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Training of sparse and dense deep neural networks: Fewer parameters, same performance
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Deep neural networks can be trained in reciprocal space by acting on the eigenvalues and eigenvectors of
suitable transfer operators in direct space. Adjusting the eigenvalues while freezing the eigenvectors yields a
substantial compression of the parameter space. This latter scales by definition with the number of computing
neurons. The classification scores as measured by the displayed accuracy are, however, inferior to those attained
when the learning is carried in direct space for an identical architecture and by employing the full set of trainable
parameters (with a quadratic dependence on the size of neighbor layers). In this paper, we propose a variant of
the spectral learning method as in Giambagli et al. [Nat. Commun. 12, 1330 (2021)], which leverages on two
sets of eigenvalues for each mapping between adjacent layers. The eigenvalues act as veritable knobs which
can be freely tuned so as to (1) enhance, or alternatively silence, the contribution of the input nodes and (2)
modulate the excitability of the receiving nodes with a mechanism which we interpret as the artificial analog
of the homeostatic plasticity. The number of trainable parameters is still a linear function of the network size,
but the performance of the trained device gets much closer to those obtained via conventional algorithms, these
latter requiring, however, a considerably heavier computational cost. The residual gap between conventional and
spectral trainings can be eventually filled by employing a suitable decomposition for the nontrivial block of the
eigenvectors matrix. Each spectral parameter reflects back on the whole set of internode weights, an attribute
which we effectively exploit to yield sparse networks with stunning classification abilities as compared to their
homologs trained with conventional means.

DOI: 10.1103/PhysRevE.104.054312

I. INTRODUCTION

Automated learning from data via deep neural networks
[1–4] is becoming popular in an ever-increasing number of
applications [5–8]. Systems can learn from data by identifying
distinctive features which form the basis of decision making
with minimal human intervention. The weights, which link
adjacent nodes across feedforward architectures, follow the
optimization algorithm and store the information needed for
the trained network to perform the assigned tasks with un-
precedented fidelity [9–11]. A radically new approach to the
training of a deep neural network has been recently proposed
which anchors the process to reciprocal space rather than to
the space of the nodes [12]. Reformulating the learning in re-
ciprocal space enables one to shape key collective modes, the
eigenvectors, which are implicated in the process of progres-
sive embedding, from the input layer to the detection point.
Even more interestingly, one can assume the eigenmodes of
the interlayer transfer operator to align along suitable ran-
dom directions and identify the associated eigenvalues as a
target for the learning scheme. This results in a dramatic com-
pression of the training parameter space, yielding accuracies
which are superior to those attained with conventional meth-
ods restricted to operate with an identical number of tunable
parameters. Nonetheless, neural networks trained in the space
of nodes with no restrictions on the set of adjusted weights
achieve better classification scores as compared to their

spectral homologs with quenched eigendirections. In the for-
mer case, the number of free parameters grows as the product
of the sizes of adjacent layer pairs, thus quadratically in terms
of hosted neurons. In the latter, the number of free parameters
increases linearly with the size of the layers (hence with the
number of neurons) when the eigenvalues are solely allowed
to change. Also training the eigenvectors amounts to dealing
with a set of free parameters equivalent to that employed when
the learning is carried out in direct space: in this case, the two
methods yield performances which are therefore comparable.

Starting from this setting, we begin by discussing a
straightforward generalization of the spectral learning scheme
presented in [12], which proves, however, effective in secur-
ing a significant improvement on the recorded classification
scores while still optimizing a number of parameters which
scales linearly with the size of the network. The proposed
generalization paves the way to a biomimetic interpretation
of the spectral training scheme. The eigenvalues can be tuned
so as to magnify or damp the contribution associated with the
input nodes. At the same time, they modulate the excitabil-
ity of the receiving nodes as a function of the local field.
This latter effect is reminiscent of the homeostatic plasticity
[13] as displayed by living neurons. Further, we will show
that the residual gap between conventional and spectral train-
ing methods can be eventually filled by resorting to suitable
decompositions of the nontrivial block of the eigenvectors
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matrix, which place the emphasis on a limited set of collective
variables.

