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How a minority can win: Unrepresentative outcomes in a simple model of voter turnout
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The outcome of an election depends not only on which candidate is more popular, but also on how many of
their voters actually turn out to vote. Here we consider a simple model in which voters abstain from voting if they
think their vote would not matter. Specifically, they do not vote if they feel sure their preferred candidate will
win anyway (a condition we call complacency), or if they feel sure their candidate will lose anyway (a condition
we call dejectedness). The voters reach these decisions based on a myopic assessment of their local network,
which they take as a proxy for the entire electorate: voters know which candidate their neighbors prefer and
they assume—perhaps incorrectly—that those neighbors will turn out to vote, so they themselves cast a vote if
and only if it would produce a tie or a win for their preferred candidate in their local neighborhood. We explore
various network structures and distributions of voter preferences and find that certain structures and parameter
regimes favor unrepresentative outcomes where a minority faction wins, especially when the locally preferred
candidate is not representative of the electorate as a whole.
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I. INTRODUCTION

Election forecasting is a difficult problem with real-world
consequences [1–3]. Part of the difficulty is that human psy-
chology is murky. How do voters decide which candidate
they prefer? What makes them change their minds? And
how do they decide whether to tell pollsters what they really
think? More broadly, modeling elections and voter behavior
can shed light on a wide range of puzzling issues about
human decision-making and hot-topic phenomena such as
polarization and the formation of political echo chambers
[4–11].

There is a rich literature on agent-based opinion dynamics.
This literature includes the “voter model” of probability the-
ory [12] and its many extensions (see Ref. [13] for a review),
as well as bounded confidence models [14–16]. In such mod-
els, agents interact on a network and change their opinions
according to certain rules. For example, the agents can adopt
the opinion of one of their nearest neighbors chosen at random
[12], or they can adopt the opinion held by the majority of
their neighbors [17,18], or they can update their opinion at a
nonlinear rate depending on the opinion distributions of their
neighbors [19–21]. The update rules can also depend on the
state of agents’ opinions (e.g., introducing stubborn [22] or
confident [23] voters who do not change their opinions easily).
A key question is when consensus forms among the nodes and
what conditions promote it.

However, opinion dynamics is just one facet of voter be-
havior. In the real world, another important factor is voter
turnout, defined as the percentage of eligible voters who
cast a ballot in an election. The turnout rate depends on
many socioeconomic, political, and institutional factors, from
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population size to campaign expenditures to registration re-
quirements [24,25]. The abundance of relevant factors makes
predicting voter turnout difficult.

One factor influencing voter turnout is the closeness of
the election [26,27]. Intuitively, one might expect that close
elections should produce higher turnout, but some scholars
dispute that this is the case [28,29]. Here we explore the
effect of network structure on individual agents’ perceptions
of election closeness and the consequent impact on turnout
and on the election itself.

Certain network structures and opinion distributions can
lead to minority nodes mistakenly believing that they belong
to a majority. The phenomenon whereby local knowledge of
the network is not representative of the electorate as a whole
is known as the “majority illusion”; a “minority illusion” is
also possible [30]. We are interested in conditions that allow a
minority to win elections by generating a higher turnout than
the majority.

The phenomenon of the minority defeating the majority
has been studied previously in many ways. For example,
Iacopini et al. [31] examine when a minority can build a
critical mass to cause a cascade on hypergraphs and become
the dominant opinion. In a similar spirit, Touboul [32] and
Juul and Porter [33] examine how antiestablishment nodes
(nodes that prefer to belong to a minority) can spread their
influence and create an antiestablishment majority.

In this paper we consider a model of voter turnout that
allows for majority and minority illusions. We ask: What
network structures enable minority factions to win? While we
do not consider opinion dynamics (our model voters never
change their minds), the mechanisms of voter turnout alone
can generate situations where a small minority can win in
a landslide. This counterintuitive result is one of our main
findings. Whether it holds in more realistic models remains
to be seen.
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The paper is laid out as follows. Section II introduces the
model. In Sec. III, we apply the model on a variety of net-
work structures: Erdős-Rényi networks (Sec. III A), stochastic
block networks (Sec. III B), scale-free networks (Sec. III C),
and random geometric networks (Sec. III D). Section IV sum-
marizes and discusses the results.

