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Message-passing theories have proved to be invaluable tools in studying percolation, nonrecurrent epidemics,
and similar dynamical processes on real-world networks. At the heart of the message-passing method is
the nonbacktracking matrix, whose largest eigenvalue, the corresponding eigenvector, and the closely related
nonbacktracking centrality play a central role in determining how the given dynamical model behaves. Here we
propose a degree-class-based method to approximate these quantities using a smaller matrix related to the joint
degree-degree distribution of neighboring nodes. Our findings suggest that in most networks, degree-degree
correlations beyond nearest neighbor are actually not strong, and our first-order description already results in
accurate estimates, particularly when message-passing itself is a good approximation to the original model in
question, that is, when the number of short cycles in the network is sufficiently low. We show that localization of
the nonbacktracking centrality is also captured well by our scheme, particularly in large networks. Our method
provides an alternative to working with the full nonbacktracking matrix in very large networks where this may

not be possible due to memory limitations.
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I. INTRODUCTION

A lot of recent scientific effort has been aimed at under-
standing how dynamical processes running on top of complex
networks are affected by the underlying network structure. A
large and relevant subset of dynamical processes can be ac-
curately approximated by the message-passing method (also
known as the cavity method), where it is assumed that the
contribution of a node j to the behavior of a neighboring
node i is completely determined by the contribution of the
neighbors of j, excluding i. This approximation is appropriate
to study percolation [1,2] and spreading processes where a
node may be activated at most once, as is the case in the SIR
(susceptible, infected, recovered or removed) model of non-
recurrent epidemics [3]. Message-passing methods disregard
backtracking propagation, therefore their linearized version
is described by the nonbacktracking (or Hashimoto) matrix
[4,5] instead of the adjacency matrix. The nonbacktracking
(NB) matrix His a 2L x 2L nonsymmetric matrix (L being the
number of links in the network) whose elements are indexed
by directed links i <— j instead of nodes. It is defined as
Hijr1 =38;x(1 —4;;), where § is the Kronecker symbol. In
Ref. [6] it was shown that message-passing equations treat any
finite loopy network as a well-defined infinite locally treelike
network that preserves all local structures of the original, as
seen by a nonbacktracking walker. This structure is encoded
in the nonbacktracking matrix of the graph.

The key advantage of the NB matrix compared to the
adjacency matrix is that it suffers to a much lesser degree from
localization of the eigenvectors on large hubs [5], due to the
prohibition of backtracking. This circumstance has made it
a useful tool in spectral community detection methods [7,8].
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The NB matrix has been used to design optimal percolation
and node immunization strategies [9—11], identify influential
spreaders [12,13], and estimate the time an epidemic takes
to reach individual nodes in a network [14]. The relevant
quantity in most of these applications is the nonbacktrack-
ing centrality (NBC) of a node, defined as x; = Zjej\/,- Viej
where N; denotes the set of node i’s neighbors, and v;.;
is the component of the principal eigenvector (PEV) of the
NB matrix corresponding to the directed link i <— j. The
largest eigenvalue (LEV) of the NB matrix plays the role
of an effective “branching number,” which determines the
percolation or SIR epidemic threshold in the message-passing
approximation of these processes [1,3,6]. The NBC of a given
node is proportional to the probability of belonging to the
giant component (or of being infected in an SIR epidemic)
close to the transition threshold. For this reason, it is of great
importance to know which nodes have the highest NBC, i.e.,
what group of nodes contribute most to the PEV of the NB
matrix. Localization of the adjacency matrix PEV and its con-
sequences for dynamical models such as the SIS (susceptible,
infected, susceptible) epidemic model have been studied in
detail; see, for example, Refs. [5,15,16]. In Refs. [17,18] it
has been suggested that the PEV of the NB matrix may also
become localized, although not on individual hubs, but rather
on densely connected small subgraphs such as the highest
k-core of the network or a group of “overlapping hubs.” Using
these findings, an estimate for the LEV of the NB matrix
was given (see Ref. [18]), which was found to be a strong
improvement over the mean branching (k2)/(k) — 1.

We explore the possibility of approximating the LEV of
the NB matrix and the NBC of nodes in a network consid-
ering only nearest-neighbor degree-degree correlations, i.e.,
substituting a given network with an infinite random network
that has a joint degree-degree distribution P(k, k) identical
to the original network in question. Such an approximation is
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described by a matrix whose number of rows is equal to the
number of different degrees in the network, which may be sig-
nificantly smaller than the number of links. Therefore, if found
to be accurate, such a degree-class-based approximation may
be useful to estimate the percolation or epidemic threshold and
individual NBC values of nodes in cases where the network
in question is too large to be easily studied using the full
NB matrix. We find that such a degree-based approximation
indeed works well, and the relevant matrix is closely related
to the branching matrix used in Refs. [19,20]. Additionally we
observe that localization of the NBC, quantified by the inverse
participation ratio (IPR), is also reproduced fairly accurately
in our method, lending more credence to the validity of a
degree-based approximation.