Finally, we will prove that working in reciprocal space
turns out to be by far more performant when aiming at training
sparse neural networks. Because of the improvement in terms
of computational load, and due to the advantage of operating
with collective target variables as we will make clear in the
following, it is surmised that modified spectral learning of the
type here discussed should be considered as a viable standard
for deep neural networks training in artificial intelligence
applications. Stated differently, the results reported in this
work provide evidence that neural networks can be efficiently
trained with substantially lower computational cost while
maintaining comparable accuracy. The quest for innovative
neural network schemes beyond state-of-the-art technology
constitutes a rather fertile field of investigation which can be
tackled via diverse strategies [14–16]. Compression and accel-
eration techniques are routinely employed to suit the scope.
These are customarily divided into four distinct categories
(parameter pruning and quantization, low-rank factorization,
transferred or compact convolutional filters, and knowledge
distillation) as thoroughly reviewed in the comprehensive sur-
vey [17]. We here face the problem from a different angle by
aiming at reducing the number of trainable parameters rather
than compactifying the underlying network as a whole. This
is also the spirit of the methods put forward in [18,19].

II. SPECTRAL TRAINING

To test the effectiveness of the proposed method we
will consider classification tasks operated on three distinct
database of images. The first is the celebrated MNIST
database of handwritten digits [20], the second is Fashion-
MNIST (F-MNIST), a data set of Zalando’s article images,
and the third is CIFAR-10 a collection of images from dif-
ferent classes (airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks). In all considered cases, use can be
made of a deep neural network to perform the sought classifi-
cation, namely, to automatically assign the image supplied as
an input to the class to which it belongs. The neural network is
customarily trained via standard backpropagation algorithms
to tune the weights that connect consecutive stacks of the
multilayered architecture. The assigned weights, the target of
the optimization procedure, bear the information needed to
allocate the examined images to their reference category.

Consider a deep feedforward network made of � distinct
layers and label each layer with the progressive index i (=
1, . . . , �). Denote by Ni the number of computing units, the
neurons, that belong to layer i. The total number of parameters
that one seeks to optimize in a dense neural network setting
(all neurons of any given layer with i < � − 1 are linked to ev-
ery neurons of the adjacent layer) equals

∑�−1
i=1 NiNi+1, when

omitting additional bias. As we shall prove in the following,
impressive performance can be also achieved by pursuing a
markedly different procedure, which requires acting on just
N1 + N� + 2

∑�−1
i=2 Ni free parameters (not including bias). To

this end, let us begin by reviewing the essence of spectral
learning method as set forth in [12].

Introduce N = ∑�
i=1 Ni and create a column vector �n1, of

size N , whose first N1 entries are the intensities (from the top
left to the bottom right, moving horizontally) as displayed on
the pixels of the input image. All other entries of �n1 are set to
zero. The ultimate goal is to transform �n1 into an output vector
�n�, of size N , whose last N� elements reflect the intensities of
the output nodes where reading takes eventually place. This
is achieved with a nested sequence of linear transformations,
as exemplified in the following. Let us focus on the generic
�nk , with k = 1, . . . , � − 1 (as obtained after k applications of
the procedure outlined below with reference to the specific
transition from k to k + 1). This latter vector undergoes a
linear transformation to yield �nk+1 = A(k)�nk . Further, �nk+1 is
processed via a suitably defined nonlinear function, denoted
by f (·, βk ), where βk stands for an optional bias. Focus now
on A(k), a N × N matrix with a rather specific structure, as
we will highlight below. Posit A(k) = �(k)�(k)(�(k) )−1, by
invoking a spectral decomposition. �(k) is the diagonal ma-
trix of the eigenvalues of A(k). By construction we impose
(�(k) ) j j = 1 for j <

∑k
i=1 Ni and j >

∑k+1
i=1 Ni. The remain-

ing Nk elements are initially set to random numbers, e.g.,
extracted from a uniform distribution, and define the target of
the learning scheme [21]. Returning to the spectral decom-
position of A(k), �(k) is assumed to be the identity matrix
1N×N , with the inclusion of a subdiagonal rectangular block
φ(k) of size Nk+1 × Nk (the block starts at line Nk+1 and col-
umn Nk; see [12]). This choice corresponds to dealing with a
feedforward arrangement of nested layers. A straightforward
calculation returns (�(k) )−1 = 21N×N − �(k), which readily
yields A(k) = �(k)�(k)(21N×N − �(k) ). In the simplest setting
that we shall inspect in the following, the off-diagonal ele-
ments of matrix �(k) are frozen to nominal values, selected at
random from a given distribution. In this minimal version, the
spectral decomposition of the transfer operators A(k) enables
one to isolate a total of N = ∑�

i=1 Ni adjustable parameters,
the full collection of nontrivial eigenvalues, which can be
self-consistently trained. To implement the learning scheme
on these premises, we consider �n�, the image on the output
layer of the input vector �n1,