II. THE MODEL

Our simplified model of voter behavior is intended to
spotlight the role of two social effects: complacency and
dejectedness. In the model, voters have fixed opinions and
only need to decide whether to participate in an upcoming
election. Whether a node chooses to vote or abstain depends
on whether its local neighborhood causes the node to expe-
rience complacency, dejectedness, or neither of these effects.
Complacency is the effect where nodes that are surrounded
predominantly by nodes with matching opinions do not bother
to vote, because they are convinced that their preferred can-
didate is going to win in any case. Dejectedness is the effect
where nodes that are surrounded predominantly by nodes with
opposite opinions tend not to vote, because they are convinced
that the situation is hopeless and their preferred candidate is
going to lose.

Our model of voter behavior under dejectedness and com-
placency can be introduced formally as follows. We assume
that N voters live on a network, and each node has some opin-
ion θ , drawn from a probability distribution f (θ ). We shall
assume that only two opinions exist, although studying the
more general case of multiple opinions is a natural direction
for future work. In the context of the model, these opinions
can be thought of as preferences for one of two candidates in
an election, but they could also represent binary referendum
options, or any other binary choice.

Continuing in the spirit of simplicity, we further assume
that each node knows the opinion of all its neighbors. The
only question is who will vote. Whether a node decides to
vote or not depends on whether it thinks its vote will make
a difference, which in turn depends on the prevalence of the
two opinions among its neighbors in the network. We assume
the following simple-minded decision rule: A node chooses
to cast its ballot if and only if its vote would cause a tie or a
one-vote win in its one-hop network neighborhood (assuming
that all its neighbors choose to vote). More precisely, if a focal
node with opinion θ has kθ neighbors with opinion θ and
kφ neighbors with the opposite opinion φ, it will vote if and
only if

0 � kφ − kθ � 1.

Figure 1 illustrates the model. In the example shown, nine
nodes live on a ring graph. Five nodes hold a majority opinion
(orange) and four nodes hold a minority opinion (purple).
Figure 1(a) illustrates the effect of dejectedness. When the
top orange node decides whether to cast its vote, it sees that
both of its neighbors hold the opposite opinion. Since purple
outnumbers orange in the top node’s neighborhood, even if the
orange node decides to vote it cannot tie or win the election
locally, so it gets dejected and abstains from voting (as indi-
cated by the gray cross). Figure 1(b) illustrates the effect of
complacency. The two orange nodes at the bottom are com-

FIG. 1. The behavioral assumptions of (a) dejectedness, (b) com-
placency, and (c) their combination applied to the same ring network
with a 5 − 4 split between orange and purple nodes. (a) The top
orange node is surrounded by a purple node on either side. Thus, in
its local (one-hop) neighborhood it is outnumbered 2 − 1, so its vote
cannot tie or win the upcoming election in that local neighborhood.
Making a myopic (and wrong) estimate of the orange opinion’s
chances globally, based solely on its local neighborhood, the orange
node believes its vote cannot affect the upcoming election, so it gets
dejected and does not cast a vote, as indicated by the gray cross.
(b) The two bottom nodes are completely surrounded by other orange
nodes. Based on this local information, they erroneously conclude
that the upcoming election is a safe win, become complacent, and do
not vote. (c) Because three orange nodes do not vote, purple wins the
overall election by 4 − 2.

pletely surrounded by nodes with the same orange opinion.
These two nodes conclude that orange is a local majority, even
without their votes, and thus abstain from voting. Figure 1(c)
shows the result of the election: 3 orange nodes abstain from
voting, leading to a 4 − 2 win by the purple minority.

As this example shows, the election outcome depends on
a surprisingly subtle interplay among three factors: the net-
work structure, the proportion of nodes that hold each of the
two opinions, and how the opinions are arranged among the
network nodes. Thus, this result raises several questions: Are
some network structures more likely to result in minority wins
than others, at least under our model? Does homophily (the
tendency for neighboring nodes to hold identical opinions)
increase or decrease the likelihood of minority wins? And how
does the minority size affect the likelihood of a minority win?
In the remainder of this paper, we pursue these questions by
simulating our model on various network topologies, and with
different choices for the arrangement of opinions among the
network nodes.