II. TWO MATRICES DESCRIBING
CORRELATED NETWORKS

We discuss two related matrices that represent the same in-
finite maximally random network with given nearest-neighbor
degree-degree correlations described by the joint degree-
degree distribution P(k, k’). We will use these matrices in
Sec. III to write approximations for the LEV of the NB matrix
and the mean NBC of nodes of degree k.

A. The branching matrix: Percolation and SIR epidemics in
correlated networks

The branching matrix B, defined as
By = (k' — DP(K'[k), ey

has been used to study SIR epidemics [19] and percolation
[20] in random networks with only nearest-neighbor degree-
degree correlations. This matrix emerges by considering the
probability y; that a random edge emanating from a node of
degree k leads to a finite component. Using the locally treelike
property of an infinite random correlated network, we can
write the recursive equation

Yo=Y PKIky; ™", )
k/

where P(k’|k) is the probability that a randomly chosen link
has an end node of degree k' given that the other end node is
of degree k. Assuming that P(k’|k) is such that we are close to
the percolation threshold, we can write a; = 1 — y; < 1 and
keep only terms linear in ay,

ac =y _(K' = DHPK [k)ay, 3)

k/
or in vector form,
a = Ba, 4

where the matrix B is the branching matrix defined in Eq. (1).
Equation (4), with the Perron-Frobenius theorem, implies that
the LEV of matrix B, at the percolation threshold, is XEB) =1.
Thus the quantity A(IB) is an effective branching in such cor-
related networks [20]. From Eq. (4), we also learn that close
to the percolation threshold, the probability a; that a random
link emanating from a node of degree k leads to infinity is
proportional to v, the appropriate component of the PEV of

layer £ + 1 W
layer ¢ K

FIG. 1. Schematic representation of two successive layers in the
expansion of a random network with nearest-neighbor degree-degree
correlations specified by a joint degree-degree distribution P(k, k').

matrix B. The probability that a node of degree k belongs to
the giant component is thus proportional to kv, and the sum
of this probability over all nodes of degree k is proportional to
kP(k)vg.

B. The expansion matrix: Nonbacktracking expansion of
correlated networks

A different way of obtaining a description of correlated net-
works is by following the ideas of Ref. [6] according to which
the nonbacktracking expansion is defined. Let us build the
expanding neighborhood (a tree, layer by layer) of a random
node in a network with only nearest-neighbor degree-degree
correlations. Below the percolation threshold, when AgB) <1,
such a construction will always end within a finite number of
steps (since all nodes belong to finite components, i.e., they
have finite neighborhoods). When )\EB) > 1, however, there
is a nonzero probability S that such a construction continues
to infinity. (This happens when the randomly chosen starting
node belongs to the giant component.) Using the quantities yy
from Sec. Il A, we can write S as

S=1-Y Pk, )
k

where P(k) = ((k)/k) )", P(k, k') is the degree distribution
of the given correlated network. Assuming that we can build
an infinite expansion, let us calculate the relative frequency
of nodes of degree k on its “boundary” at infinity. In other
words, we are interested in the relative frequency of nodes
of degree k, i.e., the degree distribution, in an infinite local
neighborhood of a correlated network. Note that this is not
the same as the distribution of degrees at the end of a random
link, which is, in general, kP(k)/(k). (The two distributions
are identical for uncorrelated networks, but not for correlated
ones.) Let n;(¢) denote the mean number of nodes of degree
k in layer ¢ of the expansion, and let n(£) be the mean total
number of nodes in layer £ (see Fig. 1). [The averages are
taken over the randomness of the expansion process, governed
by the joint degree-degree distribution P(k, k').]

Relating the quantities of layers £ and £ + 1, we can write

€+ 1) = e (@OK — DHPEIK). ©)
v
Introducing n(£) = n(€ + 1)/n(€), we get
N ft+1) = Zf/a(ﬁ)(k/ — DP(k|K'), (7

k'
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where fi.(£) = ni(£)/n(€) is the relative mean number of
nodes of degree k on layer £. Assuming that the branching
factor n(€) and the relative mean numbers f;(£) converge to
some constants for £ — oo, we have the eigenvector equation

nf = Ef, (®)
with the expansion matrix E defined as
Erp = (K' = D)P(k|K'). ©))

The Perron-Frobenius theorem implies that n and f are the
LEV and PEV of the expansion matrix, respectively.

The branching and expansion matrices (B and E) are two
different ways of describing the same correlated network. The
spectrum and eigenvectors of the two matrices are closely
related, as is shown below in Sec. II C.

C. Spectrum and eigenvectors of the two matrices

Let A and v be an eigenvalue and corresponding eigenvec-
tor of matrix B. Then

Ao = ZBk,k’Uk’ (10)
k/

=Y (K = DPK k). (1)
o
Multiplying both sides by kP(k) and using the relation
P(K'|k)kP(k) = P(k|k")K'P(k") [21], we get

WPy = (' = DPK kP (k)ve (12)
=

=Y (K — DPkIK)KP(K . (13)

k'

Introducing ¥y = kP (k)v, we finally have

M =Y (K = DP(k|K )by (14)

4
= > Ej . (15)
-

This means that the entire spectrum of the two matrices is
identical, and if a vector with components vy is an eigenvector
of B with eigenvalue A, then the vector with components
kP(k)vy is an eigenvector of E with the same eigenvalue A.