�n� = f (A(�−1) · · · f
(
A(2) f (A(1) �n1, β1), β2

)
, β�−1), (1)

and calculate �z = σ (�n�) where σ (·) stands for the softmax
operation. We then introduce the categorical cross-entropy
loss function CE(l (�n1), �z) where the quantity l (�n1) identifies
the label attached to �n1 reflecting the category to which it
belongs via one-hot encoding [22]. More specifically, the kth
element of vector l (�n1) is equal to unit (the other entries being
identically equal to zero) if the image supplied as an input is
associated to the class of items grouped under label k.

The loss function can be minimized by acting on a limited
set of free parameters, the collection of N nontrivial eigen-
values of matrices A(k) (i.e., N1 + N2 eigenvalues of A(1), N3

eigenvalues of A(2),..., N� eigenvalues of A(�−1)). In princi-
ple, the subdiagonal blocks φ(k) (the nonorthogonal entries
of the basis that diagonalises A(k)) can be optimized in par-
allel, but this choice nullifies the gain in terms of parameter
containment, as achieved via spectral decomposition, when
the eigenvalues get solely modulated. The remaining part of
this paper is dedicated to overcoming this limitation while
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securing the decisive enhancement of the neural network’s
performance.

III. IMPROVING THE LEARNING SCHEME AND
TESTING ITS PERFORMANCE

The first idea, as effective as it is simple, is to extend
the set of trainable eigenvalues. When mapping layer k into
layer k + 1, we can in principle act on Nk + Nk+1 eigenvalues
without restricting the training to the Nk+1 elements, which
were identified as the sole target of the spectral method in
its original conception (except for the first mapping, from the
input layer to its adjacent counterpart). As we shall clarify
in the following, the eigenvalues can be trained twice, de-
pending on whether they originate from incoming or outgoing
nodes, along the successive arrangement of nested layers. The
global number of trainable parameters is hence N1 + N� +
2

∑�−1
i=2 Ni, as anticipated above (in Appendix A we show

that this addition yields a substantial improvement of the
displayed accuracy, for the case of the F-MNIST database). A
straightforward calculation, carried out in Appendix B, returns
a closed analytical expression for w

(k)
i j , the weights of the

edges linking nodes i and j in direct space, as a function of
the underlying spectral quantities. This can be written as

w
(k)
i j = (

λ
(k)
m( j) − λ

(k)
l (i)

)
�

(k)
l (i),m( j), (2)

where l (i) = ∑k
s=1 Ns + i and m( j) = ∑k−1

s=1 Ns + j, with i ∈
(1, . . . , Nk+1) and j ∈ (1, . . . , Nk ). More specifically, j runs
on the nodes at the departure layer (k), whereas i identifies
those sitting at destination (layer k + 1). In the above expres-
sion, λ

(k)
m( j) stand for the first (nontrivial) Nk eigenvalues of

�(k). The remaining (nontrivial) Nk+1 eigenvalues are labeled
λ

(k)
l (i). To help comprehension, denote by x(k)

j the activity (i.e.,
the value of the state vector) on nodes j. Then

x(k+1)
i =

Nk∑

j=1

(
λ

(k)
m( j)�

(k)
l (i),m( j)x

(k)
j

) − λ
(k)
l (i)

Nk∑

j=1

(
�

(k)
l (i),m( j)x

(k)
j

)
.

(3)
The eigenvalues λ

(k)
m( j) modulate the density at the origin, while

λ
(k)
l (i) appears to regulate the local node’s excitability relative to

the network activity in its neighborhood. This is the artificial
analog of the homeostatic plasticity, the strategy implemented
by living neurons to maintain the synaptic basis for learning,
respiration, and locomotion [13].

