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Epidemics with asymptomatic transmission: Subcritical phase from recursive contact tracing
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The challenges presented by the COVID-19 epidemic have created a renewed interest in the development of
new methods to combat infectious diseases, and it has shown the importance of preparedness for possible future
diseases. A prominent property of the SARS-CoV-2 transmission is the significant fraction of asymptomatic
transmission. This may influence the effectiveness of the standard contact tracing procedure for quarantining
potentially infected individuals. However, the effects of asymptomatic transmission on the epidemic threshold
of epidemic spreading on networks have rarely been studied explicitly. Here we study the critical percolation
transition for an arbitrary disease with a nonzero asymptomatic rate in a simple epidemic network model in the
presence of a recursive contact tracing algorithm for instant quarantining. We find that, above a certain fraction
of asymptomatic transmission, standard contact tracing loses its ability to suppress spreading below the epidemic
threshold. However, we also find that recursive contact tracing opens a possibility to contain epidemics with a
large fraction of asymptomatic or presymptomatic transmission. In particular, we calculate the required fraction
of network nodes participating in the contact tracing for networks with arbitrary degree distributions and for
varying recursion depths and discuss the influence of recursion depth and asymptomatic rate on the epidemic
percolation phase transition. We anticipate recursive contact tracing to provide a basis for digital, app-based
contact tracing tools that extend the efficiency of contact tracing to diseases with a large fraction of asymptomatic
transmission.
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I. INTRODUCTION

The methods used to fight the spread of the contemporary
COVID-19 epidemic in its initial phase have largely been the
same as 100 years ago during the Spanish flu [1,2]. In particu-
lar, contact tracing has been used as a standard procedure that
is well understood, both analytically and in network modeling
approaches [3–8]. Some early papers even already considered
the concept of recursive contact tracing, i.e., not only tracing
direct contacts but also contacts of contacts and so on [9,10].

However, the arrival of the SARS-CoV-2 epidemic, with
its high asymptomatic transmission rate and the possibility of
presymptomatic infections, presents new challenges that need
addressing [11–14]. As such, a renewed interest in recursive
contact tracing [15–21], as well as in digital contact tracing
solutions [22–34] that could enable instantaneous recursive
contact tracing, has emerged in an effort to surpass the meth-
ods of 100 years ago.

In this article, we introduce a simple model that consid-
ers an epidemic as a percolation problem, as is common in
network epidemiology theory [35–44], in combination with a
recursive contact tracing algorithm operating on the model.
Throughout this paper, we assume this algorithm to be facil-
itated by a digital contact tracing app which enables contact
tracing and quarantining to happen effectively instantly; how-
ever, similar results could be achieved using recursive manual
contact tracing, provided that the time necessary to trace
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contacts is small compared to the time between a person
being infected and being infectious themselves, and that the
recursion depth is sufficiently small. Note that the model
operates in the theoretical limit of an ideal world without
reporting, communication, or quarantining delays and with-
out noncompliance with quarantining instructions, and we
aim not to make quantitative predictions but to create a base
model to further theoretical understanding. We thus do not
explicitly model the SARS-CoV-2 virus, but an arbitrary virus
with finite asymptomatic rate. We will study the efficacy of
recursive contact tracing and characterize the influence of
a possible future disease’s asymptomatic transmission rate
on the model’s critical transition. Our model allows for ar-
bitrary instantaneous recursion depths, as has been done
only in [16], and our results, to the best of our knowledge,
are the first to discuss the relationship of recursion depth
and asymptomatic infection rate with regard to the critical
transition.