III. APPROXIMATING NONBACKTRACKING
CENTRALITY

To approximate the NBC values of nodes in a given net-
work, we construct the expansion matrix E (or the branching
matrix B) using the joint degree-degree distribution measured
in the original network. To be precise, in a network consisting
of L links, we count the number L(k, k") of links connecting
nodes of degrees k and k’. The joint degree-degree distribution
is then given as P(k, k') = L(k,k')/Lif k = k' and P(k, k') =
L(k,k')/(2L) if k # k’. We may be more cautious and attempt
to estimate the “actual” joint degree-degree distribution, as-
suming that the observed network is a single given realization
of a certain stochastic generative process. This would, how-
ever, lead outside the scope of this paper, therefore we simply
count the number of links connecting nodes of given degrees.

Consequently, in sparse networks the time complexity of our
method is linear in system size.

We saw in Sec. Il A that the components v,(CB) of the PEV
of matrix B are proportional (close to the percolation thresh-
old) to the probabilities that a link emanating from a node
of degree k leads to the giant component. The components
v,EE) = kP(k)v,EB) of the PEV of matrix E, on the other hand,
are proportional to the sum of probabilities of nodes of degree
k belonging to the giant component. In the message-passing
scheme, the NBC of a node is proportional to the probability
of that node belonging to the giant component. Alternatively,
in the nonbacktracking expansion of an arbitrary network,
the NBC of a given node is equal to the relative frequency
of replicas of that node on the boundary of the expansion
at infinity (see Ref. [6]). Similarly, in the expansion of a
correlated network (Sec. 11 B), the relative frequency of nodes
of degree k on the boundary at infinity was found to be v,EE).

The appropriate comparison is, therefore, between v,iE) and
the sum of NBC values of nodes of degree k,

v~ Y, (16)

itki=k

where x; is the NBC of node i, k; denotes the degree of node
i, and we assume the normalization ) ,x;, =), v,EE) =1.
Equivalently, we can write the approximation

v,EE) _ kv,ﬁB)
NP(k) N

where (x); denotes the mean NBC of nodes of degree k. We
make the assumption that a node’s NBC is sufficiently well
approximated by the mean NBC of its degree class, i.e.,

o ®

X A (X)k N NPG) (18)
This (heterogeneous mean-field) approximation, arrived at by
considering the nonbacktracking expansion of a correlated
network, is derived more rigorously in the Appendix, using
a methodology similar to that of Ref. [22]. We show be-
low, using a varied set of real-world example networks, that
Eq. (18) works fairly well for most and exceptionally well
in certain cases, particularly when message-passing is itself
a valid approximation of percolation-type phenomena.

The LEV of the NB matrix H plays the role of an ef-
fective branching in the given network, and it determines
the percolation (or SIR epidemic) threshold in the message-
passing theory of these models. In our approximation, we
replace a given network with an infinite random network
that has the same joint degree-degree distribution P(k, k') =
P(k|k')K'P(k")/ (k) as the original. Such an infinite random
network is described by either matrix E or B. An approx-
imation to the LEV of the NB matrix is therefore simply
given as

() ~ ; 7)

A~ =P, (19)

see the Appendix for a derivation of this approximation. (If
the original network is connected, then both matrices E and
B are irreducible, which means that their largest eigenvalue is
real and positive according to the Perron-Frobenius theorem.)
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FIG. 2. (a) Error of the expansion matrix approximation to the
LEV of the NB matrix as a function of the error of the approxima-
tion of Eq. (20). (b) Error of the expansion matrix approximation
to the NBC as a function of the error of the local approximation
[Eq. (24)]. Each point on the panels shows the errors for one of
109 real-world networks. The errors are defined in Egs. (22),(23)
and (25),(26). Points below the dashed gray lines in panels (a) and
(b) have &%), < e} and e < e, respectively. The color code
in both panels corresponds to the ratio )Lﬁm /p- ", indicating the qual-
ity of the message-passing approximation to percolation.

From here onwards, we will refer to the approximations of
Egs. (17) and (19) as degree-based or expansion matrix ap-
proximations, although they could also be attributed to the
branching matrix B, as the two matrices contain the same
information.

Recently, in Ref. [18], it was shown that the LEV of the
NB matrix could be well approximated by the expression

1= max(u"™, 1o, 1€y, (20)
where
w > ik — DA (k; — 1)
> kitk; —1)

is an estimate based on the assumption that the network is
uncorrelated. (The adjacency matrix is denoted by A, and k;
denotes the degree of node i.) The quantities 11°" and 11°°™ are
the LEVs associated with the strongest “overlapping hubs”
subgraph and the highest k-core, respectively. The reason
why these contributions must be dealt with separately is, as
pointed out in Ref. [18], that such subgraphs are particularly
sensitive to the given correlation patterns in a network, and
their contribution is, in general, not included implicitly in u"".
Equation (20) was found to be a significant improvement over
the mean branching (k?)/(k) — 1 in approximating the LEV
of the NB matrix.

