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Evolution of honesty in higher-order social networks
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Sender-receiver games are simple models of information transmission that provide a formalism to study the
evolution of honest signaling and deception between a sender and a receiver. In many practical scenarios,
lies often affect groups of receivers, which inevitably entangles the payoffs of individuals to the payoffs of
other agents in their group, and this makes the formalism of pairwise sender-receiver games inapt for where
it might be useful the most. We therefore introduce group interactions among receivers and study how their
interconnectedness in higher-order social networks affects the evolution of lying. We observe a number of
counterintuitive results that are rooted in the complexity of the underlying evolutionary dynamics, which has
thus far remained hidden in the realm of pairwise interactions. We find conditions for honesty to persist even
when there is a temptation to lie, and we observe the prevalence of moral strategy profiles even when lies
favor the receiver at a cost to the sender. We confirm the robustness of our results by further performing
simulations on hypergraphs created from real-world data using the SocioPatterns database. Altogether, our results
provide persuasive evidence that moral behavior may evolve on higher-order social networks, at least as long as
individuals interact in groups that are small compared to the size of the network.

DOI: 10.1103/PhysRevE.104.054308

I. INTRODUCTION

The flow of information from a source to its destination is
ubiquitous and fundamental to life at all levels—from signal-
ing at the cellular level for coordinating the activities of cells
to communication between people in and across societies. Par-
ticularly crucial is communication and transmission of honest
signals between different parts of a system for maintaining
its efficient functioning as epitomized by colonies of ants and
honey bees and also by the supercooperating humans [1].
However, the breakdown of communication and dishonest
signaling can severely hamper the operations of a system and
lead to undesirable consequences. A striking example of this
is how misinformation and rumours can propagate fear and
paranoia during times of crises, like the coronavirus disease
2019 (COVID-19) pandemic, and amplify the hardship that
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come along with them. Needless to say that tackling the prob-
lem of misinformation and fake news stands as one of the most
important challenges of our time.

While the study of fake news has attracted a lot of atten-
tion over the last few years [2–4], the literature on signaling
and deception has a much longer history [5]. Evolutionary
biologists have developed several models to study diverse
scenarios such as predator-prey signaling [6–8], sexual sig-
naling [9,10], and the interactions between siblings [11] and
between parents and offsprings [12]. On the other hand,
the focus of economists and psychologists has been to-
wards the development of tasks which would allow us to
quantify (dis)honesty. Some examples include the die-rolling
paradigm [13], the matrix search task [14], the Philip Sid-
ney game [15], and the sender-receiver game [16]. The latter
game, in particular, has received a great deal of attention in
the last few years.

The sender-receiver game is a classic example of a game
with asymmetric information, and it provides us with a
paradigm to explore strategic interactions between two types
of agents: senders, who possess a piece of information and can
either honestly or dishonestly communicate it to the second
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FIG. 1. Schematic of different aspects of our work. (a) The hy-
pergraph considered for our simulations—the hyperring. The one
shown in the figure consists of 11 nodes with each hyperedge con-
taining 4 nodes. Panels (b) and (c) denote two possible scenarios
which exemplify the need to incorporate group interactions—
suppose a sender sends a deceitful message to a group of receivers,
which could possibly lead them to disregard the social distancing
norms in the pandemic. The situation described in panel (b) depicts
a scenario where none of the receivers were deceived (all marked
in green), whereas panel (c) represents a scenario where a receiver
who was not deceived (center, marked in green) is surrounded by
receivers who were deceived. It is clear that the central receiver in
panel (c) should obtain a lower payoff than the one in panel (b) as
the pandemic is being facilitated (by the deceived receivers) and
restrictions will be extended for everyone. This group effect is not
captured by the pairwise models considered in literature.

type of agents, receivers, who can choose to either believe
or not believe the message sent to them. A particularly inter-
esting feature of this game is that it allows us to distinguish
among different types of lies, based on whether lying has
positive or negative consequences for the players [17]. Not
surprisingly, it has attracted a lot of research attention from
behavioral scientists [16–39] and, more recently, from physi-
cists. Recent studies [40,41] using Monte Carlo simulations
following the replicator dynamics have provided an extensive
theoretical study of the sender-receiver game in well-mixed
and structured populations to complement the massive amount
of experimental data available.

Although important, these studies consider only one-to-one
interactions, and a major assumption is that the payoffs of
individual receivers in a population depend solely on their
own strategy and the strategy of the sender they interacted
with. However, since people in a society are interconnected, it
is inevitable that the payoffs of each receiver would not only
depend on whether they were deceived but also on whether
the other receivers around them got deceived. In Figs. 1(b)
and 1(c), we emphasize this point. This realization, though
simple, has profound consequences for models of strategic
interactions as the fitness of an individual in a population
is entangled with the fitness of other people in the popula-
tion. This calls for an alternative modeling framework, which
goes beyond the simple consideration of only pairwise in-
teractions between agents and takes into account the effects

of group interactions to provide an improved description of
reality [42]. While this paradigm of including higher-order
interactions has successfully been incorporated in the study of
the evolution of cooperation in the form of the public goods
game [43], there is a strong need for a systematic study of
such group effects in other problems of strategic interactions,
such as signaling games, where higher-order interactions are
inevitable and must be accounted for. This encourages us
to explore the role of group interactions in the evolution of
honesty and lying in the sender-receiver game. We note that in
several other contexts, higher-order interactions have already
been shown to lead to collective phenomena as in the case of
synchronization phenomena [44–47], random walks [48,49],
consensus [50,51], and ecological dynamics [52,53].

The plan of our paper is as follows: In Sec. II, we ex-
tend the sender-receiver game to incorporate group effects.
In Sec. III A, we study the evolution of different strategies
in a well-mixed population and explore the parameter space
of the game to unravel rich results. In Sec. III B, we explore
the evolution of strategies on a class of hypergraphs, namely,
the hyperrings. The hyperrings also allows us to investigate
the role played by the size of the hyperedges on the evolution
of the strategies. In Sec. III C we examine the evolution on
four “real-world” hypergraphs, built using the SocioPatterns
dataset. We conclude with a discussion and a brief outlook for
future research in Sec. IV.