III. MODEL NETWORKS

Our model networks (“electorates”) consist of N nodes
(“voters”), of which N+ hold the majority opinion and N−
hold the minority opinion. We typically work with networks
of size N = 100, in which case N− can also be interpreted
as the minority fraction, defined as the percentage of the
electorate that holds the minority opinion. For each class of
networks, we treat N− as a control parameter and explore how
the probability of a minority victory depends on N−. In our
analytical work on stochastic block networks (Sec. III B), we
also find it convenient to express the results as a function of
the ratio

α = N−
N+

� 1,
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FIG. 2. Unrepresentative outcomes are rare on Erdős-Rényi ran-
dom graphs. The plots show the proportion of minority victories on
random graphs drawn from the family G(100, p) as a function of
the edge probability p (x axis) for three different scenarios: (a) a
minority that is 20% of the entire electorate, (b) 30% minority,
and (c) 40% minority. Each data point in a plot is based on 106

numerical experiments. For all three scenarios, the peak probability
of a minority victory occurs for an intermediate p. But note that the
minority never wins more than half of the time; the curves lie below
the dashed red line at all values of the edge probability p.

a parameter that quantifies how closely divided the electorate
is.

A. Erdős-Rényi networks

We begin by applying our model to Erdős-Rényi random
graphs [34]. In these networks, any given pair of nodes is
connected by an undirected edge with probability p. Since the
number of nodes, N , and the edge probability, p, define this
family of random graphs, the family is often denoted G(N, p).

Figure 2 shows how the average proportion of unrepresen-
tative outcomes changes as we vary the edge probability p, for
fixed network size N = 100 and three different choices for the
minority fraction N−. In Fig. 2(a), the majority nodes outnum-
ber the minority nodes by 80 to 20, a considerable margin.
Under these circumstances it is not easy for the minority to
pull off an upset win, but it is possible, thanks to the com-
placency of the majority. The probability that minority wins
peaks at around p = 0.25, with a corresponding win probabil-
ity of less than 0.2. Figure 2(b) shows the corresponding plot
when we increase the fraction of minority nodes to 30 out of
100, and Fig. 2(c) does the same for 40 minority nodes. The
effects of these changes are mild. The main things to notice
are that as the electorate becomes more nearly evenly split,
the peak probability that the minority wins becomes slightly
higher and there is a widening of the range of p values where
minority wins occasionally take place. Still, the main message
of Fig. 2 is that unrepresentative outcomes are fairly rare on
this class of random graphs. Indeed, in our simulations of the
model on Erdős-Rényi networks, there is no parameter regime
where a minority wins most of the time.

From Fig. 2, we can make two observations about when
a minority can win: Minority victories become more likely
for larger minorities and for intermediate values of p. The
first observation makes intuitive sense: A minority victory is
less likely when the margin between the number of majority
nodes and the number of minority nodes is wider, because

fewer minority nodes means that more majority nodes must
abstain from voting in order to ensure a minority win. Sec-
ond, to understand why minority wins are most likely for
intermediate values of p, it is helpful to consider the extreme
network structures that can arise in Erdős-Rényi networks.
There are two such extremes. When p = 0, the network has
N components, each consisting of a single node, and no node
has neighbors. In the absence of local information, every node
votes, making unrepresentative outcomes impossible. At the
other extreme, when p = 1 the Erdős-Rényi network becomes
a complete graph. On a complete graph, every node has per-
fect information about the global state of the network, which
leads to dejectedness for the minority nodes and complacency
for the majority nodes (if the margin is greater than 1). As
long as this condition holds true, nobody votes, and therefore
unrepresentative outcomes do not occur in this case either.

B. Stochastic block networks

In Sec. III A, we assumed that opinions were distributed
uniformly at random among the nodes in Erdős–Rényi net-
works. Distributing the opinions in this way meant that there
was no homophily in the networks. Looking back at Fig. 1,
we see that the nodes that are resistant to complacency and
dejectedness have the majority and minority opinions nearly
equally represented in their local neighborhoods. As such, it is
the other nodes, the ones in homophilous neighborhoods, that
tend not to vote and thereby open the door to unrepresentative
outcomes. In other words, we expect homophily to play an
important role in enabling the minority to win.

One way to introduce such homophily into randomly gen-
erated networks is to create random networks with community
structure and assume that nodes in the same community have
the same opinion. We now do exactly this by simulating our
model on “stochastic block networks” [34].