In Fig. 2(a), we compare our approximation [Eq. (19)] with
that of Eq. (20) for 109 real-world networks (see Table I in
the Supplemental Material [23]) also considered in Ref. [18],
featuring a variety of different sizes, clustering, and correla-
tion patterns. For the comparison, we use, as a measure of the
approximation error, the squared distances from the actual
LEV of the NB matrix,

2L

2
ey = (AT =), (22)
2
ety = (AP — )" (23)
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FIG. 3. Approximation of the mean NBC of nodes within degree
classes using the expansion matrix approximation of Eq. (17) (red
dots) and the local estimate of Ref. [18], Eq. (24) (open blue circles),
averaged over the given degree class. (In each plot, one marker
corresponds to one degree class.) Left panels show results for the
three highest, right panels for the three lowest values of the quantity
pnees EqQ. (27), indicating the three best and three worst cases (out of
the 109) from the expansion matrix approximation viewpoint.

The expansion matrix LEV provides a better approxima-
tion in 77 of the 109 cases. More importantly, the expansion
matrix approximation is consistently better when message-
passing itself is a good approximation to percolation: the color
code in Fig. 2 corresponds to the ratio of the LEV A(]H) of the
NB matrix to the inverse percolation threshold p, ! estimated
via simulations (see Ref. [18]). According to Ref. [1], A(lH)
is a good approximation to p_! in many empirical networks,
and A(IH) > p7! is strictly true in infinite networks. (The in-
equality was found to be true in all 109 empirical networks
considered.)

These results imply that whatever structure is responsible
for the LEV of the NB matrix of the network, it is also
captured implicitly in the correlated, degree-based, expansion
matrix approximation. To what extent this holds true may be
checked by looking at how well the mean NBC is approx-
imated for individual degree classes. In Fig. 3, we plot the
expansion matrix approximation for the mean NBC of degree
classes, as a function of the actual mean NBC (red dots), for
six example networks.

The expansion matrix approximation of the mean NBC is
compared with the uncorrelated approximation of Ref. [18],
where a local estimate is given for the NBC of individual
nodes,

YAk — 1)

! . 24
x; >k — 1) (24
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The mean value of x}" for degree classes is shown in Fig. 3
as a function of the actual mean NBC (open blue circles). To
quantify the quality of the two approximations, we use the
errors

Kmax o ®) 2
ENBC = Z<x>k<<x>k - Nﬁ’(k.)> , (25)
k 1
kmmx 2
e = D (o — () (26)

k

which are the weighted sums of squared differences for the
two approximations. Degree classes of higher mean NBC
generally play a bigger role in the underlying dynamics as
described by the message-passing theory. It is therefore ap-
propriate to use the mean NBC (x); as the weight in the
above measure. To compare the two approximations, we use
the logarithm of the ratio of the respective errors,

prc = In (e\5e/ensc)- @7)
onBe > 0 indicates a smaller error for the expansion matrix
approximation, while pxgc < 0 indicates a smaller error for
the approximation based on Eq. (24). The six sample networks
in Fig. 3 were chosen to contain the three networks where
the expansion matrix approximation worked best compared
to the local one (highest pnpc values, left panels in Fig. 3)
and the three networks where it performed the worst (lowest
onpe values, right panels in Fig. 3). We can observe only
small differences between the two approximations in the worst
cases, but striking differences in the best. Importantly, the
NBCs of high degree nodes, which play a more important
role, tend to be much better approximated by the expansion
matrix. Equivalent figures for all 109 networks (showing sim-
ilar trends) are presented in the Supplemental Material.

Figure 2(b) shows the error aggc as a function of SSE)C
for all 109 networks. The expansion matrix approximation is
better in all but six cases. Importantly, it is often markedly
better when the message-passing approximation is itself valid.
It is interesting to note that the approximation to the NBC
works well in almost all cases, even when the LEV is badly
approximated [see Fig. 2(a)].

It is worth analyzing how the performance of the two
approximations depends on particular degree-degree correla-
tion patterns. The expansion matrix approximation accounts
for nearest-neighbor degree-degree correlations completely
but assumes that there are no finite loops, which may be
more problematic for certain types of networks than others.
Analogously to Eq. (27), we define the following quantity to
compare the two approximations to the LEV of the NB matrix:

prev = In (eify /e(ky). (28)

which, again, is positive when the expansion matrix approx-
imation is better. Figure 4 shows the quantities pnpc and
pLey as functions of the Pearson correlation coefficient o (of
nearest-neighbor degrees) for the 109 networks considered.
Considering the LEV approximation [Fig. 4(a)], a clear trend
is seen according to which the expansion matrix approxi-
mation works better for disassortative networks, while the
approximation of Eq. (20) favors assortative networks. The
reason why the latter works better for assortative networks
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FIG. 4. Logarithmic approximation error ratios (a) pLgy and
(b) pnc as functions of the Pearson correlation coefficient o for
nearest-neighbor degree-degree correlations. The color code in both
panels corresponds to the ratio )L(IH) /p. ", indicating the quality of the
message-passing approximation to percolation.

can be mostly attributed to the LEV of the highest k-core,
which is explicitly included in Eq. (20). Strongly assortative
networks are expected to contain many short loops among the
highest-degree nodes, most of which belong to the highest
k-core, which in turn tends to dominate the LEV of the NB
matrix. This feature is missed in the expansion matrix ap-
proximation, where a locally treelike structure is assumed. It
is important to note, however, that for the very same reason,
message-passing theory itself is not a valid approximation in
most of these assortative networks. Conversely, in the cases
where message-passing is valid, the expansion matrix approx-
imation is generally better, often markedly better. A similar
trend can be seen in the case of the NBC approximation
[Fig. 4(b)], where the expansion matrix approximation tends
to strongly dominate for disassortative networks. For the NBC
approximation, interestingly, also for assortative networks the
expansion matrix approximation appears to be better, or at
least as good as the local approximation.