II. MATHEMATICAL MODEL

A. The sender-receiver game

We first define the canonical two-player sender-receiver
game, as introduced by Erat and Gneezy [17]. In this game,
the sender first rolls a die and observes the outcome of
the roll which can be any of the six possible outcomes
in {1, 2, 3, 4, 5, 6}. The sender then sends a message about
the outcome, which can be the truth (T ) or a lie (L), and
the message is communicated to the receiver. After receiving
the message, the receiver chooses a number between 1 and
6. If this number is equal to the actual outcome of the die,
without loss of generality, we set the payoffs of the sender and
the receiver, both, to be 0. In case this number is different from
the actual outcome of the die, then the sender gets a payoff s
and the receiver gets r. This game can be easily reduced to a
game with two strategies for each player. Indeed, the payoff of
the receiver essentially depends only on whether they choose
to believe (B) the message sent by the sender, or not (N ). We
can rewrite the payoff bimatrix of this game as follows:

B N
T 0, 0 s, r
L s, r 4

5 s, 4
5 r

where the ratio 4
5 comes from the fact that, if the sender lies

and the receiver does not believe the sender, then the receiver
reports a wrong outcome of the die with the probability 4

5 .
The fact that the sender-receiver game is essentially a game

with two players, each of which has only two strategies, makes
it suitable to study using methods of statistical physics, and
the Monte Carlo method, in particular. Another reason why
the sender-receiver game is becoming increasingly popular is
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that it allows one to study different types of lies, depending on
the values of s and r, as follows.

(i) Pareto white lies are those that benefit both the sender
and the receiver: r, s > 0.

(ii) Altruistic white lies are those that benefit the receiver
at a cost to the sender: r > 0, s < 0.

(iii) Black lies are those that benefit the sender at a cost to
the receiver: r < 0, s > 0.

(iv) Spiteful lies are those that harm both the sender and
the receiver: r, s < 0.

The distinction among different types of lies is useful
also for the equilibrium analysis, which indeed depends on
the type of lie. In the domain of spiteful lies, there are
two equilibria in pure strategies—(T, B) and (L, N )—and
one equilibrium in mixed strategies—( 1

6 T + 5
6 L, 1

6 B + 5
6 N ).

In the domain of altruistic or black lies, there is only one
equilibrium: ( 1

6 T + 5
6 L, 1

6 B + 5
6 N ). In the domain of Pareto

white lies, there are two equilibria in pure strategies—(T, N )
and (L, B)—and one equilibrium in mixed strategies, once
again, ( 1

6 T + 5
6 L, 1

6 B + 5
6 N ). The cases r = 0 and/or s = 0

are straightforward, because the corresponding players are
indifferent between the two available strategies.

B. Introducing group interactions

We now extend the canonical sender-receiver game to al-
low for multiple receivers, who interact among themselves,
meaning that the payoff of each receiver does not only depend
on whether the receiver herself believes the message sent by
the sender but also on whether the other receivers believe this
message. In particular, we assume that the payoff obtained by
each receiver is the sum of two components: the payoff due
to the individual “pairwise” interaction with the sender (�I ),
and the payoff due to the group interaction with the other
receivers (�G).

The pairwise payoff, �I , is defined to be identical to
the payoff of the standard sender-receiver game described in
Sec. II A.

To account for the group payoff, �G, we introduce some
terminology and some notation. We say that a receiver is
deceived by the sender if they report a wrong outcome of
the die. We denote xW as the fraction of receivers who are
deceived by the sender (excluding the receiver for which we
are calculating the payoff), where W stands for wrong as
the receiver reports the wrong outcome of the die. When a
receiver is not deceived by the sender, we define their group
payoff as �G = kRxW , where kR is a fixed real number, and R
stands for right, because the receiver reports the right outcome
of the die. When the receiver reports the wrong outcome of the
die, we denote their group payoff as �G = kW xW , where kW

is, again, a real constant.
To summarize, the total payoff, �I + �G, obtained by each

receiver can be tabulated as

B N
T 0 + kRxW r + kW xW

L r + kW xW
1
5 kRxW + 4

5 (kW xW + r)

Of course, as r, kR, and kW vary in R3, one can have
different prototypical cases. A detailed discussion of the dif-
ferent types of group interactions captured by this model is

presented in our discussion section. In principle, the model
allows for various choices of group payoffs �G received by
individuals, which can be defined to be general functions
fR(xW ) and fW (xW ), depending on whether the receiver was
deceived by the sender or not. For simplicity, we make the
choice of assuming the payoffs to be linear functions of the
fraction of deceived receivers in the group [ fR(xW ) = kRxW

and fW (xW ) = kW xW ]. Clearly, setting kR = kW = 0, one re-
duces the game to the standard sender-receiver game.

So far, we have defined only the payoff of the receiver.
We define the payoff of the sender to be simply the sum of
the payoffs that they obtain in their interactions with each
receiver.

C. The Monte Carlo method for well-mixed populations

We consider a sender-receiver game among n agents. Ini-
tially, each agent is randomly assigned one of the four pure
strategy profiles (T, B), (T, N ), (L, B), and (L, N ). Then one
agent is randomly selected to play as the sender. The n agents
then receive a payoff from the n-player sender-receiver game
played with the selected agent in the role of sender and all
the other agents in the role of receivers. At the end of this
interaction, another agent is selected to play in the role of
sender. We repeat this procedure n times so that, at the end
of this Monte Carlo step, each agent has played the role of
sender exactly once. This concludes one Monte Carlo step.

At the end of a Monte Carlo step, for each agent we
randomly select another agent. Then the first agent copies the
strategy of the second agent with a probability that depends on
the difference between their accumulated payoffs in the last
n rounds. In particular, if player P1 and its randomly selected
pair, player P2, collect payoffs �P1 and �P2 , respectively, then
P1 copies the strategy of P2 with the probability

w = 1

1 + exp
[(�P1

n − �P2
n

)/
K

] , (1)

where K quantifies the uncertainty or error in strategy adop-
tions. In real-world settings, one would expect that agents
would try to copy their neighbors who are performing better
than them. However this imitation would have its limitations
and imperfections, and with a small probability, agents can
also copy the strategy of poorly performing neighbors. In
our simulations, we choose K = 0.1, unless explicitly stated
otherwise.