It is helpful to think of stochastic block networks as a gen-
eralization of Erdős-Rényi networks. Whereas in Erdős-Rényi
networks, the probability of forming an edge is the same
for any two pairs of nodes, in stochastic block networks the
node set is partitioned into disjoint subsets. The probability of
forming an edge between nodes then depends on the nodes’
respective subsets. If the nodes are in the same subset, they
are part of the same community, and the probability of them
being joined by an edge is high. On the other hand, nodes
in different subsets are assumed to not be part of the same
community, and the probability of an edge between them
is low.

Since we are interested in the interactions between major-
ity and minority nodes, we will use a stochastic block network
with two blocks. The probability of forming an edge between
two nodes can be represented as a matrix:

P =
(

p11 p12

p21 p22

)
, (1)

where pi j is the probability of forming an edge for any pair
of nodes from block i and block j. For the sake of simplic-
ity, we pick one in-block probability (p11 = p22 = pin) and
one interblock probability (p12 = p21 = pout) to reflect the
in-group/out-group differences. These relative probabilities
serve as a homophily parameter. When pin/pout is high, the
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FIG. 3. Introducing community structure to random graphs al-
lows for a prevalence of unrepresentative outcomes within some
parameter regions (the diagonal yellow regions). The proportion of
unrepresentative outcomes is shown in color as a function of pin and
pout on stochastic block networks of N = 100 nodes with minority
blocks of sizes (a) N− = 20, (b) 30, and (c) 40 nodes, for 106

simulations.

network exhibits high homophily, since nodes are more likely
to form edges within their block. When pin/pout is low, the
network exhibits low, or even antihomophily, since the nodes
are more likely to form edges across blocks. In the special
case pin = pout, we obtain Erdős-Rényi networks.

1. Numerical experiments on stochastic block networks

Figure 3 shows the proportion of unrepresentative out-
comes as a function of pin and pout for networks where major-
ity nodes outnumber minority nodes by varying amounts. The
color represents the proportion of simulations in which the
minority wins. Parameter values leading to unrepresentative
outcomes are conspicuous as the bright yellow regions.

While there are quantitative differences among the three
networks, there are important qualitative similarities. In each
of the three panels, most of the parameter space is colored
dark blue, corresponding to the representative outcomes one
would naturally expect. However, there are also yellow di-
agonal regions in which the minority wins more than half of
the time. The highest probability of a minority victory occurs
close to the midline of the yellow region, where pout/pin ≈ α.
While not visible in the figure, the global maximum occurs on
the right edge of each panel, at the point where when pin = 1
and pout = α. As we increase the size N− of the minority
population, the location of the peak moves up the pout axis,
resulting in an increased slope of the yellow region, while pin

stays pinned at its maximum value, pin = 1.
These results confirm our intuition from the Erdős–Rényi

networks: Unrepresentative outcomes occur in the interme-
diate information regime. They do not thrive on complete
networks, nor on fragmented ones with many components.
Rather, they favor regimes where nodes have an intermediate
level of knowledge about the state of the electorate as a whole.

An intuitive way of understanding Fig. 3 is to think about
the effects of complacency and dejectedness. In order to
avoid these effects, it is necessary to have both the majority
and minority opinion nearly equally represented in a node’s
neighborhood. Because there are more majority nodes in the
network, at high pin and intermediate pout settings the minority

nodes are most likely to know almost equal numbers of nodes
who agree and disagree with them. However, in that same set-
ting, the majority nodes are more likely to know more nodes
who agree with them because of the high pin probability, and
therefore are more likely to get complacent. This effect is what
allows the minority to win.

2. Analytical results for stochastic block networks with pin = 1:
Exact probability of a minority victory

For the convenient special case where pin = 1, we can
find the probability of a minority victory exactly. To do so,
observe that if the number of majority nodes exceeds the
number of minority nodes by at least two (N+ � N− + 2),
then none of the majority nodes will vote, due to the effects of
complacency. Therefore, in this particular case, the minority
will win as long as any minority node votes. We can compute
the probability of that event in a few easy steps as follows.