The failure of the local approximation to correctly esti-
mate the NBC in disassortative networks stems from the fact
that the NBC of low degree nodes tends to be overestimated
due to hubs in their immediate neighborhood. The NBC of
higher degree nodes is underestimated as a consequence. The
expansion matrix method provides a reliable approximation
for all degree classes in such networks. The obvious advan-
tage of this method, compared to the local one, is that it is
self-referential, i.e., it takes the entire network into account to
determine the estimate for the mean NBC of degree classes,
similarly to the message-passing algorithm, only it does so in
a course-grained manner, circumventing the necessity to have
access to the full NB matrix.

The quality of these findings indicates that whatever struc-
tural property of a network is responsible for determining the
LEV of the NB matrix, nodes of identical degrees generally
have similar roles, therefore they can be treated parsimo-
niously as a degree-class if nearest-neighbor degree-degree
correlations are taken into account. For large networks, this
may be a significant simplification and reduction in computer
memory requirement. The NBCs in a given network can be
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FIG. 5. Comparison of the size of the matrices E and M as a
function of network size N. The ratio of the number of rows as a
function of N is presented in panel (a); the ratio of the number of
nonzero elements as a function of N is presented in panel (b). The
color code in both panels corresponds to the ratio A(,H) /p-', indicat-
ing the quality of the message-passing approximation to percolation.

calculated by first obtaining the PEV of the 2N x 2N matrix,

M A I-D 2
_<1 0 ) 29

where A is the adjacency matrix, I is the identity matrix,
and D is the “degree matrix” whose elements are D;; = §;k;.
The NBC values x; correspond to the first N components of
the PEV of matrix M [5]. The number of rows in matrix M
is 2N, whereas the number of rows in the expansion matrix
E is the number n of different node degrees present in the
network. The latter can be much smaller than the former
for large networks. Figure 5(a) shows that the ratio of the
number of rows for the two matrices tends to decay with
network size slightly faster than N~'/2. This is a consequence
of the fact that n(E) is upper bounded by ky.x, Which is
typically of the order of N'/? [24]. For computational pur-
poses, however, what matters more than the number of rows
is the number of nonzero elements in these matrices, nnz(E)
and nnz(M), respectively. As can be seen in Fig. 5(b), the
ratio of this quantity for the two matrices does not decay as
strongly as the ratio of the number of rows, but a decay is still
evident.

IV. LOCALIZATION OF NONBACKTRACKING
CENTRALITY

It is well established that the PEV of the adjacency matrix
may become localized on hubs and their neighboring nodes
[5,15,16,25]. In particular, if the highest degree, kmax, in the
network is larger than ((k?)/(k))?, then the PEV of the adja-
cency matrix is localized on this hub and the LEV is given
by v/kmax- (Otherwise the PEV is effectively localized on the
highest k-core [26].) This has significant consequences for
recurrent epidemic models such as the SIS model, where it
has been shown that in the quenched mean-field approxima-
tion, the epidemic threshold coincides with the inverse of the
LEV of the adjacency matrix [27]. Hubs in the SIS model,
therefore, have a special role in initiating disease spreading
and maintaining an endemic state. For percolation and nonre-
current epidemics, for which the NB matrix and the NBC are

the relevant quantities, hubs lose their special role, although
not completely. Contrary to the case of the adjacency matrix
PEV, independent hubs cannot be centers of localization of
the NBC [5]. However, as shown recently in Refs. [17,18], the
NBC may still become localized on high-degree nodes when
they are supported by other high-degree nodes, either directly
(in a densely connected subgraph, e.g., the highest k-core) or
indirectly (in an “overlapping hubs” structure, where a group
of high-degree nodes share the same neighbors).

Here we demonstrate that the expansion matrix approxi-
mation can also capture this localization phenomenon, which
is consistent with the high quality of the NBC and LEV
estimates. We quantify the localization of the NBC using the
inverse participation ratio (IPR),

4
P X;

Yy = W (30)

(The normalization ), x? = 1 is often used.) The quantity ¥,
may be approximated by replacing each x; with (x)., the mean
NBC value of nodes of degree k;,

_ NP(k)(x)s
Yy = 2 ;‘ . (31)
(2% NP(R)(x))
In the expansion matrix approximation [Eq. (17)], we have

(x) ~ v,EE) /INP(k)], where v,EE) are the components of the

PEV of the expansion matrix. Our approximation to the IPR
of the NBC is then

o S () INPRT
LS ) el

We will compare this estimate with the one obtained by
using the uncorrelated, local approximation of the NBC,
Eq. (24),

(32)

un 4
Y= M (33)

[ )T

Note that Eq. (32) is a degree-based, course-grained esti-
mate, where each node is represented by the mean value of
its degree class. Equation (33), on the other hand, is a node-
based estimate, i.e., the estimate of each node’s individual
NBC makes a contribution. It should be noted that Eq. (33) is
meant to be a good approximation primarily when the NBC is
not localized on the highest k-core or overlapping hubs, i.e.,
when p"" dominates in Eq. (20). Data points comparing the
approximations of Egs. (32) and (33) for all such cases are
shown in Fig. 6(a). The expansion matrix approximation is
better for 43 out of 55 networks. In the 12 cases where it is not,
there is very little difference between the two approximations.