We find a critical value in the fraction of nodes par-
ticipating in the contact tracing (corresponding to tracing
app usage) which depends on the asymptomatic transmission
rate of the disease. Further we find a critical (maximum al-
lowed) asymptomatic transmission rate as a function of the
algorithm’s recursion depth. We show that any disease with
arbitrary basic reproduction number and finite asymptomatic
rate can be stopped by a sufficiently large recursion depth.
Finally, we validate our calculations using simulations on in-
fection trees and networks with different degree distributions,
as degree distribution can have a significant impact on an
epidemic [38,40,42,44–48]. Let us now start by defining the
model.
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II. THEORY

We consider an SIR (susceptible, infected, removed) model
with N nodes and an arbitrary degree distribution p(k) in
which a proportion � of nodes take part in contact trac-
ing (“use a contact tracing app”). Nodes in the network are
infected with a virus with symptomatic rate � and basic
reproduction number R0. It is known that in such a network, if
we fix R0, the disease has a transmissibility

T = R0
〈k〉

〈k2〉 − 〈k〉 (1)

[40]. Carriers of the disease will be able to infect their sus-
ceptible neighbors with probability T one time step after
being infected themselves and be immune and noncontagious
afterwards.

If an infectious agent is symptomatic and uses the contact
tracing app, this will trigger an alarm on the app and warn
neighboring nodes of the chance of being infected, sending
them into quarantine for their one infectious time step and
removing them from quarantine afterwards so they effectively
skip the infectious state and jump directly to the recovered
stage. An infectious, symptomatic node will, however, have
the chance to infect its neighboring nodes before triggering an
alarm, which can be interpreted as a presymptomatic period
or a testing delay.

We can consider higher degrees of recursivity r for the
app, meaning how many time steps in the past the app will
consider to guess who might currently be infected. For r = 0,

only the node’s direct neighbors are sent into quarantine. For
r = 1 in addition to those nodes that are quarantined for r = 0,
any node with a distance of exactly three to the symptomatic
node is quarantined, for r = 2 any node with a distance of five
is quarantined, and so on. This is illustrated in Fig. 1. The
algorithm disregards any possible immunities due to nodes
having already been infected previously, but it does consider
breaks in the infection chain that are caused by the app’s own
quarantining algorithm, i.e., if a node was quarantined at time
t , the app does not consider this node a possible infection
spreader at that time step. We disregard possible immunities,
although they are present in the underlying infection model
because, for a new disease, the exact nature of immunity due
to previous infection would likely not be immediately known,
and it would thus be prudent to err on the side of caution
and not assume immunity. Also note that it is nontrivial to
determine which nodes’ immunities would be known to the
app (certainly the ones of nodes triggering alarms, but for
other nodes it is unclear).

Given a vector �S of symptomatically infected nodes at time
t0,

Si =
{

1 if node i is symptomatically infected
0 otherwise ,

the vector of nodes �U using the app, the vectors �Q(t ) of quar-
antined nodes and �P(t ) of not quarantined nodes at time steps
t � t0, and the adjacency matrix A, the vector of quarantined
nodes at t = t0 + 1 can be calculated by

�Q(t0 + 1) = {A · [�S · �U · �P(t0)]} · �P(t0) · �U︸ ︷︷ ︸
r=0

+ [A · (A · {[A · (�S · �U )] · �P(t0 − 1) · �P(t0 − 2) · �U }) · �P(t0 − 1) · �P(t0) · �U ] · �P(t0) · �U︸ ︷︷ ︸
r=1

+ . . .︸︷︷︸
r>1

.

Multiplications with �P(·) ensure that a considered node in
the backtracking chain was quarantined neither at its supposed
time of infection nor at the time it could have infected its
neighbors, and multiplications with �U ensure that all nodes
in the backtracking chain use the app. We now calculate the
probability that an infected node is correctly put into quaran-
tine by our algorithm. For this, we assume an infinitely large
network, with a finite number of nodes being infected. In a
network in which a finite fraction of nodes is infected, it is of
course possible that a node will be in contact with multiple
infected nodes in a single time step. With our assumption of
the fraction of infected nodes being infinitely small, barring
any nontrivial network structure, the chance of a node being
in contact with more than one infected node also becomes
infinitely small. We assume that the clustering in the network
is negligible so that we can consider the infection chain effec-
tively as a tree.