To reach sufficient accuracy, we simulate large system
sizes, with n = 500, as well as long enough thermalization
and sampling times, of 105 Monte Carlo steps.

D. The Monte Carlo method for hypergraphs

To study the effect of spatial correlations on the evolution
of strategies in the n-player sender-receiver game, we simulate
the game on hypergraphs. A hypergraph is a generalization of
a graph, where edges, instead of connecting two nodes, can
connect any number of nodes. Formally, a hypergraph is a pair
H = (X, E ), where X is a nonempty set of nodes and E is a
family of nonempty subsets of X , called hyperedges. Nodes
that belong to the same hyperedge are said to be neighbors.
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The sender-receiver game is simulated on hypergraphs as
follows.

We treat each hyperedge as a well-mixed group. Within one
Monte Carlo step, we first select a hyperedge and all players in
that hyperedge play the group sender-receiver game with each
other such that each player in the hyperedge gets to play the
role of a sender exactly once. To account for heterogeneities
in sizes of the hyperedge, the payoff obtained by each agent
in the hyperedge is divided by the number of agents in the
hyperedge. This is repeated until we go over all hyperedges.
Players accumulate payoffs from all hyperedges they are part
of. This brings us to the imitation step, where we go over each
of the n players in the hypergraph one by one, and each player
P1 copies the strategy of a randomly chosen neighbor P2 with
the probability

w = 1

1 + exp
[(�P1

K1
− �P2

K2

)/
K

] , (2)

where Ki denotes the number of hyperedges node i is part of.

III. RESULTS

The results section is structured as follows. In Sec. III A,
we simulate the evolutionary group sender-receiver game on
well-mixed populations, and we compare the results with
those already obtained for the standard pairwise sender-
receiver game [40]. We see that, already in the well-mixed
case, several features emerge with the addition of group inter-
actions. Then, in Sec. III B we study the evolution in the group
sender-receiver game on a particular class of hypergraphs,
hyperrings, and we see that, compared to the well-mixed
populations, further features emerge. Finally, in Sec. III C we
explore the evolution of the group sender-receiver game in
four real-world hypergraphs, and we show that the results
qualitatively confirm those obtained in the hyperrings. The
main result is that the spatial structure leads to the evolution
of the moral strategy (T, B), whereby the sender sends a
truthful message and the receiver trusts the message sent by
the sender, even for small values of kR and independently
of kW . Moreover, the moral strategy (T, B) can more easily
emerge in small groups than in large ones.

A. Well-mixed populations

We start by reporting the densities in the stationary state of
the four strategy profiles (T, B), (T, N ), (L, B), and (L, N ), as
a function of the parameters s, r, kR, and kW in a well-mixed
population consisting of 500 agents.

First, we isolate the effect of kW by setting kR = 0. We re-
port two simulations, one for kW = 10 and one for kW = 0.25.
We choose these two parameter values as they provide key
insights into the behavior of the model and how evolutionary
dynamics is affected by incorporation of higher-order inter-
actions. Since the absolute values of s and r (the pairwise
payoffs) lie between 0 and 1, choosing the value of the group
payoff strength to be kW = 0.25 allows us to probe the model
behavior in the case in which the payoffs associated with the
group interactions are comparable to those associated with the
pairwise interaction. Similarly, the value kW = 10 allows us
to explore the behavior of the model when group interactions

bring a much higher payoff than pairwise interactions and thus
are the dominant factor in determining the evolution of the
strategies.

When kW = 10, it is extremely beneficial for each receiver
to be deceived, whenever at least another receiver is deceived.
This suggests that the believing strategy B should quickly van-
ish and, at the stationary state, receivers should never believe
the message sent by the sender. This intuition is confirmed
by the simulations [Fig. 2(a)]. The strategy played by senders
can also be easily determined. It suffices to observe that,
when s > 0, senders would want to maximize their chances
of deceiving the receivers and hence would choose to tell the
truth (T ) to a population of nonbelievers (N), making (T, N )
the strategy profile with maximal payoff. On the contrary,
when s < 0, senders have an incentive to lie (L) to a popu-
lation of nonbelievers (N), making (L, N ) the stable strategy
profile. Hence, for s > 0, (T, N ) is the evolutionarily stable
strategy, while otherwise it is (L, N ). We report this result in
Fig. 2(a), where we plot the stationary frequencies of different
strategies, for s and r taking values between −1 and 1.

When kW = 0.25, it is still beneficial for each receiver to be
deceived, whenever the other receivers are deceived. However,
since this time both group interaction parameters kR and kW

are small, we observe a more nuanced evolution that looks
similar to the one already reported for pairwise interactions
(see Fig. S1 in Ref. [54], and also Fig. 2 in Ref [40]), apart
from a small shift. This result in reported in Fig. 2(b). Next,
we isolate the effect of kR, by setting kW = 0. We report two
simulations, one for kR = 10 and one for kR = 0.25.

When kR = 10, it is extremely beneficial for a receiver not
to be deceived whenever the other receivers are deceived.
Starting from random initial conditions, it is easy to ar-
gue that believers have an initial advantage as they are less
likely to be deceived. If, in addition, s < 0, then the “moral
strategy profile” (T, B), whereby the sender tells the truth and
the receiver believes the message sent by the sender, would
have the highest fitness. Therefore, in this case we would
expect a quick convergence to (T, B). Figure 2(c) confirms
this intuition. The case of s > 0 is more nuanced. A the-
oretical analysis suggests that the system undergoes a shift
in the optimal strategy profile from (L, B) to (T, N ). Indeed,
since believers have an initial advantage and since now lying
is beneficial to the sender, (L, B) will tend to proliferate at
the initial stages of the evolution. However, as L evolves, it
is no longer beneficial for receivers to believe the message
sent by the sender and, therefore, they would start playing N .
Since when receivers do not believe the message sent by the
sender, the difference in the sender’s payoff when the sender
plays T compared to when she or he plays L is very little,
this would lead the evolution to stabilize around the strategy
profile (T, N ), with a small residual of the other strategy
profiles. This nuanced evolution is reported in Fig. S2 in
the Supplemental Material [54], which highlights that we do
indeed see the anticipated initial increase in (L, B); however,
soon after, (T, N ) takes over. It is interesting to remind, at this
stage, that in this regime it is extremely beneficial for an agent
to not be deceived whenever others are deceived. Reminiscent
of the tragedy of the commons [55–57], the ultimate fate here
is unfavorable to all, as no one earns the much coveted group
payoff even for the slightest temptations to lie (s > 0). Even
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FIG. 2. Final densities of the four strategy profiles, (T, B), (T, N ), (L, B), and (L, N ), in well-mixed populations for (a) kR = 0 and
kW = 10, (b) kR = 0 and kW = 0.25, (c) kR = 10 and kW = 0, and (d) kR = 0.25 and kW = 0. We show that the presence of group interactions
can lead to evolution which is quite different from the case where only pairwise interactions are considered (compare with Fig. S1 in Ref. [54],
and Fig. 2 of Ref. [40]).

