi-
mation might be improved by using the TAP equation [29] as
in quenched disordered systems such as spin glasses. One can

(a) (b)

FIG. 13. Simulation results of the clustering coefficients, average minimal path lengths and small-worldness as a function of λ for (a) γ =
1 (by solving the mean-field equations), and (b) under no-bond-crossing constraint (using the optimal algorithm for no bond crossing in
Sec. IV).
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also consider optimization by rewiring the edges to conserved
the total number of connections, this can be modeled by
the spin exchange dynamics (Kawasaki dynamics) with con-
served order parameter [30]. Also one can extend the model
to take into account for the situations that the connection
formation tendency is weighted with a weight that are differ-
ent for each nodes [14]. This would be relevant in designing
roadway systems in which a city or township (nodes) with
a higher population will be given a higher node weight for
making connections. Furthermore, this work considered only
undirected connection between nodes, it may be possible to
extend the framework to consider connections to be directed
for optimized directed networks which is of particular rele-
vance in construction of directed roadways or for circuits with
rectified directional currents.

One ambitious goal is to deduce the evolution rule, pre-
sumably governed by some optimization model, from the
observed network structure. This is a challenging inverse
problem of inferring a cost function and its parameters from
the observed connections (such as w

opt
α ). This problem is even

more difficult in practice since often the network connection
weights and directions are not directly observable or known,
and in many cases only the dynamical data of network nodes
can be observed. One needs to first infer the network structure
from the time-series data of the nodes. With the dynamical
data of network nodes are increasingly available, there are
reliable methods for the reconstruction of networks from the
time-series dynamics data of the nodes [31–38] that can be
employed. Hopefully with suitable implementation of the net-
work reconstruction schemes from dynamical data and the
inference of optimization model from network structure to
be developed, then it would open a new avenue of deducing
the network evolution rule (which is usually a long time scale
process) from the observed node dynamical data in a relatively
short observation period.

ACKNOWLEDGMENTS

This work has been supported by Ministry of Science and
Technology of Taiwan under the Grant No. MOST 110-2112-
M-008-026-MY3 and NCTS of Taiwan.

APPENDIX A: DERIVATION OF Pd FOR UNIFORMLY DISTRIBUTED NODES IN A UNIT SQUARE

Here we derive the analytical expression for the distribution of the distances between two points uniformly and randomly
distribution in a unit square. Suppose two points with coordinates (x1, y1) and (x2, y2) are randomly chosen in [0, 1) × [0, 1), we
first compute the distribution of the separation between x1 and x2 to give∫ 1

0

∫ 1

0
δ(u − |x1 − x2|)dx1dx2 = 2(1 − u), for u ∈ [0, 1) and 0 otherwise. (A1)

The same result for the separation between y1 and y2 can be obtained. Then the distribution for the square of the distance is given
by

Pd2 (w) = 4
∫ 1

0

∫ 1

0
(1 − u)(1 − v)δ(w − u2 − v2) (A2)

=
{
π − 4

√
w + w, 0 < w � 1

2[csc−1 √
w − tan−1

√
w − 1 − 1] + 4

√
w − 1 − w, 1 < w < 2.

(A3)

Finally the distribution of the distance, Pd , can be obtained
on changing the variable X = √

w to give (21). Figure 14(f)
displays Pd measured from Monte Carlo simulations together
with the analytic expression (21) showing perfect agreement.
The functional form of Pd (X ) for X > 1 is complicated for
further analytic calculations. One can approximate it by a
linear form by requiring that the total probability (area under
the curve) for 1 < X � dm to be the same as the original one
(= 19

6 − π ), where dm is the maximum value of the distance in
this approximation. Such a linear approximation for the tail of
Pd is

Pd (X ) � Pd (1)

(
dm − X

dm − 1

)
1 < X � dm, (A4)

where Pd (1) = 2(π − 3) and dm = 1
6(π−3) , which is also dis-

played in Fig. 14(f) (dashed line) for comparison.

APPENDIX B: RELATION TO TRIANGULATION
OF A PLANAR GRAPH

In graph theory, the problem of triangulation is to connect
the given nodes on a plane resulting in a partition of the plane
into triangles. The triangulation of a point set of N points in
a two dimension plane has the following exact results for the
number of edges and number of triangles [21]

Ne = 3N − h − 3 edges, (B1)

Nt = 2N − h − 2 triangles, (B2)

where h is the number of points in the boundary of the convex
hull of the point set. For a given location of the points, one
can count the number of points in the convex hull (h) so the
number of edges (Ne) and number of triangles (Nt ) of the
triangulation can be determined. For wα = dα , the cost in (4)
can be written in terms of the number of edges and number of
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FIG. 14. Various distributions about the distances between two points and number of crossings between possible dges for N point uniform
randomly distributed on a unit square. (a) The (nomralized) number of possible crossings of an edge plotted against its length for N = 100
points. (b) The probability of an edge of length d and having n crossings P(n, d ) for N = 100 points, plotted as a function of d for n = 0, 1, 10,
100, and 1000. (c) Probability distribution of the number of crossings (n) normalized by the maximal possible crossings (Nb). Each distribution
is obtained with an average of 100 realizations. N = 100, 200, and 400. (d) The cumulative distribution of the number of crossings. (e) The

function g(x) ≡ x

Nb

∑Nb
n=0 nP(n, x) for N = 100 points on a unit square. (f) Distribution of the distance between two points uniformly and

randomly distributed in a unit square. Results obtained by simulations and analytic formula (21) are both displayed. The dashed straight line
shows the linear approximation of the tail.

crossings

CX =
∑

α

Aαdα − 2λNe + 4γ

Nb
Nx. (B3)

Hence finding the optimized network with the strictly no-
bond-crossing (Nx = 0) constraint for sufficiently large λ, is
equivalent to problem of finding the minimum length trian-
gulation. It has been shown that finding the minimum length
triangulation is a NP-hard problem [21,28]. In addition, the
number of possible triangulations is equal to the number of
solutions of the mean-field equations in which the parameters
satisfy the condition given by (9). It is also known that the
number of triangulations grows exponentially with N [21],
and hence so does the number of mean-field solutions (in the
no-bond-crossing limit).

One can estimate Ne and Nt of the optimized network with
the strictly no-bond-crossing constraint as a function of the
N using Eqs. (B1) and (B2). If the nodes set are uniformly

random distributed in a square, the expected number of nodes
that lie in the convex hull is given by [39,40]

lim
N→∞

h � 8

3
(γE − ln2 + lnN ), (B4)

where γE �= 0.577216 is the Euler-Mascheroni constant.
From Eqs. (B1), (B2), and (B4), Ne and Nt can be approxi-
mated as

Ne � 3N − 8

3

(
γE + ln

N

2

)
− 3, (B5)

Nt � 2N − 8

3

(
γE + ln

N

2

)
− 2. (B6)

Hence one obtain an analytic expression for the mean degree
k̄ for triangulation (network with maximal connections with
no edge crossing)

k̄ = 2Ne

N
= 6 − 16

3N

(
γE + ln

N

2

)
− 6

N
. (B7)
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