These findings indicate that, for the purposes considered
here, the role of a node is largely determined by its degree,
and the interaction between nodes of different degrees may be
substituted by an averaged interaction between the respective
degree classes.

Another important thing to consider is that although the
NBC is not localized on independent hubs, the IPR is still
dominated by high-degree nodes, due to their positions in
densely connected subgraphs. Degree classes of high degrees
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FIG. 6. (a) Comparison of the inverse participation ratio using
the expansion matrix scheme and the local approximation. Values
relative to the true inverse participation ratio are shown on both axes.
The dashed gray line corresponds to Y4(E) =Y,". (b) Relative con-
tribution of nodes of degenerate degrees to the inverse participation
ratio Yy, Eq. (30), as a function of network size. The color code in
both panels corresponds to the ratio AﬁH) /p. ", indicating the quality
of the message-passing approximation to percolation.

have lower “degeneracy” (have fewer nodes in the degree
class), therefore the degree-based approximation can be ex-
pected to work better. In particular, for nodes of the highest
degrees, the degree classes are typically nondegenerate, and
the expansion matrix describes their interconnections without
any loss of information (compared to the NB matrix). Most
of the information in the degree-based approximation is lost
on low-degree classes that are highly degenerate, but these
degree classes play a much smaller role in the localization
phenomenon. We define Y, 4 as the contribution of nodes of
degenerate degree classes to the IPR,

Y X

i:degen.
(Xix? )2

where the sum in the numerator is taken over nodes whose de-
grees are not unique in the network, that is, nodes that belong
to degenerate degree classes. In Fig. 6(b), we plot the relative
contribution of such degree classes to the IPR in all 109
networks. This contribution is often quite small, particularly
for larger networks where the message-passing approximation
is valid, meaning that the IPR is to a large extent dominated by
nodes of unique degrees, whose interconnections are correctly
described by the expansion matrix.

Yg= 34

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose an approximation to the NBC of
nodes in a network and the related LEV of the NB matrix. Our
approximation relies on the assumption that the given network
behaves similarly to an infinite random network, without fi-
nite loops, that has the same nearest-neighbor degree-degree
correlations. Such correlated but otherwise uniformly random
networks are described by a branching matrix—or equiva-
lently, an expansion matrix—whose elements are related with
the joint degree-degree distribution. The number of rows and
columns in these matrices is given by the number of dif-
ferent degrees in the network, and hence they are generally

much smaller than the NB matrix. The method we propose
is degree-based, i.e., it is assumed that the NBCs of nodes
are well approximated by the estimate of the mean NBC of
their degree class. The estimates of the mean NBCs of degree
classes are obtained by calculating the PEV of the branching
or expansion matrix, and the estimate for the LEV of the NB
matrix is given by the (identical) LEV of these two small
matrices.

In spite of the fact that this method does not distinguish
between nodes of identical degrees, the approximation for the
mean NBC of degree classes and that for the LEV of the NB
matrix are consistently better than existing local approxima-
tions to these quantities in networks where message-passing
is a valid approximation to percolation-type phenomena. Im-
portantly, our method tends to approximate the NBC of high
degree nodes better, which play a more important role in
determining the LEV of the NB matrix. The small matrices
in our method may be thought of as a “compression” of
the NB matrix, where most of the information lost is on
low-degree classes, which are generally strongly degenerate
(contain many nodes). High-degree classes have much lower
degeneracy, so the description of their interconnections re-
mains true to the information contained in the original NB
matrix. The connections between degree-classes that are non-
degenerate (contain a single node) are described without any
loss of information. In light of this fact, it is understandable
that the localization of the NBC, on subgraphs consisting of
densely connected high-degree nodes, is also captured well in
our approximation. That is, the localization of the PEV of the
NB matrix is well traceable in the degree-based PEVs of the
corresponding expansion or branching matrices. Our estimate
of the inverse participation ratio is consistently better than that
of the local approximation, despite the fact that in our method
the NBCs of all nodes of identical degrees are considered
equal.

The quality of our results also demonstrates that in
most real-world networks, considering only nearest-neighbor
degree-degree correlations is already sufficient for an accurate
description—a description that is much better than the one
resulting from assuming that the network is uncorrelated. An
even more potent approximation may be achieved in principle
by considering also tripletwise (or even higher order) correla-
tions, as opposed to only pairwise. (A triplet is defined as a set
of three nodes occupying the ends of two adjacent edges.) To
construct the corresponding branching or expansion matrices,
however, one would need to search through all the triplets (or
higher-order structures) in the network. The number of triplets
is dominated by the second moment of the degree distribu-
tion, therefore it may be very large for networks that possess
fat-tailed degree distributions. Specifically, for scale-free net-
works the number of triplets (and of higher-order structures) is
superlinear in system size if the degree distribution exponent
is less than 3. Thus computational complexity will, in most
cases, constitute a barrier to considering tripletwise (or higher-
order) correlations in large networks.