For r = 0, both the infected node and the infecting node
must be part of the network and the infecting node needs
to be symptomatic. Therefore, a first approximation of the
probability Pr=0

q of an infected node i being correctly put into

quarantine is simply

Pr=0
q (�,�) = �2�. (2)

However, node i has to have been infected by a different node
j. For this infecting node j to have been infectious in the
previous time step, it cannot have been quarantined in that
time step. There are two possible reasons why node j would
not have been quarantined despite being infected. Either it is
not using the app, which happens with a probability 1 − �,
or it is using the app, which has a probability of �, but the
algorithm did not quarantine it in the time step in which
it was infectious, which happens, for a node using the app,

with a probability 1 − Pr
q

�
. Therefore, the node j’s probability

of using the app, with the observation that it has not been
quarantined despite being infectious, is

�′ = �
(
1 − Pr

q

�

)
�

(
1 − Pr

q

�

) + (1 − �)
= � − Pr

q

1 − Pr
q

� �,

as the amount of nodes using the app with the ability to infect
other nodes is reduced by a factor (1 − Pr=0

q ), resulting in the
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FIG. 1. Illustration of the quarantining algorithm with an infec-
tion spreading from top to bottom. Nodes with a black outline are
not infected (susceptible = S), nodes with a red outline are infected
(I), either symptomatically (filled nodes, IS) or asymptomatically
(unfilled nodes, IA), and nodes with a dashed outline are not using
the contact tracing app (noncompliant, NC). Red arrows indicate
the spread of the infection, while black lines indicate noninfectious
connections between nodes. The time t indicated on the right-hand
side marks the time at which infected nodes are infectious—or, in
the case of the uninfected nodes, the latest time at which the app
would consider them to be possibly infectious. While nodes could
reappear in later time steps, e.g., the node in the t = 0 row could
also be shown in the t = 2 row as it is connected to (most of) the
nodes in the t = 1 row, we show nodes only once for visual clarity.
At time t = 1 a symptomatic node triggers an alarm on the app. For
recursion depth r = 0, only its nearest neighbors are quarantined.
These quarantined nodes cannot infect any other nodes, as indicated
by the blocked outgoing connections. For r = 1, the app considers
every nearest neighbor of the symptomatic node as a possible origin
of the symptomatic node’s infection and therefore quarantines all
nodes that the infection could have spread to within two time steps
from these nearest neighbors. This results in every node with a
distance of exactly three to the symptomatic node being quarantined,
so long as the connection is not interrupted by a node not using the
app or by a node that was in quarantine itself at its time of infection
or in the time step after infection, as shown on the right-hand side.
This can, of course, also include nodes which have not yet actually
been in contact with any infected nodes, as shown by the leftmost
nodes in the t = 1 and t = 2 rows. Note that, although the infection
chain is shown in a treelike structure for visual clarity, these nodes
can be part of a network of arbitrary structure, so that two nodes
might be connected via multiple different paths and therefore also
have multiple possible distances to each other.

numerator, which is normalized by the total fraction of nodes
that are not being quarantined, which is the denominator; and
therefore

Pr=0
q = ��′�. (3)

For higher degrees of recursion, the chance of being quar-
antined is increased:

Pr>0
q = Pr=0

q + (
1 − Pr=0

q

)
�′′P1︸ ︷︷ ︸

r=1

+ · · ·︸︷︷︸
r>1

(4)

= ��′[P0 + (1 − P0)�′′{P1 + (1 − P1)�′′(· · · )}]
(5)

with P0 = �. (6)

Here, in every part of the sum, the chance of a node hav-
ing already been quarantined due to a lower recursion level

is excluded via (1 − Pi ), and a factor �′′ is added for the
chance of the next upstream node using the app. The factor
�′′ represents the chance of a node using the app if the
next downstream node has not been quarantined, and needs
to be used for nodes that are two or more levels above the
currently regarded node in the infection tree. The chance of
such a node using the app regardless of the behavior of its
downstream nodes is �′. The chance of a downstream node,
which is using the app, of a node that is also using the app

not being quarantined is approximately (1 − Pr
q

��′ ). Since we
assume both infecting node and infected node to be using the
app, the factor ��′ is removed from Pr

q . This approximation
disregards that the upstream node not being quarantined also
influences the chance of its downstream node being quaran-
tined. Then the chance of an upstream node using the app,
given that its downstream node is using the app and has not
been quarantined is

�′′ = �′(1 − Pr
q

��′
)