To illustrate the effectiveness of the proposed methodology
we reference Fig. 1, which summarizes a first set of results ob-
tained for MNIST. To keep the analysis as simple as possible
here we have chosen to deal with � = 3. The sizes of the input
(N1) and output (N3) layers are set by the specificity of the
considered data set. Conversely, the size of the intermediate
layer (N2) can be changed at will. We then monitor the rela-
tive accuracy, i.e., the accuracy displayed by the deep neural
networks trained according to different strategies, normalized
to the accuracy achieved with an identical network trained
with conventional methods. In the upper panel of Fig. 1, the
performance of the neural networks trained via the modified
spectral strategy (referred to as to Spectral) is displayed in
blue (triangles). The recorded accuracy is satisfactory (about

FIG. 1. The case of MNIST. Upper panel: the accuracy of the
different learning strategies, normalized to the accuracy obtained
for an identical deep neural network trained in direct space, as a
function of the size of the intermediate layer, N2. Triangles stand for
the relative accuracy obtained when employing the spectral method
(Spectral). Pentagons refer to the setting which extends the training
to the eigenvectors’ blocks via a SVD decomposition. Specifically,
matrices Uk and Vk are randomly generated (with a uniform distri-
bution of the entries) and stay unchanged during optimization. The
singular values are instead adjusted together with the eigenvalues
which stem from the spectral method (this configuration is labeled
S-SVD). Diamonds are when the eigenvalues and the elements of
the triangular matrix R (as follows a QR decomposition of the
eigenvectors’ blocks) are simultaneously adjusted (S-QR). Here Q
is not taking part in the optimization process (its entries are random
number extracted from a uniform distribution and fixed throughout
the process). Errors are computed after 10 independent realizations
of the respective procedures. Lower panel: ρ the ratio of the number
of tuned parameters (modified spectral, S-SVD, and S-QR methods
vs the conventional one) is plotted against N2. In calculating ρ the
contribution of the bias is properly acknowledged. As a reference, the
best accuracy obtained over the explored range for the deep network
trained with conventional means is 98%.

90% of that obtained with usual means and a few percent
more than that obtained with the spectral method of origi-
nal conception [12]), despite the modest number of trained
parameters. To exemplify this, in the bottom panel of Fig. 1
we plot the relative ratio of the number of tuned parameters
(Spectral vs the conventional one) against N2 (blue triangles):
the reduction in the number of parameters as follows the mod-
ified spectral method is staggering. Working with the other
employed data set, respectively, F-MNIST and CIFAR-10,
yields analogous conclusions (see Appendix C). In Appendix
E we also consider the case � = 4, for F-MNIST

One further improvement can be achieved by replacing
φ(k) with its equivalent singular value decomposition (SVD), a
factorization that generalizes the eigendecomposition to rect-
angular (in this framework, Nk+1 × Nk) matrices (see [23] for
an application to neural networks). In formulas, this amounts
to postulate φ(k) = Uk�kVT

k where Vk and Uk are, respec-
tively, Nk × Nk and Nk+1 × Nk+1 real orthogonal matrices. On
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the other hand, �k is a Nk+1 × Nk rectangular diagonal matrix,
with non-negative real numbers on the diagonal. The diago-
nal entries of �k are the singular values of φk . The symbol
(·)T stands for the transpose operation. The learning scheme
hence can be reformulated as follows. For each k, generate
two orthogonal random matrices Uk and Vk . These latter
are not updated during the successive stages of the learning
process. At variance, the Mk+1 = min(Nk, Nk+1) nontrivial el-
ements of �k take active part to the optimization process. For
each k, Mk+1 + Nk + Nk+1 parameters can be thus modulated
to optimize the information transfer, from layer k to layer
k + 1. Stated differently, Mk+1 free parameters add up to the
Nk + Nk+1 eigenvalues that get modulated under the original
spectral approach. One can hence count on a larger set of
parameters as compared to that made available via the spectral
method, restricted to operate with the eigenvalues. Nonethe-
less, the total number of parameters still scales with the linear
size N of the deep neural network, and not quadratically, as for
a standard training carried out in direct space. This addition
(referred to as the S-SVD scheme) yields an increase of the
recorded classification score, as compared to the setting where
the Spectral method is solely employed, which is, however,
not sufficient to fill the gap with conventional schemes (see
Fig. 1). Similar scenarios are found for F-MNIST and CIFAR-
10 (see Appendix C), with a varying degree of improvement,
which reflects the specificity of the considered data set.