In social networks, various characteristics of people may
be correlated with degree, such as, e.g., age, profession, and
income status. Assuming that such correlations are known,
our method provides a simple means of estimating the con-
tribution of different groups of people in dynamical processes
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such as epidemics. These findings may help design preventa-
tive measures and vaccination strategies.
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APPENDIX: DERIVATION OF THE EXPANSION MATRIX
APPROXIMATION OF NONBACKTRACKING
CENTRALITY

The basic equations from which the NBC can be obtained
are for directed links i < j:

Vi—j = )‘-171 ZHI‘(—j,Ia—lvlu—lv (Al)

k<1

where H is the nonbacktracking matrix, and A; and v are its
largest eigenvalue and principal eigenvector, respectively. Let
us define the quantity v(k) for directed links of degree class
k = (ki, ko) as
- 1
v(k) = Vijs
2LP(K) Z !

i<j€

(A2)

where gL is the number of directed links in the network,
and P(k) is the probability that a uniformly randomly cho-
sen directed link has end- and start-node degrees k; and k,
respectively. The quantity 9(k) is the mean v ; value over all
links i <— j where the degree of node i is k; and the degree
of node j is k. Summing Eq. (A1) over all directed links of
degree class k and dividing by 2LP(k), we have

E E Hi etV

i—je ck k<1

2LP( ) Z Z Z Ht<—jk<—lvk<—l

t<—]€k K k<lek

o(k) =

2LP( )

(A3)

In the last equation, we split the sum over directed links
k <[ into a sum over degree classes and a sum over links
within degree classes. Now we make the mean-field as-
sumption that all vy.; values can be approximated by the
corresponding mean value for the degree class,

(k 2LP( ) Z Z Z Hze]kelv(k)

l<—]€k kK k<lek

ZLP(k)Z o®)[ D D" Hicjue

i—jek k<lek’

(A4)

The quantity in large parentheses has a well-defined meaning:
this is the number of i} < i, <— i3 directed triplets in the

network where nodes i; and i, have degrees k; and k,, and also
the nodes i, and i3 have degrees k| and k}. Or, more succinctly,
this is the number of directed link junctions of type k<Fk.
Let us approximate this by the number of such directed link
junctions in a network with nearest-neighbor degree-degree
correlations described by a joint degree-degree distribution.
This number is

J-

e = 2LP(K)(ky — 1)P(ky 1k2)k, 1

(A5)

where &, is the Kronecker delta. Plugging Eq. (AS) into
Eq. (A4) and rearranging, we have

2LP(K)D(k) = A7 Y 2LPK)D (k') (ky — 1P (k1 k)81 i -
]z/
(A6)
Recall that D(E) is the mean v;; value of directed links of

degree class k. Then the left-hand side of Eq. (A6) is just the

sum of such values. Denoting this sum by g(lz) = glk; < k),
we can write

gk k) =217 Y glky Ky (ky — P (ki [k2)p, ;.
k| <k
(A7)
where we have switched from vectorial to componentwise

notation for degree classes of directed links. Rearranging, we
get

gl < ko) = A7 (ky — DP(kilka) Y g(ki < Ky)Si i,
ki <k}

=7 (k= DP(ki k) Y gky < K).
K

(A8)

Recall that g(k <— k') is the sum of v;; values of directed
links within the degree class k <— k’. The sum of v;; values
over all directed links incoming to nodes of degree class k is

then written as
Iy = Zg(k <~ K).
k/

Using Eq. (A9) and summing both sides of Eq. (A8) over
k>, we have

(A9)

iy = A7 Z(kz — DP(ky ko), .
ka

(A10)

Introducing the matrix Ej ;, =
have

(kp — 1)P(k1]k), we finally

e =27 B iohi,
ky

(Al1)

or in vector form,

Ah = Eh. (A12)

Equation (A12) is an eigenvector equation for the prin-
cipal eigenvector of E (by the Perron-Frobenius theorem).
The components of the vector h approximate the sum of
NBCs of nodes of the corresponding degree class, and the
LEV of E is an approximation to Aj, the LEV of the NB
matrix.

054306-8



APPROXIMATING NONBACKTRACKING CENTRALITY AND ...

PHYSICAL REVIEW E 104, 054306 (2021)

[1] B. Karrer, M. E. J. Newman, and L. Zdeborov4, Percolation on
Sparse Networks, Phys. Rev. Lett. 113, 208702 (2014).

[2] F. Radicchi, Predicting percolation thresholds in networks,
Phys. Rev. E 91, 010801(R) (2015).

[3] B. Karrer and M. E. J. Newman, Message passing approach for
general epidemic models, Phys. Rev. E 82, 016101 (2010).