�′(1 − Pr
q

��′
) + (1 − �′)

(7)

= ��′ − Pr
q

� − Pr
q

. (8)

Next, we need to calculate the chance Pi of a node being
quarantined due to the ith recursion step, given that its r
nearest upstream nodes are using the app. For simplicity’s
sake, we start with P1. Here a leaf node i is quarantined due
to the first recursion step if any of the downstream nodes of
i’s second degree upstream node, which we call j, have been
infected, use the app, and are symptomatic. The chance of
one node fulfilling these conditions is �′�T . Since just one
node needs to cause an alarm on the app, the chance of being
quarantined is

P1 = 1 − (1 − ��T )n, (9)

where n is the average number of j’s downstream nodes minus
one. We subtract one, since one of j’s downstream nodes
is i’s direct upstream node and would already have caused
i to be quarantined in the zeroth recursion step, if it were
symptomatic. Since the chance of a node of degree k being
infected is proportional to kp(k) [46], the average number of
downstream nodes minus one is

n =
∑∞

k=2 k(k − 2)p(k)∑∞
k=2 kp(k)

, (10)

where we subtract two from k because of the one downstream
node that is not considered and j’s upstream node. Therefore,

P1 = 1 − (1 − ��T )

∑∞
k=2 k(k−2)p(k)∑∞

k=2 kp(k) (11)

= P1(x)|x=2 = 1 − (1 − ��T )

∑∞
k=x k(k−x)p(k)∑∞

k=x kp(k)
∣∣
x=2. (12)

We indicate how many connections are removed when calcu-
lating n via the variable x.

For the second recursion step, at least one of the down-
stream nodes of j’s upstream node, which we call l , must
fulfill the condition of P1, meaning that at least one of
their downstream nodes must be infected, using the app, and
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symptomatic. This chance is given by

P2 = 1 − [1 − P1(1)�̃]

∑∞
k=2 k(k−2)p(k)∑∞

k=2 kp(k) (13)

= P2(x)|x=2 = 1 − [1 − P1(1)�̃]

∑∞
k=x k(k−x)p(k)∑∞

k=x kp(k)
∣∣
x=2

(14)

with �̃ = �T (1 − �)

�T (1 − �) + (1 − �T )
. (15)

Here, in P1(x), we do not discount one of each node’s down-
stream nodes, since these nodes are not upstream nodes of
node i, and therefore all of their downstream nodes need to be
considered. Thus, we use P1(1) instead of P1(2). Also, we use
�̃, because nodes that are using the app and symptomatically
infected would have already caused a quarantine in a previous
time step and can therefore not be part of the considered tree.
Similarly, the equation for following recursion steps is

Pi(x) = 1 − [1 − Pi−1(1)�̃]

∑∞
k=x k(k−x)p(k)∑∞

k=x kp(k) . (16)

Summarizing these calculations, the chance of a leaf node
being quarantined with a recursion degree of r is

Pr
q ≈ ��′

r∑
i=0

({
i−1∏
j=0

[1 − Pj (2)]�′′
}

Pi(2)

)
(17)

with Pi(x) =
⎧⎨
⎩

� if i = 0
1 − (1 − P0(1)�T )n(x) if i = 1
1 − (1 − Pi−1(1)�̃)n(x) otherwise

(18)

and n(x) =
∑∞

k=x k(k − x)p(k)∑∞
k=x kp(k)

. (19)

Note that (17) is a self-consistent equation, since �′ and �′′
contain Pr

q .

III. THEORETICAL RESULTS

It is easy to see that the upper limit of Pr
q is

Pr
q � ��′ < � if � < 1, (20)

so contact tracing by recursive backtracking is strictly worse
than vaccinating a fraction � of the population. Since such a
vaccination strategy is already insufficient to stop an epidemic
on an infinitely large scale-free network with a degree dis-
tribution p(k) ∝ k−γ with γ � 3 [46], recursive backtracking
can also not stop such an epidemic for � < 1.