The first step is to consider the probability that any given
minority node votes. Because pin = 1, the given minority
node is certain to be linked to all the other minority nodes
in the electorate and hence is sure to see exactly N− votes for
the minority opinion in its local neighborhood (including its
own vote). Now invoke the decision rule: The given minority
node votes if and only if doing so would either cause a tie or a
one-vote victory in its local neighborhood. For those events to
happen, the minority node also needs to be connected to either
the same number, N−, of majority nodes, or one less than that
number. Those two events both happen according to binomial
probability distributions, because they involve choosing either
N− or N− − 1 majority nodes out of a total of N+ available.
Therefore, the probability that the given minority node votes
is a sum of two binomial terms:

P(any given minority node votes)

=
(

N+
N−

)
pN−

out(1 − pout)
N+−N−

+
(

N+
N− − 1

)
pN−−1

out (1 − pout)
N+−(N−−1). (2)

The first term expresses the probability that a minority node
sees an equal number of majority and minority nodes (and
will vote because it can cause a local tie). The second term
represents the probability that the minority node sees N− − 1
majority nodes (and will vote because it can cause a local
minority victory). All other possibilities are irrelevant: If the
minority node sees more than N− majority nodes, it would be-
come dejected, whereas if it sees fewer than N− − 1 majority
nodes, it would become complacent.

The next step is to subtract the right-hand side of Eq. (2)
from unity, to get the probability that a given minority node
does not vote. Since there are N− such nodes, and their de-
cisions to vote are all independent, the probability that all of
them do not vote is

P(no minority nodes vote)

= [1 − P(any given minority node votes)]N− . (3)
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FIG. 4. The proportion of unrepresentative outcomes on stochas-
tic block networks for the special case pin = 1. The probability of a
minority victory is plotted as a function of pout, for networks of size
N = 10. Results for three values of N− are shown, corresponding to
minority fractions of 20% (red), 30% (orange), and 40% (yellow).
The dotted black lines show the analytical expression in Eq. (5),
which agrees with numerical results from 106 simulations (solid
colored lines).

Then, by subtracting this quantity from 1, we obtain the prob-
ability that at least one minority node votes,

P(at least one minority node votes)

= 1 − P(no minority nodes vote). (4)

As stated above, this probability is also equal to the proba-
bility that the minority wins. Combining the equations above
and replacing N− with αN+ throughout, we finally arrive at
our desired result:

P(minority wins)

= 1 −
[

1 −
(

N+
αN+

)
pαN+

out (1 − pout)
N+−αN+

−
(

N+
αN+ − 1

)
pαN+−1

out (1 − pout)
N+−(αN+−1)

]αN+
. (5)

Figure 4 shows an excellent match between this analytical
prediction and simulations.

3. Peak location and probability of a minority victory

In Fig. 3 we saw that the probability of the minority win-
ning in our simulations on stochastic block networks was
reached at high pin and intermediate values of pout. Contin-
uing to assume fully connected blocks, pin = 1, we can now
calculate at the value of pout that maximizes the probability
of a minority victory. To do so, we differentiate Eq. (5) with
respect to pout and set the resulting expression to zero. After
straightforward but extensive algebra, and with the help of
Stirling’s formula, we find that in the limit N+ → ∞ with α

held fixed

pout = α

maximizes the probability of a minority victory.
Figure 5 shows how the peak value of pout converges to α as

N increases. In these plots, we fix α = N−/N+ = 2/3 and vary
the network size N . Notice that at the peak, the proportion of
unrepresentative outcomes approaches 1 as N goes to infinity.

FIG. 5. The solid curves show the proportion of unrepresenta-
tive outcomes as described by Eq. (5) for constant α = 2/3 and
N = 5, 10, 20, 100. The stars indicate the location of the maximum
on each curve. The probability pout that maximizes the proportion of
unrepresentative outcomes approaches α as N increases. The limiting
location of the peak, pout = α, is marked by the gray vertical line.

With further effort, one can show that the peak value of a
minority victory deviates from 1 by an exponentially small
term for N � 1:

P(minority wins | pout = α) ∼ 1 − exp

(
−

√
2αN

π (1 − α2)

)

×
(

exp

[
− 1

(1 − α)π

])
.

(6)

Furthermore, the curves in Fig. 5 become increasingly
sharply peaked as N increases. To check this, we evalu-
ate Eq. (5) in the same way at pout = α + ε for ε � 1
and find that P(minority wins | pout = α + ε) tends to 0
as N approaches infinity. Therefore in the large-N limit,
P(minority wins) tends to a discontinuous function that equals
1 at pout = α and 0 everywhere else.