[4] K. Hashimoto, Automorphic Forms and Geometry of Arithmetic
Varieties, edited by K. Hashimoto and Y. Namikawa (Elsevier,
Amsterdam, 1989), p.211.

[5] T. Martin, X. Zhang, and M. E. J. Newman, Localization and
centrality in networks, Phys. Rev. E 90, 052808 (2014).

[6] G. Timar, R. A. da Costa, S. N. Dorogovtsev, and J. F. F.
Mendes, Nonbacktracking expansion of finite graphs, Phys.
Rev. E 95, 042322 (2017).

[7]1 F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L.
Zdeborova, and P. Zhang, Spectral redemption in clustering
sparse networks, Proc. Natl. Acad. Sci. (USA) 110, 20935
(2013).

[8] C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking
spectrum of random graphs: community detection and non-
regular ramanujan graphs, in 2015 IEEE 56th Annual Sympo-
sium on Foundations of Computer Science (IEEE, Piscataway,
NJ, 2015), p. 1347.

[9] FE. Morone and H. A. Makse, Influence maximization in com-
plex networks through optimal percolation, Nature (London)
524, 65 (2015).

[10] F. Morone, B. Min, L. Bo, R. Mari, and H. A. Makse, Collective
influence algorithm to find influencers via optimal percolation
in massively large social media, Sci. Rep. 6, 1 (2016).

[11] L. Torres, K. S. Chan, H. Tong, and T. Eliassi-Rad, Nonback-
tracking Eigenvalues under Node Removal: X-Centrality and
Targeted Immunization, SIAM J. Math. Data Sci. 3, 656 (2020).

[12] F. Radicchi and C. Castellano, Leveraging percolation theory to
single out influential spreaders in networks, Phys. Rev. E 93,
062314 (2016).

[13] B. Min, Identifying an influential spreader from a single seed in
complex networks via a message-passing approach, Eur. Phys.
J.B 91,1 (2018).

[14] S. Moore and T. Rogers, Predicting the Speed of Epidemics
Spreading in Networks, Phys. Rev. Lett. 124, 068301 (2020).

[15] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J. F. F.
Mendes, Localization and Spreading of Diseases in Complex
Networks, Phys. Rev. Lett. 109, 128702 (2012).

[16] R. Pastor-Satorras and C. Castellano, Eigenvector localization
in real networks and its implications for epidemic spreading,
J. Stat. Phys. 173, 1110 (2018).

[17] T. Kawamoto, Localized eigenvectors of the non-backtracking
matrix, J. Stat. Mech.: Theor. Exp. (2016) 023404.

[18] R. Pastor-Satorras and C. Castellano, The localization of
non-backtracking centrality in networks and its physical con-
sequences, Sci. Rep. 10, 1 (2020).

[19] M. Boguii4, R. Pastor-Satorras, and A. Vespignani, Epidemic
spreading in complex networks with degree correlations, in
Statistical Mechanics of Complex Networks (Springer, Berlin,
2003), p. 127.

[20] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Percola-
tion on correlated networks, Phys. Rev. E 78, 051105 (2008).

[21] M. Boguiid and R. Pastor-Satorras, Epidemic spreading in cor-
related complex networks, Phys. Rev. E 66, 047104 (2002).

[22] S. Fortunato, M. Bogufid, A. Flammini, and F. Menczer,
Approximating PageRank from in-degree, in International
Workshop on Algorithms and Models for the Web-graph
(Springer, Berlin, 2006), p. 59.

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.104.054306 for a set of plots comparing
approximations of the non-backtracking centrality in 109 em-
pirical networks and a table with key characteristics of these
networks and numbers quantifying the accuracy of different
approximations to the nonbacktracking centrality.

[24] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[25] C. Castellano and R. Pastor-Satorras, Competing activation
mechanisms in epidemics on networks, Sci. Rep. 2, 1 (2012).

[26] R. Pastor-Satorras and C. Castellano, Distinct types of eigen-
vector localization in networks, Sci. Rep. 6, 1 (2016).

[27] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, Epi-
demic spreading in real networks: An eigenvalue viewpoint,
in Proceedings of the 22nd International Symposium on
Reliable Distributed Systems (IEEE, Piscataway, NJ, 2003),
p- 25.

054306-9


https://doi.org/10.1103/PhysRevLett.113.208702
https://doi.org/10.1103/PhysRevE.91.010801
https://doi.org/10.1103/PhysRevE.82.016101
https://doi.org/10.1103/PhysRevE.90.052808
https://doi.org/10.1103/PhysRevE.95.042322
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1038/nature14604
https://doi.org/10.1038/srep30062
https://doi.org/10.1137/20M1352132
https://doi.org/10.1103/PhysRevE.93.062314
https://doi.org/10.1140/epjb/e2017-80597-1
https://doi.org/10.1103/PhysRevLett.124.068301
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1007/s10955-018-1970-8
https://doi.org/10.1088/1742-5468/2016/02/023404
https://doi.org/10.1038/s41598-020-78582-x
https://doi.org/10.1103/PhysRevE.78.051105
https://doi.org/10.1103/PhysRevE.66.047104
http://link.aps.org/supplemental/10.1103/PhysRevE.104.054306
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1038/srep00371
https://doi.org/10.1038/srep18847