However, there is still something that can be learned from
taking a closer look at scale-free networks. For γ � 3, the sum∑k

k=2 k2 p(k) in the exponent of the Pi’s diverges, therefore
P1 → 1 (if ��T > 0), and Pr

q becomes

Pr
q = ��′[� + (1 − �)�′′]. (21)

We can see that all infected nodes that can be caught by the
algorithm will already be detected in the first recursion step.

Luckily, real-world networks are not infinitely large, so
the sum mentioned previously will not diverge, so recursive
backtracking will be able to stop epidemics for � < 1. For
such networks, we expect the observation made for infinitely
large scale-free networks to be still be relevant, i.e., the closer

FIG. 2. Reduction of the reproduction number R as a function
of the app-usage rate � for a Barabási-Albert (BA) network with a
cutoff κ = 1000, recursion depth r = 1, R0 = 3, and � = 0.5. The
dashed line shows the critical value R0(1 − Pr

q ) = 1.

a real-world network is to an infinitely large scale-free net-
work, the less will the epidemic threshold �c be affected by
recursion depths past r = 1.

In Fig. 2 we show the reduction of the reproduction number
R = R0(1 − Pr

q ) as a function of � for a Barabási-Albert
(BA) network with average degree 〈k〉 = 4 and a cutoff at
κ = 1000 and recursion depth r = 1. We also tested this
for a simple Erdős-Rényi (ER) network with average degree
〈k〉 = 4, a scale-free network with exponential cutoff p(k) ∝
k−2 exp( k

94.2 ) that produces an epidemic threshold comparable
to that of urban networks for SARS [49] and higher recursion
depths. Since all of the resulting graphs are nearly indis-
tinguishable [except that R(� = 1) → 0 for r → ∞ while
R(� = 1) 
= 0 for r = 1], we chose to show only the BA
network. We can also calculate the critical value �c as a
function of the symptomatic rate �, as is shown in Fig 3.
There is a large visible difference between the classic con-
tract tracing method with r = 0 and recursive contact tracing,
even for relatively large values of �. While for r > 0 the

FIG. 3. Critical value �c as a function of the symptomatic rate �

for different recursion depths r with R0 = 3. Since the ER distribu-
tion and the scale-free distribution with an exponential cutoff again
yield almost the same results, we plot �c only for the Barabási-Albert
distribution with average degree 〈k〉 = 4 and cutoff κ = 1000.
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FIG. 4. Critical symptomatic rate �c below which an epidemic
cannot be stopped even for � = 1 as a function of the recursion
depth r for different basic reproduction numbers R0 using a Barabási-
Albert distribution with average degree 〈k〉 = 4 and cutoff κ = 1000.
For large recursion depths, the critical value �c → 0 for all ba-
sic reproduction numbers, whereas for r = 1 there is a maximum
�max

c ≈ 0.28 at R0 ≈ 3.6.

recursion depth has little influence on �c for large values of
the symptomatic rate �, we see that there is a critical value
�c, depending on the recursion depth, below which, even with
� = 1, an epidemic cannot be stopped. This critical value is
approximately halved when going from the classical method
r = 0 to r = 1, meaning that recursive contact tracing is an

effective method to combat diseases with high asymptomatic
rates which would not have been able to be stopped by previ-
ous contact tracing methods.

The critical value �c is shown in Fig. 4 as a function of the
recursion depth for different values of R0. The critical value
�c exponentially decreases with r, with �c → 0 for r → ∞.
Therefore, any disease with a symptomatic rate � > 0 and
arbitrarily large basic reproduction number R0 can be stopped
via recursive contact tracing, given a sufficiently large recur-
sion depth and app usage rate.

IV. SIMULATIONS

To test the accuracy of our calculations in Sec. II, we
simulate infection trees with recursive backtracking. The sim-
ulation starts with a single infected node, and each time step
for each infected, unquarantined leaf node k − 1 downstream
nodes are added, with k proportional to kp(k). These new
leaf nodes are infected with probability T and symptomatic
with probability �. Then, according to the rules described in
Sec. II, infected leaf nodes may be quarantined, causing them
to not receive any downstream nodes. We let these dynamics
run for 100 time steps or until there were 10 000 new infected
leaf nodes added in a time step, at which point we consider
the epidemic out of control. In Fig. 5 we show the fraction
of trees in which the epidemic is not stopped within 100 time
steps, the fraction of quarantined nodes, and the average re-
production number R for trees using an ER degree distribution