the sender’s payoff for lying, which instigates the transition
from (T, B) to (T, N ), is not enjoyed in the end. See Fig. 2(c),
for a heat map of stationary frequencies of the four strategies
for kR = 10 and kW = 0, for various values of s and r.

When kR = 0.25, it is still beneficial for receivers not to
be deceived whenever other receivers are deceived. However,
since both group interaction parameters kR and kW are small,
this time we see an evolution that more closely portrays the
evolution in the pairwise game, apart from a shift to the
right upon the introduction of kR as opposed to the effect
of kW making (T, B) more prevalent for s < 0 and promot-
ing not believing (N) for s > 0. We report this result in
Fig. 2(d).

To conclude this section, where we isolated the effects
of kR and kW , we now mention some of our results for the
cases when they both act together. For kR = kW , the group
payoffs of each round act like a constant addition of payoff
to each strategy in the simple pairwise game, and hence, we
expect that the evolution of strategies in this case resembles
the pairwise sender-receiver game. We confirm our expecta-
tion in Fig. S1 in the Supplemental Material [54]. We also
report the cases (kR, kW ) = (−0.25, 0) and (0,−0.25) in the
Supplemental Material [54]. They are all very similar to the
cases just reported.

B. Hyperring

Next, we conduct simulations on a hyperring consisting
of 500 nodes. The hyperring can be thought of as a lattice
equivalent for hypergraphs because of its uniform structure
(see Fig. 1). Apart from the total number of nodes, only

one parameter has to be predetermined to uniquely define a
hyperring, the size of each hyperedge. We start by analyzing
the case in which hyperedges have size 4. At the end of
this subsection, we discuss the dependence on the size of the
hyperedge.

As a first step, we simulate the evolution for (kR, kW ) =
(0.25, 0) and for (kR, kW ) = (0, 0.25), so that we can make a
direct comparison with the results presented in the previous
subsection, regarding well-mixed populations. In Fig. 3, we
report the evolution for (kR, kW ) = (0.25, 0) [panel (a)] and
(kR, kW ) = (0, 0.25) [panel (b)]. In both cases, we notice that
the evolution is far more nuanced on the hyperring, compared
to the well-mixed populations. In particular, we notice that
the moral strategy profile (T, B), whereby the sender sends a
truthful message and the receiver believes the message sent
by the sender, which in well-mixed populations evolves only
in the trivial case of spiteful lies (r, s < 0), in the hyperring
evolves with nonzero frequency also in the domain of black
lies (r < 0, s > 0) and in the domain of altruistic white lies
(r > 0, s < 0). On the other hand, in both cases, the evo-
lution of the immoral strategy profile’ (L, N ) is disfavored,
compared to the well-mixed case. We note that a similar
enhancement of moral strategies has already been observed in
the canonical (pairwise) sender-receiver game played on net-
works, compared to the case of well-mixed populations [41].
However, we point out that higher-order effects have a more
nuanced effect on the evolutionary dynamics—the evolution
of the strategy (T, B) on pairwise networks can be further
enhanced, or completely hindered, depending on the nature
of group interactions, i.e., the value of the parameters kR and
kW (see Fig. S5 in Ref. [54]).
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FIG. 3. Final densities of the four strategy profiles, (T, B), (T, N ), (L, B), and (L, N ), in the hyperring where each hyperedge has size 4, for
(a) kR = 0.25 and kW = 0 and (b) kR = 0 and kW = 0.25. We also provide a comparison between (kR, kW ) = (0.25, −0.25) for (c) well-mixed
populations and (d) hyperrings. Here we note that there is an emergence of the moral profile on the hyperring, which is not present in well-mixed
populations for (s > 0, r < 0) and (s < 0, r > 0).

Figures 3(c) and 3(d) provide a comparison between the
evolution on the hyperring with that on the well-mixed
populations for (kR, kW ) = (0.25,−0.25). The heat map in
Fig. 3(c) is for the well-mixed population, and the heat map
in Fig. 3(d) is for the hyperring with four nodes in each
hyperedge. We show that in this case, too, the spatial struc-
ture provided by the hyperring favors the evolution of the
moral strategy profile (T, B) and disfavors the evolution of
the immoral strategy profile (L, N ), both in the domain of
altruistic white lies and in the domain of selfish black lies.
We point out that the two evolutions are fundamentally dif-
ferent. While the moral strategy profile (T, B) evolves with
almost zero frequency in well-mixed populations, it evolves
with almost 70% frequency in the hyperring. On the other
hand, the immoral strategy profile evolves to a frequency
close to 30%.

In the Supplemental Material [54], we also report the re-
sults of the simulations for (kR, kW ) = (−0.25, 0), (0,−0.25),
(−0.25, 0.25), and (0.25,0.25). The emergence of the moral
strategy profile (T, B) in regions of r < 0, s > 0, s < −r
(black lies) and r > 0, s < 0, r < −s (altruistic white lie) is
an especially interesting feature and can be observed in all
cases, albeit with varying frequencies. Evidently, the evolu-
tion of (T, B) in the regime of black lies is enhanced by a
positive value of kR and a negative value of kW , corroborated
by the high frequency of the moral profile for (kR, kW ) =
(0.25,−0.25) and significantly less frequency for parame-
ter values (kR, kW ) = (−0.25, 0.25). Our results convincingly
point towards the conclusion that spatial correlations provide
a route for the emergence of honest signaling in groups, at
least when the population consists of groups of small size.