A decisive leap forward is, however, accomplished by em-
ploying a QR factorization of matrix φ(k). For Nk+1 > Nk , this
corresponds to writing the Nk+1 × Nk matrix φk as the product
of an orthogonal Nk+1 × Nk matrix Qk and an upper triangular
Nk × Nk matrix Rk . Conversely, when Nk+1 < Nk , we factor-
ize φT

k , in such a way that the square matrix Rk has linear
dimension Nk+1. In both cases, matrix Qk is randomly gener-
ated and stays frozen during gradient descent optimization.
The Mk+1(Mk+1 + 1)/2 entries of the Mk+1 × Mk+1 matrix
Rk can be adjusted so as to improve the classification ability
of the trained network (this strategy of training, integrated to
the Spectral method, is termed S-QR). Results are depicted
in Fig. 1 with (red) diamonds. The achieved performance is
practically equivalent to that obtained with a conventional
approach to learning. Also in this case ρ < 1, the gain in
parameter reduction being noticeable when N1 is substantially
different (smaller or larger) than N2 for the case at hand. Inter-
estingly enough, for a chief improvement of the performance,
over the SVD reference case, it is sufficient to train a portion
of the of-diagonal elements of R. In Appendix D we report
the recorded accuracy against p, the probability to train the
entries that populate the non-null triangular part of Rk . The
value of the accuracy attained with conventional strategies to
the training is already approached at values of p which are
significantly different from unit [24].

The quest for a limited subset of key parameters which
define the target of a global approach to the training is also
important for its indirect implications, besides the obvious
reduction in terms of algorithmic complexity. As a key appli-
cation to exemplify this point, we shall consider the problem
of performing the classification tasks considered above by
training a neural network with a prescribed degree of imposed
sparsity. This can be achieved by applying a nonlinear filter
on each individual weight wi j . The nonlinear mask is devised

FIG. 2. Training sparse networks. The accuracy of the trained
network against the degree of imposed sparsity. Black diamonds refer
to the usual training in direct space, while red pentagons refer to the
S-QR method. From top to bottom: results are reported for MNIST,
F-MNIST, and CIFAR-10, respectively. In all cases, � = 3.

so as to return zero (no link present) when |wi j | < C. Here C
is an adaptive cutoff which can be freely adjusted to allow
for the trained network to match the requested amount of
sparsity. This latter is measured by a scalar quantity, spanning
the interval [0,1]: when the degree of sparsity is set to zero,
the network is dense. At the opposite limit, when the sparsity
equals one, the nodes of the network are uncoupled and the
information cannot be transported across layers. Working with
the usual approach to the training, which seeks to modulate
individual weights in direct space, one has to face an obvious
problem. When the weight of a given link is turned into
zero, then it gets excluded by the subsequent stages of the
optimization process. Consequently, a weight that has been
silenced cannot regain an active role in the classification han-
dling. This is not the case when operating under the spectral
approach to learning, or when complemented by the supple-
mental features tested above. The target of the optimization,
the spectral attributes of the transfer operators, are not biased
by any filtering masks: as a consequence, acting on them, one
can rescue from oblivion weights that are deemed useless at
a given iteration (and, as such, silenced), but which might
prove of help at later stages of the training. In Fig. 2 the
effect of the imposed sparsity on the classification accuracy is
represented for conventional vs the S-QR method. The latter
is definitely more performant in terms of displayed accuracy
when the degree of sparsity gets more pronounced. The drop
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in accuracy as exhibited by the sparse network trained with
the S-QR modality is clearly less pronounced than that re-
ported for an equivalent network optimized in direct space.
Deviations between the two proposed methodologies indeed
become appreciable in the very sparse limit, i.e., when the
residual active links are too few for a proper functioning of
the direct scheme. In fact, edges which could prove central
to the classification, but that are set silent at the beginning,
cannot come back to active. At variance, the method anchored
to reciprocal space can identify an optimal pool of links (still
constraint to the total allowed for) reversing to the active state
those that were initially set to null. Interestingly, it can be
shown that a few hubs emerge in the intermediate layer, which
collect and process the information delivered from the input
stack.

IV. CONCLUSIONS

Taken altogether, it should be unequivocally concluded that
a large body of free parameters, usually trained in machine
learning applications, is de facto unessential. The spectral
learning scheme, supplemented with a QR training of the non-
trivial portion of eigenvectors’ matrix, enabled us to identify
a limited subset of key parameters which prove central to the
learning procedure and reflect back with a global impact on
the computed weights in direct space. This observation could
materialize in a drastic simplification of current machine
learning technologies, a challenge at reach via algorithmic
optimization carried out in dual space. Quite remarkably,
working in reciprocal space yields trained networks with bet-
ter classification scores when operating at a given degree
of imposed sparsity. This finding suggests that shifting the
training to the spectral domain might prove beneficial for a
wide gallery of deep neural networks applications. Additional
tests on more complex data sets than those examined here are
clearly needed before concluding on the widespread applica-
bility of the proposed technique.