FIG. 5. Fraction of trees in which the epidemic survives 100 time steps (left column), probability of an infected node being quarantined
P1

q (center column), and reproduction number R (right column) for trees built with an ER degree distribution (upper row) or a BA degree
distribution with cutoff κ = 1000 (lower row), with r = 1, R0 = 3, and � = 0.5 where the shaded areas show the standard deviation. Blue
lines show the averages of 100 trees per data point, unbroken orange lines show the theoretical results for P1

q and R, and dashed orange
lines show the theoretical critical value �c. The dashed black lines in the reproduction number diagrams show the critical value of R. Note
that the measurement for the reproduction number R and the quarantined fraction P1

q are skewed near or past the critical point, because the
measurements here are dominated by just the beginning of the tree where the quarantining algorithm does not have enough history yet to
quarantine nodes.
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FIG. 6. Fraction of infected nodes (left), fraction of nodes that have ever been quarantined (center), and maximum number of nodes that
have been quarantined at one time (right) for ER networks with recursion depth r = 1 (top row) and r = 2 (bottom row) as a function of the
app-usage rate �. Different color graphs show networks of different sizes N , and orange dashed lines show the theoretical critical value �c.
All data points are the average of 100 simulation runs, and shaded areas show the standard deviation.

or a BA degree distribution with a cutoff κ = 1000. We see a
very good agreement between our calculation and simulations
for recursions r = 1; see Fig. 5. We have also verified that
our calculations and simulations agree very well for larger
recursion depths.

Next, we move away from the tree structure and use net-
works instead. In these networks, we start with ten initially
infected nodes, which are chosen with a probability propor-
tional to kp(k), and we let the dynamics run until no new
nodes are infected within a time step. Figure 6 shows the
fraction of infected nodes, the fraction of nodes that have ever
been quarantined, and the maximum fraction of nodes that has
been quarantined at one point in time for ER networks with
different recursion depths.

For the network size N → ∞, we see that the fractions of
infected and quarantined nodes drop to zero at the theoretical
critical value �c. For higher recursion depths and relatively
small networks, the infected fraction is already kept quite low
below the theoretical critical value because a large fraction of
nodes is being quarantined and therefore the assumption we
made in Sec. II that nodes are not coincidentally swept up
in unrelated infection trees does not hold anymore; however,
this lower infected fraction comes at the cost of wrongly
quarantining a relatively large fraction of nodes. Also, this
effect is mitigated for larger network sizes N .

For BA networks, especially for large networks, the infec-
tion dies out quickly even for low values of �, because the
infection dynamics are dominated by the strongly connected
hub nodes, which, after some time, will be in the recovered
state, and therefore the effective degree distribution for the
infection is quickly cut off for larger k. Additionally, in a
BA network the first few nodes which are added to the net-
work and later are likely to grow into the strongest connected

nodes are likely to connect to each other and have common
neighbors, meaning that the assumption we made in Sec. II
of low clustering does not hold, which reduces the number
of susceptible nodes adjacent to an infected large spreader i
because its neighbors are likely to have already been infected
by i’s own infecting node. Both these effects lower the basic
reproduction number R0 below the theoretical value given by
Eq. (1).

V. CONCLUSION

Considering the problem of epidemic spreading of an in-
fectious disease with a finite asymptomatic transmission rate,
such as the current epidemics caused by the SARS-CoV-2,
we have introduced a combined infection model of nodes tak-
ing susceptible, infected, or recovered states with a recursive
contact tracing algorithm for quarantining, equivalent to an
app used by a network’s nodes to stop a pandemic in our
model. The contact tracing algorithm changes the percolation
phase transition of the epidemic spreading model, and we
here studied the interplay of these two processes in a minimal
statistical mechanics model.

We have calculated the odds of an infected node being
quarantined by the contact tracing algorithm, as well as the re-
sulting theoretical critical values for the app usage rate above
which an infection does not percolate through the network,
and the minimum symptomatic rate beneath which a disease
cannot be stopped, depending on the algorithm’s recursion
depth, the disease’s basic reproduction number, and the con-
tact network’s underlying degree distribution.