We now analyze the dependence on the size of the hyper-
edges. Figure 4 reports the stationary frequencies of the four
strategy profiles for parameters s = 0.2, r = −0.3, kR = 0.25,
and kW = −0.25 as a function of the number of elements in
a hyperedge. We see that the group size is unfavorable to
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FIG. 4. Stationary frequencies of the four strategy profiles for
parameters s = 0.2, r = −0.3, kR = 0.25, and kW = −0.25 as a
function of number of elements in a hyperedge. We show that the
emergence of the moral profile due to the spatial correlations pro-
vided by the hypergraph structure is only significant when group
sizes are small, and the effect dies out as we increase the group
size—the relative density of (T, B) in the figure is the highest when
each group contains four elements, and monotonically decreases as
the group sizes increase.
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the evolution of moral behavior, as the stationary frequency
of the moral strategy profile (T, B) decreases as a function
of the group size and becomes nearly zero for group size
greater than or equal to 10. This is, a posteriori, not surprising,
as, when the group size increases, the hyperring converges
to a well-mixed population, which we already know to be
unfavorable to the evolution of (T, B) (see Sec. III A). In the
Supplemental Material [54], we also report the final densities
for several other values of kR, kW , r, and s (with r and s
either in the domain of black lies or in the domain of altruistic
lies). In all cases, we found that the final density of (T, B)
decreases with the group size. In the domain of spiteful and
Pareto white lies, clearly (T, B) either always evolves with
100% frequency (spiteful lies) or with 0% (Pareto white lies).
This case is trivial and thus excluded from the numerical
analysis.

C. Real-world hypergraphs

The key result of the previous section is that the hyperring
structure promotes the evolution of the moral strategy profile
(T, B), at least when the group size of the hyperedges is
relatively small. One might wonder whether this is a particular
feature of hyperrings with a small group size or whether it
holds also for other hypergraphs and, in particular, for more
heterogenous hypergraphs, like the ones created from real-
world data.

To answer this question, we created four hypergraphs de-
scribing real-world interactions using the publicly available
SocioPatterns dataset. SocioPatterns is “an interdisciplinary
research collaboration formed in 2008 that adopts a data-
driven methodology to study social dynamics and human
activity. Since 2008, [they] have collected longitudinal data on
the physical proximity and face-to-face contacts of individuals
in numerous real-world environments” [58]. In particular, the
SocioPatterns datasets record face-to-face interactions with a
temporal resolution of 20 s. This allows us to check whether
individuals are truly interacting as a group, and this allows us
to create a hypergraph as follows. For every 20-s window, we
create a network of interactions and catalog all the maximal
cliques beyond size 2. Repeated appearance of a clique, be-
yond a specified threshold, is treated as a group interaction
and we create a hyperedge consisting of the nodes in the
recurring clique. A similar approach of creating hypergraphs
has already been adopted to study opinion dynamics on hy-
pergraphs [59], as well as to study the temporal nature of
higher-order interactions [60].

In doing so, we created four hypergraphs starting from the
following datasets that we downloaded from SocioPatterns:

(i) primary Schools dataset, formed by school children
and teachers at a primary school in France;

(ii) conference dataset, formed by participants at the 2009
SFHH conference in Nice, France;

(iii) high school dataset, formed by students at a high
school in Marseilles;

(iv) workplace dataset, formed by the staff at an office
building in France.

These datasets represent a diverse variety of social situ-
ations and thus provide the ideal setting for our simulations.
Figure 5 reports the time evolution of the four strategy profiles

for each of these four real-world hypergraphs. We note that,
in each hypergraph, the moral strategy profile (T, B) persists
with a nonzero frequency. In the primary school hypergraph
[Fig. 5(a)], it evolves with frequency close to 17%; in the
high school hypergraph [Fig. 5(b)], it evolves with frequency
around 30%; in the workplace hypergraph [Fig. 5(c)], it
evolves with frequency around 32%; and in the conference
hypergraph [Fig. 5(d)], it even evolves with frequency above
60% [61].

IV. DISCUSSION

In our work, we provided a natural extension to the sender-
receiver game which allowed us to study the impact of group
interactions on the evolution of honesty. Different combina-
tions of parameter values in our model correspond to different
types of higher-order effects in strategic interactions among
agents. Some particularly relevant choices of parameters,
from a practical perspective, include the following.

(i) r < 0 and 0 > kR > kW . It is beneficial for each re-
ceiver if they do not get deceived and also the other receivers
in the group do not get deceived.

Example. During the COVID-19 crisis, there have been
several incidents caused by the spreading of fake news. For
example, in India a rumor spread about some trains being
arranged by the government for the laborers that were stuck
away from home. This caused a gathering of thousands of
people at a major railway station [62]. We can formalize this
situation with the following: kR, kW < 0, because the more
receivers get deceived, the more social distancing rules are vi-
olated, leading to an increase in the COVID-19 transmission,
with potentially negative consequences also for receivers that
were not deceived; kR > kW , because, everything else being
equal, a person is more likely to get infected if being deceived
(i.e., gathering at the railway station), than if not; and r < 0,
because receivers who go to the railway station spend money
and time for no reason.

(ii) r < 0, kR > kW , and kR > 0. It is beneficial for each
receiver if they do not get deceived, but other receivers in the
group get deceived.

Example. At the beginning of the COVID-19 crisis, there
has been a shortage of essential goods, including groceries
and household items of daily use. Suppose there is a rumor
spreading that these goods are available at shop X and not
at shop Y (where they are actually available). Then, it is in
the receiver’s best interest if they do not get deceived but
other people do, in order to minimize the competition for the
utilities in shop Y .

(iii) r > 0 and 0 > kW > kR. It is beneficial for each re-
ceiver if they get deceived but the other receivers in the group
do not get deceived.