The codes employed in this paper, as well as a notebook to
reproduce our results, can be found in the public repository of
this project [25].

APPENDIX A: IMPROVED SPECTRAL METHOD

In this Appendix we report on the performance of the im-
proved spectral method. As discussed in the main body of the
paper we extend the set of trainable eigenvalues as compared
to the method in its original conception. More specifically,
when mapping layer k into layer k + 1, we can now act on
Nk + Nk+1 eigenvalues without restricting the training to the
Nk+1 elements (for k � 1), as originally done in [12]. Results
displayed in Fig. 3 suggest that extending the pool of trainable
eigenvalues yields a substantial improvement of the classifica-
tion scores. Tests refer to the F-MNIST database.

APPENDIX B: ANALYTICAL CHARACTERISATION OF
INTERNODE WEIGHTS IN DIRECT SPACE

In the following, we will derive Eq. (2) as reported in
the main body of the paper. Recall that A(k) is a N × N
matrix. From A(k) extract a square block of size (Nk +

FIG. 3. The modified spectral method F-MNIST The accuracy of
the different learning strategies, normalized to the accuracy obtained
for an identical deep neural network trained in direct space, as a
function of the size of the intermediate layer, N2. Triangles stand for
the relative accuracy obtained when employing the modified spectral
method (Nk + Nk+1 trainable parameters for each transition from
layer k to layer k + 1). Pentagons refer to the spectral method in its
original version (when just Nk+1 elements, for k � 1, are trained).

FIG. 4. The case of F-MNIST. Upper panel: the accuracy of the
different learning strategies, normalized to the accuracy obtained
for an identical deep neural network trained in direct space, as a
function of the size of the intermediate layer, N2. Triangles stand for
the relative accuracy obtained when employing the spectral method
(Spectral). Pentagons refer to the setting which extends the training
to the eigenvectors’ blocks via a SVD decomposition. Specifically,
matrices Uk and Vk are randomly generated (with a uniform dis-
tribution of the entries) and stay unchanged during optimization.
The singular values are instead adjusted together with the eigenval-
ues which originate from the spectral method (S-SVD). Diamonds
represent when the eigenvalues and the elements of matrix R (in a
QR decomposition of the eigenvectors’ blocks) are simultaneously
adjusted (S-QR). Errors are computed after 10 independent realiza-
tions of the respective procedures. Lower panel: the ratio of the
number of tuned parameters (Spectral, S-SVD, and S-QR methods)
is plotted against N2. As a reference, the best accuracy obtained over
the explored range for the deep network trained with conventional
means is 90%.
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FIG. 5. The case of CIFAR-10. Same as in Fig. 4. The best accu-
racy obtained over the explored range for the deep network trained
with conventional means is 52%.

Nk+1) × (Nk + Nk+1). This is formed by the set of elements
A(k)

i′, j′ with i′ = ∑k−1
s=1 Ns + i and j′ = ∑k−1

s=1 Ns + j, with i =
1, . . . , Nk + Nk+1, j = 1, . . . , Nk + Nk+1. For the sake of sim-
plicity, we use A(k) to identify the obtained matrix. We
proceed in analogy for �(k) and �(k). Then

A(k)
i j = [�(k)�(k)(21 − �(k) )]i j

= [2�(k)�(k)]i j − [�(k)�(k)�(k)]i j

= α
(k)
i j − β

(k)
i j . (B1)

FIG. 6. The case of MNIST. The (relative) classification ac-
curacy is plotted (red, diamonds, and solid line) against p, the
probability to train the entries that populate the non-null triangular
part of R. The corresponding value of the relative accuracy as com-
puted via the S-SVD is also reported (green, pentagons, and solid
lines). Here � = 3, with N2 = 500.

FIG. 7. The case of F-MNIST. As in the caption of Fig. 6.
Here N2 = 500.The averages are carried out over 10 independent
realizations.