C. Networks with a heavy-tailed degree distribution

Erdős–Rényi networks and stochastic block networks are
both widely studied. Their simplicity allowed us to derive an-
alytical results and gain some intuition for when the minority
could win the election in our model. In both models, however,
nodes tend to have very similar numbers of network neigh-
bors. This homogeneity is different from many real-world
networks in which node degrees can vary a lot [34–36].

As an example of networks with broad degree distributions
we now consider networks whose degree distributions follow
a power law in the limit N → ∞. Such scale-free networks
have been claimed to capture features of many real-world net-
works [35,37]. Other scholars have moderated or even argued
against this claim [36,38].

In our investigations of stochastic block networks, we
found that the existence of community structure could in some
cases increase the likelihood of a minority win under our
model. To understand the effect of homophily in more de-
tail, we also incorporate homophily in our simulations of our
model in networks with a heavy-tailed degree distribution. In
order to introduce homophily into the setting of networks with
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FIG. 6. Examples of networks with heavy-tailed degree distri-
butions with homophily factors (a) h = 0, (b) h = 0.3, (c) h = 0.8,
and (d) h = 1. All networks are of size N = 15 with minority size
N− = 5. We use the power law exponent λ = 2.5 to generate the
degree distribution.

power law degree distributions, we introduce a homophily
parameter h (0 � h � 1). When h = 0, the node opinions are
distributed randomly on the network, whereas when h = 1,
the majority and minority nodes organize into disjoint blocks
with no connection between nodes of different opinions. Our
algorithm for generating homophily on networks with power-
law degree distributions is described in the Appendix. The
algorithm is heavily inspired by algorithms used to create
configuration-model networks [34]. In that sense, our net-
works with power-law degree distributions can be thought of
as a class of configuration-model networks with homophily.

Figure 6 shows examples of the resulting networks. As h
increases, the nodes get a higher preference for connecting
to nodes with the same opinion. When h = 0, the nodes’
local information is most likely to be representative of the
true proportion of opinions across the electorate as a whole.
When h = 1, the nodes’ local information will only reflect the
presence of nodes with the same opinion.

Figure 7 shows the proportion of unrepresentative out-
comes on a network with a heavy-tailed degree distribution
and size N = 104 with minority fractions 20%, 30%, and
40%. We have chosen a larger network size to avoid un-
desired topological correlations [39,40]. The horizontal axis
shows the homophily parameter h. We observe once again that
unrepresentative outcomes occur most frequently when the
homophily parameter is in the intermediate range. In Figs. 7(a)
and 7(b), for homophily parameter values in range 0.45 �
h � 0.95 the minority faction wins more than half of the
time. In Fig. 7(c), the corresponding range is 0.55 � h � 0.9.
Surprisingly, increasing the minority size N− does not yield
a larger peak probability of minority wins for these config-

FIG. 7. Proportion of minority winning on networks with heavy-
tailed degree distributions and size N = 104, for (a) N− = 2000,
(b) 3000, and (c) 4000 nodes as a function of the homophily factor h,
for 103 simulations.

uration networks, in contrast to the other network structures
tested in this paper.

D. Geometric Random Networks

In Sec. III C, we considered networks with broad degree
distributions, a trait shared by some social networks. A qual-
itatively different class of networks are those in which the
likelihood of a link between two nodes depends on their
geographical separation. “Geometric random networks” pro-
vide some of the simplest examples. To generate them,
imagine throwing nodes uniformly at random inside a unit
square. We add an edge between any two nodes that lie within
a distance r of each other. A larger value of r results in denser
networks, as illustrated in Fig. 8.

In order to incorporate homophily into these sorts of ran-
dom networks, we assign minority and majority opinions
preferentially to the left and right halves of the unit square,
respectively. With probability equal to the homophily param-
eter h, nodes lie within their preferred half of the square.