Example. Any white lie being told in a population of com-
peting receivers belongs to this case. For instance, suppose
that two sport teams are competing for an important match
and that, right before the match, the presidents of the two
teams are informed about some tragic event that might lower
the performance of the teams, for example, the sudden death
of someone well known in their field. The presidents have to
decide whether to tell the truth to the coaches and the teams
before the match or not. In this case, for each team, it is better
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FIG. 5. Persistence of honest signaling and believing behavior (T, B), demonstrated on four hypergraphs generated using real-world
interaction patterns, namely, primary school (a), conference (b), high school (c), and workplace (d) datasets (descriptions in text) for kR = 0.25,
kW = −0.25, s = 0.2, and r = −0.3. These simulations provide evidence for our observation on hyperrings that higher-order interactions,
coupled with spatial correlations, allow for the emergence of the moral profile (T, B).

to believe the white lie, while the other team does not. Indeed,
in this case, one team is more likely to win the game, because
the other team lowers its performance.

(iv) r > 0, kW > kR, and kW > 0. It is beneficial for each
receiver if they get deceived and if also the other receivers in
the group get deceived.

Example. This is a very general case, because there are a
number of examples where cooperative behavior, which ben-
efits everyone, emerges from collective beliefs which are not
supported by evidence. The examples include various cultural
beliefs.

By performing Monte Carlo simulations of the proposed
model, we first explored in detail the stationary frequencies
of the different strategy profiles in well-mixed populations
across the parameter space of the model. In doing so, several
features emerged out of group interactions, which were not
observed in the canonical pairwise sender-receiver game. Also
by isolating the group effects, we gained further insight into
how the evolution is modified upon the inclusion of group
interactions in well-mixed populations.

But, of course, real populations are often structured, and,
in many cases, individuals do not interact in pairs, but in
groups. These higher-order structures are thus important for a
realistic modeling of any complex system. To probe them, we
used the formal paradigm of hypergraphs, which allowed us

to model networked systems with group interactions. We first
performed simulations on hyperrings, which, owing to their
uniform structure, can be thought of as the hypergraph ver-
sion of a lattice. We observed that the evolution of strategies
changes drastically, and, in particular, we identified the re-
gions in the parameter space where the moral strategy profile,
whereby senders tell the truth and receivers believe the mes-
sage sent by the senders, evolves, which was not observed in
well-mixed populations. In particular, we find that new values
of the parameters emerge, which allows agents to overcome
the temptation to lie (s > 0), even for comparatively small
values of kR and kW . We further established that this effect,
which was not present in well-mixed populations, is strongest
when the group size is small and decays very quickly with
the increasing sizes of groups. This decrease in morality as
a function of the group size is not surprising, as our model
of the hyperring converges to well-mixed populations as the
size of the hyperedges increases. What is surprising is the fact
that the moral strategy profile does evolve in small groups.
Moreover, this is not just a mathematical curiosity due to the
special hyperring structure, as we found a qualitatively similar
result in all real-world hypergraphs that we have built from
the SocioPatterns dataset: the strategy profile (T, B) persists
in all real-world hypergraphs that we have built, although with
different final densities.
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Recent works have explored the evolution of honesty
in only the canonical, pairwise sender-receiver game in
well-mixed populations and in networks [40,41], as part
of a research direction to study the evolution of moral
behavior [63,64]. This work constitutes a systematic study
of group effects in signaling games. As any emerging study,
also this study has some limitations that can suggest directions
for future work. For example, we considered only the case in
which there is one sender and multiple receivers. However,
in reality, sometimes there are multiple senders that compete
among themselves, such as news outlets which compete for
who has more receivers. Future work could extend our formal-
ization to include competition among senders. Also, as real
higher-order networks, we considered only four hypergraphs
downloaded from the SocioPatterns database, which refer to
physical interactions in a primary school, a high school, a
conference, and an office. It is possible that these interactions
are spatially different from virtual interactions that happen
online. Understanding the effects of the network structure on
the spread of misinformation online is certainly an important
direction for future work.

This study also contributes to our understanding of
the effect of group size on the evolution of morality.
Previous work has mainly focused on another form of moral-
ity, cooperative behavior [65]. In this context, a line of work
using several techniques, ranging from numerical simulations
to mathematical analyses and behavioral experiments, has

found that the relationship between group size and cooper-
ation is very nuanced and much depends on the particular
experimental paradigm being used to formalize cooperative
behavior [66–77].

Cooperation, one of the most well-studied topics in the
field of evolutionary game theory [78–83], is only one specific
type of moral behavior among several others [65], among
which honesty is also present [29]. However, unlike coop-
eration, other moral behaviors have not received significant
theoretical attention, and certainly not from the point of view
of group interactions. In a society as complex as ours, it is
expected that the phenomena that emerge out of it cannot be
explained solely through pairwise interactions between indi-
viduals as many interactions naturally happen in groups. We
hope that our work provides a stepping stone towards bridg-
ing this gap and encourages further studies devoted to group
interactions. An interesting future direction also emerges on
the experimental side, where behavioral changes in strategic
interactions between individuals can be explored in situations
where their rewards are entangled with each other.
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dishonest signalling, Theor. Ecol. 13, 85 (2020).

[11] S. M. Caro, S. A. West, and A. S. Griffin, Sibling conflict and
dishonest signaling in birds, Proc. Natl. Acad. Sci. USA 113,
13803 (2016).

[12] M. B. Dugas, Baby birds do not always tell the truth, Proc. Natl.
Acad. Sci. USA 113, 13554 (2016).

[13] U. Fischbacher and F. Föllmi-Heusi, Lies in disguise–An exper-
imental study on cheating, J. Eur. Econ. Assoc. 11, 525 (2013).

[14] N. Mazar, O. Amir, and D. Ariely, The dishonesty of honest
people: A theory of self-concept maintenance, J. Mark. Res. 45,
633 (2008).

[15] J. M. Smith, Honest signalling: The Philip Sidney game, Anim.
Behav. 42, 1034 (1991).

[16] U. Gneezy, Deception: The role of consequences, Am. Econ.
Rev. 95, 384 (2005).

[17] S. Erat and U. Gneezy, White lies, Manage. Sci. 58, 723 (2012).
[18] S. Sánchez-Pagés and M. Vorsatz, An experimental study of

truth-telling in a sender–receiver game, Games Econ. Behav.
61, 86 (2007).

[19] A. Dreber and M. Johannesson, Gender differences in decep-
tion, Econ. Lett. 99, 197 (2008).