Hereafter we shall omit the apex (k). Let λ1 . . . λNk+Nk+1 iden-
tify the eigenvalues of the transfer operator A, namely the
diagonal entries of 
. In formulas, 
i j = ∑Nk+Nk+1

j=1 δi jλ j .
The quantities αi j and βi j can be cast in the form

αi j = 2
Nk+Nk+1∑

k=1

�ikλkδk j = 2�i jλ j,

βi j =
Nk+Nk+1∑

k,m=1

�ikλkδkm�m j =
∑

m∈I∪J
�imλm�m j,

where j ∈ J = (1, . . . , Nk ) runs on the nodes at the departure
layer (k), whereas i ∈ I = (Nk + 1, . . . , Nk + Nk+1). Hence,
I ∪ J = [1, . . . , Nk + Nk+1]. The above expression for βi j

FIG. 8. The case of CIFAR-10. As in the caption of Fig. 6.
Here N2 = 700. The averages are carried out over five independent
realizations.
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FIG. 9. The case of a multilayered architecture: the relative ac-
curacy. The relative accuracy as obtained by training a four-layer
network with N2 = N3 via different strategies. The symbols are as
specified in Fig. 4. The analysis refers to F-MNIST.

can be further processed to yield

βi j =
∑

m∈J

�imλm�m j +
∑

m∈I

�imλm�m j = �i jλ j + λi�i j,

where, in the first sum, �m j ≡ δm j for m ∈ J (and because
j ∈ J ) while, in the second, �im ≡ δim for m ∈ I (and be-
cause i ∈ I)

Finally we can express the difference in (B1) as

αi j − βi j = 2�i jλ j − �i jλ j − λi�i j = (λ j − λi )�i j . (B2)

From the above expression, one readily obtains the sought
equation upon shifting the index i to have it spanning the
interval [1, . . . , Nk+1]. Recall in fact that, by definition, w (the
matrix of the weights; see the main body of the paper) is a
Nk × Nk+1 matrix.

APPENDIX C: TESTING THE S-SVD AND S-QR METHODS
ON THE F-MNIST AND CIFAR-10 DATABASEs

Figures 4 and 5 display the accuracy of the S-SVD and
S-QR methods when applied to the case of F-MNIST and
CIFAR-10. The analysis refers to a three-layer setting. The
results displayed in the figures are in line with those discussed
in the main body of the paper.

APPENDIX D: REDUCING THE NUMBER OF TRAINABLE
PARAMETERS IN THE S-QR METHOD

Introduce p ∈ [0, 1]. When p = 0, the diagonal elements
of R in the S-QR method are solely trained. The off-diagonal

FIG. 10. The case of a multilayered architecture: training a
sparse network. The accuracy of the trained network against the de-
gree of imposed sparsity. Black diamonds refer to the usual training
in direct space, while red pentagons refer to the S-QR method. The
analysis is carried our for F-MNIST. Here N2 = N3 = 500.

elements are instead frozen to random values. In the opposite
limit, when p = 1 all elements of matrix R are assumed to
be trained. Intermediate values of p interpolate between the
aforementioned limiting conditions. More specifically, the en-
tries that undergo optimization are randomly chosen from the
pool of the available ones, as reflecting the selected fraction.
In Fig. 6 the relative accuracy for MNIST is plotted against
p. Here the network is made of � = 3 layers with N2 = 500.
A limited fraction of parameters is sufficient to approach the
accuracy displayed by the network trained with conventional
means. In Figs. 7 and 8 the results relative to F-MNIST and
CIFAR-10 are respectively reported.

APPENDIX E: TESTING THE PERFORMANCE OF THE
INTRODUCED METHODS ON A MULTILAYERED

ARCHITECTURE

In this Appendix we will test the setting of a multilayered
architecture by generalising beyond the case study � = 3 that
we employed in the main body of the paper. More specifically,
we have trained according to different modalities a four-layer
(� = 4) deep neural network, by modulating N2 = N3 over a
finite window. As usual, the size of the incoming and outgoing
layers are set by the specificity of the examined data sets.
The results reported in Fig. 9 refer to F-MNIST and confirm
that the S-QR strategy yields performance that are comparable
to those reached with conventional learning approaches, but
relying on a much smaller set of trainable parameters. In
Fig. 10 the effect of the imposed sparsity on the classification
accuracy is displayed for both the conventional and S-QR
method. Similar conclusions can be reached for MNIST and
CIFAR-10.
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