We found that the critical app adoption rate and critical
symptomatic rate are both significantly lower for an algorithm
using recursive contact tracing, even with a low recursion
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depth, than for the classically employed, nonrecursive method
of direct contact tracing. In fact, any disease with a finite
symptomatic rate and arbitrary basic reproduction number
can be stopped if the app usage rate and recursion depth
are large enough, meaning that recursive contact tracing can
be an effective method for controlling diseases with large
asymptomatic transmission rates which could not have been
stopped with previous contact tracing methods.

Our critical app adoption rate of over 95% may seem
unusually high at first glance compared to some other
results [5,23,27,29], with other estimates generally lying be-
tween 56% and 95% [50]. However, this is simply caused
by our model’s harsh assumptions, such as a very high basic
reproduction number R0 = 3, a relatively high asymptomatic
rate of 50%. Furthermore, keep in mind that we here study an
idealized statistical mechanics model without further infection
prevention measures, such as random testing or social distanc-
ing, apart from contact tracing, not distinguishing between the
infectivity of symptomatic and asymptomatic disease carriers
(symptomatic carriers are often assumed to self-quarantine
and therefore infect fewer people), and a lack of manual
contact tracing even for symptomatic infected individuals who
are not using the app. Our results are comparable to those
of other models making harsh assumptions [16,17,26]. We
stress once again, however, that our model’s goal is not to
make quantitative predictions, but to provide a theoretical
basis for understanding the limits of recursive contact tracing
and further work.

Further, we found that, while higher recursion depths can
stop diseases with a high asymptomatic rate, for low asymp-
tomatic rates, recursion depths higher than one show very little
improvement in the critical app usage rate while falsely quar-
antining more uninfected nodes, implying that for such dis-
eases recursion depths larger than one are mostly not useful.

Also, the contact network’s degree distribution was shown
to have little impact on these critical values, so recursive con-
tact tracing is not only viable for Erdős-Rényi graphs, as tested
in previous studies, but also for more realistic scale-free-like
networks, i.e., scale-free networks with a cutoff.

We have ensured the accuracy of our theoretical calcula-
tions using simulations on infection trees and networks with
different degree distributions. We found very good agreement

between our calculations and simulations for any degree dis-
tribution on infection trees and for Erdős-Rényi networks.
For Barabási-Albert networks, the simulation’s critical val-
ues lie below the calculated ones because quarantining the
most connected nodes quickly changes the network’s de-
gree distribution and because the effect of clustering, as
highly connected nodes in Barabási-Albert networks are likely
to be connected to each other, was not considered in the
calculations.

The calculations presented here are viable for a simple
model, but we believe that the qualitative conclusions should
be applicable to the real world as well. Future research should
expand this simple model to be more realistic and possibly fit
the infection profiles of real diseases, as well as consider the
effect of clustering on the model’s critical values.

The presented model could easily be extended to more
closely model real-life processes, for example, by introducing
parameters for presymptomatic durations, delays in testing
or communication, using different reproduction numbers for
symptomatic and asymptomatic individuals, or studying real-
life networks that model household structures. Further, in the
real world, an asymptomatic node who is considered by the
algorithm to have potentially been infected could be tested and
then be used as a new index case for further contact tracing.

Also, as the exact nature of immunity due to previous in-
fection would not be immediately known for any new disease,
we erred on the side of caution and assumed the possibility
of reinfection when considering who should be quarantined,
although the underlying infection model does not allow this.
Should the existence of such immunities be known, one could
instead remove previously infected individuals from consider-
ation when determining possible infection chains and thereby
lower the false positive rate of quarantining. Conversely, the
model could also be modified to take into consideration the
possibility of recovered or vaccinated agents still possibly
becoming infectious disease carriers, despite being immune
themselves.

Finally, while digital contact tracing has been the underly-
ing case for our model, it could also be extended to simulate
and explore the theoretical limits of recursive manual contact
tracing, with the inherent difficulties and unavoidable delays
therein.
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