[20] R. Peeters, M. Vorsatz, and M. Walzl, Rewards in an experi-
mental sender–receiver game, Econ. Lett. 101, 148 (2008).

[21] T. R. Cohen, B. C. Gunia, S. Y. Kim-Jun, and J. K. Murnighan,
Do groups lie more than individuals? Honesty and deception
as a function of strategic self-interest, J. Exp. Soc. Psychol. 45,
1321 (2009).

[22] J. Rode, Truth and trust in communication: Experiments on the
effect of a competitive context, Games Econ. Behav. 68, 325
(2010).

054308-9

https://doi.org/10.1073/pnas.1806781116
https://doi.org/10.1016/j.cognition.2018.06.011
https://doi.org/10.1177/0956797620939054
https://doi.org/10.1080/11956860.1998.11682471
https://doi.org/10.1006/anbe.1997.0572
https://doi.org/10.1016/j.anbehav.2018.10.012
https://doi.org/10.1098/rspb.2017.2875
https://doi.org/10.1007/s12080-019-0429-0
https://doi.org/10.1073/pnas.1606378113
https://doi.org/10.1073/pnas.1616640113
https://doi.org/10.1111/jeea.12014
https://doi.org/10.1509/jmkr.45.6.633
https://doi.org/10.1016/S0003-3472(05)80161-7
https://doi.org/10.1257/0002828053828662
https://doi.org/10.1287/mnsc.1110.1449
https://doi.org/10.1016/j.geb.2006.10.014
https://doi.org/10.1016/j.econlet.2007.06.027
https://doi.org/10.1016/j.econlet.2008.07.016
https://doi.org/10.1016/j.jesp.2009.08.007
https://doi.org/10.1016/j.geb.2009.05.008


KUMAR, CHOWDHARY, CAPRARO, AND PERC PHYSICAL REVIEW E 104, 054308 (2021)

[23] A. W. Cappelen, E. Ø. Sørensen, and B. Tungodden, When do
we lie?, J. Econ. Behav. Organ. 93, 258 (2013).

[24] B. C. Gunia, L. Wang, L. Huang, J. Wang, and J. K. Murnighan,
Contemplation and conversation: Subtle influences on moral
decision making, Acad. Manage. Ann. 55, 13 (2012).

[25] U. Gneezy, B. Rockenbach, and M. Serra-Garcia, Measuring
lying aversion, J. Econ. Behav. Organ. 93, 293 (2013).

[26] M. Kouchaki, K. Smith-Crowe, A. P. Brief, and C. Sousa,
Seeing green: Mere exposure to money triggers a business deci-
sion frame and unethical outcomes, Organ. Behav. Hum. Decis.
Process. 121, 53 (2013).

[27] R. M. Sheremeta and T. W. Shields, Do liars believe? Be-
liefs and other-regarding preferences in sender–receiver games,
J. Econ. Behav. Organ. 94, 268 (2013).

[28] E. E. Levine and M. E. Schweitzer, Are liars ethical? On the
tension between benevolence and honesty, J. Exp. Soc. Psychol.
53, 107 (2014).

[29] L. Biziou-van Pol, J. Haenen, A. Novaro, A. Occhipinti
Liberman, and V. Capraro, Does telling white lies signal pro-
social preferences? Judgment Decis. Making 10, 538 (2015).

[30] A. E. Greenberg, P. Smeets, and L. Zhurakhovska, Promot-
ing truthful communication through ex-post disclosure (2015),
available at SSRN 2544349: http://dx.doi.org/10.2139/ssrn.
2544349.

[31] E. E. Levine and M. E. Schweitzer, Prosocial lies: When decep-
tion breeds trust, Organ. Behav. Hum. Decis. Process. 126, 88
(2015).

[32] K. Roeser, V. E. McGregor, S. Stegmaier, J. Mathew, A. Kübler,
and A. Meule, The dark triad of personality and unethical be-
havior at different times of day, Pers. Individ. Differ. 88, 73
(2016).

[33] V. Capraro, Does the truth come naturally? Time pressure in-
creases honesty in one-shot deception games, Econ. Lett. 158,
54 (2017).

[34] V. Capraro, Gender differences in lying in sender-receiver
games: A meta-analysis, Judgment Decis. Making 13, 345
(2018).

[35] U. Gneezy, A. Kajackaite, and J. Sobel, Lying aversion and the
size of the lie, Am. Econ. Rev. 108, 419 (2018).

[36] T. Lohse, S. A. Simon, and K. A. Konrad, Deception under
time pressure: Conscious decision or a problem of awareness?,
J. Econ. Behav. Organ. 146, 31 (2018).

[37] V. Capraro, J. Schulz, and D. G. Rand, Time pressure and
honesty in a deception game, J. Behav. Exp. Econ. 79, 93
(2019).

[38] S. P. Speer, A. Smidts, and M. A. Boksem, Cognitive control
increases honesty in cheaters but cheating in those who are
honest, Proc. Natl. Acad. Sci. USA 117, 19080 (2020).

[39] N. Abe, Overriding a moral default for honesty or dishonesty,
Proc. Natl. Acad. Sci. USA 117, 21844 (2020).

[40] V. Capraro, M. Perc, and D. Vilone, The evolution of lying
in well-mixed populations, J. R. Soc., Interface 16, 20190211
(2019).

[41] V. Capraro, M. Perc, and D. Vilone, Lying on networks: The
role of structure and topology in promoting honesty, Phys. Rev.
E 101, 032305 (2020).

[42] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A.
Patania, J.-G. Young, and G. Petri, Networks beyond pairwise
interactions: Structure and dynamics, Phys. Rep. 874, 1 (2020).

[43] U. Alvarez-Rodriguez, F. Battiston, G. F. de Arruda, Y. Moreno,

M. Perc, and V. Latora, Evolutionary dynamics of higher-order
interactions in social networks, Nat. Human Behav. 5, 586
(2021).

[44] C. Bick, P. Ashwin, and A. Rodrigues, Chaos in generically
coupled phase oscillator networks with nonpairwise interac-
tions, Chaos: Interdiscip. J. Nonlinear Sci. 26, 094814 (2016).