We vary the radius of connection r and compute the pro-
portion of unrepresentative outcomes. Figure 9 shows the
results of the simulation. While the proportion of unrepre-
sentative outcomes peaks in the intermediate radius range,
the peak probability of minority victories moves to the right
as homophily increases. In a low-homophily setting, minor-
ity nodes benefit from low radius to prevent dejectedness
(they need to actively avoid knowing majority nodes). In a

FIG. 8. Example of majority (orange) and minority (purple) node
distributions for geometric random networks with radius (a) r = 0.3,
(b) r = 0.5, and (c) r = 0.8.
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FIG. 9. Proportion of minority victories on a geographic random
network as a function of the radius of connection r and probability
of nodes lying within their preferred half of the square. (a) h = 0.5
(no homophily), (b) h = 0.75 (moderate homophily), and (c) h = 1
(extreme homophily). The results are for networks of size N = 100,
with minority size N− = 30, for 104 simulations.

high-homophily setting, minority nodes benefit from a higher
radius to prevent complacency (they need to ensure they know
some majority nodes). The extreme peak in panel (c) is inter-
esting. It is due to the fact that in extreme homophily settings,
the majority half of the square domain is more densely popu-
lated. Therefore, at low nonzero values of r, majority nodes
begin to see other majority nodes and become complacent
before minority nodes begin to see other nodes. This effect
results in many disconnected minority nodes voting. The ef-
fect is diminished when the difference between N+ and N−
is lower. While not shown here, our numerical experiments
show that the peak is higher for N− = 20% and lower for
N− = 40%.

IV. DISCUSSION

In this paper, we have presented a simple agent-based
model of voter turnout. By simulating the model on a variety
of network structures, we found that it is often possible for
a minority faction to win the model election under the effects
of dejectedness and complacency. These unrepresentative out-
comes occur most frequently in the parameter ranges that
correspond to intermediate knowledge of the global state of
the electorate, as well as in networks with some homophily
or community structure. We have further shown that unrepre-
sentative outcomes can become more likely in settings where
the local distribution of opinions is not representative of the
average global distributions. Intermediate homophily settings
often create regimes in which minority nodes are more likely
to overestimate the closeness of an election based on their
one-hop network neighborhood, while majority nodes are sus-
ceptible to complacency.

In reality, it remains unknown how much complacency
and dejectedness influence whether people cast their vote in
elections. It is also unknown to what extent such compla-
cency and dejectedness would be caused by the immediate
social-network neighborhood of the voter; it seems quite pos-

sible, for example, that media reports, forecasting agencies,
and other nonlocal effects could play even bigger roles in
pushing voters to turn out or stay home. All that one can
say with certainty is that voter decision making is a complex
phenomenon with many social, political, and structural factors
influencing individual choices. Nonetheless, our work sug-
gests that homophily and network structure can greatly affect
vote outcomes in settings where voters choose to abstain or
cast their ballots based on the prevalence of opinions in their
local social neighborhood.

There are many extensions of this study that would be
intriguing to try in future work. Some directions could focus
on implementing the model in more general settings such as:
Realizing the model on core/periphery networks, adding more
than two opinion states, modifying the decision rule, and per-
haps adding a tension between local and global information in
the form of broadcasters or forecasters. Another possibility
would be to make the model dynamic. What do nodes do
after having lost an election that they thought was a safe
win? Introducing such dynamics and looking for fixed points,
cycles, and other time-varying states would be interesting.
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APPENDIX: ALGORITHM FOR GENERATING
SCALE-FREE NETWORKS WITH HOMOPHILY

We generate a scale-free network with homophily using the
following algorithm:

(1) Fix n nodes.
(2) Draw degrees from a power law distribution.
(3) Generate a vector of length n assigning a binary opin-

ion: 0 to majority nodes and 1 to minority nodes.
(4) Initialize two empty stacks: the majority stack and the

minority stack.
(5) For each node:
If a node is a minority node, add its index to the minority

stack the number of times corresponding to its degree.
If the node is a majority node, add its index to the majority

stack the number of times corresponding to its degree.
(6) Shuffle the majority and minority stacks.
(7) While the minority stack is nonempty:
pop node1 from the top of the minority stack. generate a

random number between 0 and 1. If the random number is
less than the homophily factor h, draw an edge between node1
and the first node in the minority stack (node2). If the random
number is greater, draw an edge between node1 and the top
node in the majority stack.

(8) If the majority stack is nonempty by the time the mi-
nority stack is empty, connect the remaining majority nodes
in pairs.
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