[45] P. S. Skardal and A. Arenas, Abrupt Desynchronization and
Extensive Multistability in Globally Coupled Oscillator Sim-
plexes, Phys. Rev. Lett. 122, 248301 (2019).

[46] A. P. Millán, J. J. Torres, and G. Bianconi, Explosive Higher-
Order Kuramoto Dynamics on Simplicial Complexes, Phys.
Rev. Lett. 124, 218301 (2020).

[47] M. Lucas, G. Cencetti, and F. Battiston, Multiorder Lapla-
cian for synchronization in higher-order networks, Phys. Rev.
Research 2, 033410 (2020).

[48] T. Carletti, F. Battiston, G. Cencetti, and D. Fanelli, Random
walks on hypergraphs, Phys. Rev. E 101, 022308 (2020).

[49] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A.
Jadbabaie, Random walks on simplicial complexes and the nor-
malized Hodge 1-Laplacian, SIAM Rev. 62, 353 (2020).

[50] L. Neuhäuser, A. Mellor, and R. Lambiotte, Multibody interac-
tions and nonlinear consensus dynamics on networked systems,
Phys. Rev. E 101, 032310 (2020).

[51] I. Iacopini, G. Petri, A. Baronchelli, and A. Barrat, Vanishing
size of critical mass for tipping points in social convention,
arXiv:2103.10411.

[52] E. Bairey, E. D. Kelsic, and R. Kishony, High-order species
interactions shape ecosystem diversity, Nat. Commun. 7, 12285
(2016).

[53] J. Grilli, G. Barabás, M. J. Michalska-Smith, and S. Allesina,
Higher-order interactions stabilize dynamics in competitive net-
work models, Nature (London) 548, 210 (2017).

[54] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.104.054308 for supplementary numerical
simulations and figures.

[55] M. Milinski, D. Semmann, and H.-J. Krambeck, Reputation
helps solve the ‘tragedy of the commons’, Nature (London) 415,
424 (2002).

[56] G. Hardin, The tragedy of the commons, J. Nat. Resour. Policy
Res. 1, 243 (2009).

[57] E. E. Ostrom, T. E. Dietz, N. E. Dolšak, P. C. Stern, S. E.
Stonich, and E. U. Weber, The Drama of the Commons (National
Academy, Washington, D.C., 2002).

[58] See http://www.sociopatterns.org.
[59] R. Sahasrabuddhe, L. Neuhäuser, and R. Lambiotte, Mod-

elling non-linear consensus dynamics on hypergraphs, J. Phys.
Complex. 2, 025006 (2021).

[60] G. Cencetti, F. Battiston, B. Lepri, and M. Karsai, Temporal
properties of higher-order interactions in social networks, Sci.
Rep. 11, 7028 (2021).

[61] We wondered whether these differences were driven by under-
lying differences in the group sizes of the hyperedges, along
the lines discussed at the end of the previous subsection. With
this in mind, we plotted the group size distribution for all the
graphs but could not find a systematic structural feature for the
differences in the evolution of (T, B).

[62] A brief report regarding this incident that occurred in Mumbai,
India, can be found at https://indianexpress.com/article/cities/
mumbai/mumbai-news-report-misleading-led-to-gathering-at-
bandra-says-court-6370029/.

054308-10

https://doi.org/10.1016/j.jebo.2013.03.037
https://doi.org/10.5465/amj.2009.0873
https://doi.org/10.1016/j.jebo.2013.03.025
https://doi.org/10.1016/j.obhdp.2012.12.002
https://doi.org/10.1016/j.jebo.2012.09.023
https://doi.org/10.1016/j.jesp.2014.03.005
http://dx.doi.org/10.2139/ssrn.2544349
https://doi.org/10.1016/j.obhdp.2014.10.007
https://doi.org/10.1016/j.paid.2015.09.002
https://doi.org/10.1016/j.econlet.2017.06.015
https://doi.org/10.1257/aer.20161553
https://doi.org/10.1016/j.jebo.2017.11.026
https://doi.org/10.1016/j.socec.2019.01.007
https://doi.org/10.1073/pnas.2003480117
https://doi.org/10.1073/pnas.2014489117
https://doi.org/10.1098/rsif.2019.0211
https://doi.org/10.1103/PhysRevE.101.032305
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1038/s41562-020-01024-1
https://doi.org/10.1063/1.4958928
https://doi.org/10.1103/PhysRevLett.122.248301
https://doi.org/10.1103/PhysRevLett.124.218301
https://doi.org/10.1103/PhysRevResearch.2.033410
https://doi.org/10.1103/PhysRevE.101.022308
https://doi.org/10.1137/18M1201019
https://doi.org/10.1103/PhysRevE.101.032310
http://arxiv.org/abs/arXiv:2103.10411
https://doi.org/10.1038/ncomms12285
https://doi.org/10.1038/nature23273
http://link.aps.org/supplemental/10.1103/PhysRevE.104.054308
https://doi.org/10.1038/415424a
https://doi.org/10.1080/19390450903037302
http://www.sociopatterns.org
https://doi.org/10.1088/2632-072X/abcea3
https://doi.org/10.1038/s41598-021-86469-8
https://indianexpress.com/article/cities/mumbai/mumbai-news-report-misleading-led-to-gathering-at-bandra-says-court-6370029/


EVOLUTION OF HONESTY IN HIGHER-ORDER SOCIAL … PHYSICAL REVIEW E 104, 054308 (2021)

[63] V. Capraro and M. Perc, Grand challenges in social physics: In
pursuit of moral behavior, Front. Phys. 6, 107 (2018).

[64] A. Kumar, V. Capraro, and M. Perc, The evolution of trust and
trustworthiness, J. R. Soc. Interface 17, 20200491 (2020).

[65] V. Capraro and D. G. Rand, Do the right thing: Experimental
evidence that preferences for moral behavior, rather than equity
or efficiency per se, drive human prosociality, Judgment Decis.
Making 13, 99 (2018).

[66] M. Olson, The Logic of Collective Action: Public Goods and the
Theory of Groups (Harvard University, Cambridge, MA, 2009).

[67] S. S. Komorita and C. W. Lapworth, Cooperative choice among
individuals versus groups in an N-person dilemma situation,
J. Pers. Soc. Psychol. 42, 487 (1982).
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