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Generating functions for message passing on weighted networks: Directed bond percolation and
susceptible, infected, recovered epidemics
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We study the SIR (susceptible, infected, removed/recovered) model on directed graphs with heterogeneous
transmission probabilities within the message-passing approximation. We characterize the percolation transition,
predict cluster size distributions, and suggest vaccination strategies. All predictions are compared to numerical
simulations on real networks. The percolation threshold that we predict is a rigorous lower bound to the threshold
on real networks. For large, locally treelike networks, our predictions agree very well with the numerical data.
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I. INTRODUCTION

To model the spread of a disease across a population,
in principle, one needs to solve the corresponding mas-
ter equation. However, this is possible only for populations
with a very simple connectivity pattern, which is hardly
ever given in nature. Therefore, researchers usually resort
to compartment models, such as, e.g., the SIR (susceptible,
infected, removed/recovered) model and its numerous varia-
tions [1–12].

The population of humans across the globe forms a social
network in which individuals are connected locally in highly
correlated clusters, which are then connected to each other in
higher layers. This complex structure needs to be taken into
account when one analyzes an epidemic model. Combinations
of methods from the theory of random graphs and of epidemic
modeling have therefore gained in popularity over the past 20
years [2,11,12].

One aspect of infectious diseases that is of particular in-
terest is the probability of encountering an outbreak across
the entire population. In terms of statistical physics, such
outbreaks are percolation events, i.e., events in which an in-
finitely large subnetwork forms across which the disease is
“transported” (in analogy to the transport of masses or charges
across physical networks). Percolation has been a topic of
research in statistical physics and mathematics for about 50
years [13]. However, the interest was focused to a large ex-
tent on percolation on lattices or in continuous space, and,
in particular, on universal critical properties rather than on
networks. In the context of epidemic modeling, percolation
needs to be studied on structured and directed networks.

In recent years, much progress has been made by mod-
eling the effects of nontrivial properties such as degree
correlations [4,14–16], clustering [17–23], and multiplexity
[22–27] on percolation. In some cases, analytical solutions
can be obtained while more complex networks are often
treated as locally treelike in order to derive estimates and
bounds. In particular, the formalism of generating functions
[2,5,6,9,14,18,20,22,23,28–30] and the message-passing tech-

nique [8,27,31–34] are powerful tools to tackle percolation
problems on random and real networks. Further, numerical
simulations are used to explore critical phenomena on com-
plex networks [21,25,35], and beyond the SIR model, some
generalized contagion processes [36,37] as well as the spread
of multiple pathogens [21,22,34,35] have been investigated.

Related research examines the significant effect of edge-
weights on disease spreading [6,9,11,38–49] mainly via
mean-field and pairwise approximations on configuration
model networks, which lead in particular to highly efficient
immunization strategies [50–52].

Here, we present an analysis of percolation on directed
graphs with heterogeneous occupation probabilities and its
application to the late-time behavior of SIR epidemics by
means of the message-passing approach. Our work gener-
alizes the work by Karrer and co-workers for undirected
networks [10] as well as the work by Timár and co-workers for
directed networks with equal occupation probabilities [31].

II. GENERATING FUNCTIONS

As we will follow the strategy introduced by Newman and
co-workers [2,28] and use generating functions to tackle the
percolation problem on random graphs, we briefly recall some
properties of generating functions. Let a ∈ NN

0 be a random
variable with distribution p(a). (A summary of the notation
used in this article is given in the Appendix; see Table I.)
The probability generating function (PGF) F : RN → R is
defined by

F (x) :=
∑
a�0

p(a) · xa, (1)

where multi-index notation is used. This definition naturally
includes PGFs for joint distributions, e.g., the PGF F : RN ×
RM → R for the distribution of two random variables a ∈
NN

0 , b ∈ NM
0 is defined by

F (x, y) :=
∑

(a,b)�0

p(a, b) · xa · yb.
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The PGFs for the random variables a and b are given by
F (x, 1) and F (1, y), respectively. If N = M, the PGF for the
sum c = a + b is given by F (x, x).

To derive the message-passing equations, two properties
of PGFs are necessary. First, let a, b ∈ NN

0 be independent
random variables with PGFs F, G. The PGF H for the sum
c := a + b is given by

H (x) :=
∑

c

p(c) · xc

=
∑

c

∑
a,b

δ(c − a − b)p(a)p(b) · xaxb

= F (x) · G(x), (2)

where δ denotes the Kronecker delta, i.e., δ(a) = 0 for a �= 0
and δ(0) = 1.

Secondly, consider the following random experiment.
Draw a random sequence a ∈ NN

0 from the distribution p(a)
with PGF F . Then, for each i = 1, . . . , N , draw a random vari-
able b ∈ NM

0 from the distribution pi(b) with PGF Gi. Let all
random variables be independent. Now, Eq. (2) yields the PGF
H for the random variable c := (a, B), where B := ∑|a|

k=1 bk:

H (x, y) :=
∑
(a,B)

p(a, B) · xa · yB

=
∑

a

p(a) · xa
∑

B

p(B) · yB

=
∑

a

p(a) · xa
N∏

i=1

[Gi(y)]ai

= F (x ∗ G(y)), (3)

where ∗ denotes elementwise multiplication.

III. MESSAGE-PASSING THEORY

In this section, we interpret message-passing approxima-
tions as exact solutions on infinite trees, which are constructed
from the underlying network by recursively following in-
coming or outgoing edges. On these trees, the percolation
probability is the probability for the formation of an infinite
cluster. To ensure a well-defined phase transition, we must re-
strict ourselves to networks with sufficiently many long loops,
such that large clusters above the percolation threshold almost
surely form infinite clusters on these trees. For example, if the
network itself is a finite tree, the message-passing approach
will never predict a phase transition, since the formation of
infinite clusters on finite trees is impossible. A detailed dis-
cussion on this issue can be found in [32].

Let G := {V, E} be a large directed network, where V :=
{1, . . . , N} is the set of nodes and E ⊆ V × V is the set of
M directed edges. For each edge i → j ∈ E , the edge weight
equals the occupation probability, which is denoted by pi→ j .
The goal is to approximate the PGFs for the distribution of
finite clusters a ∈ {0, 1}N for each node in a large network,
where a j = 1 if node j is part of the cluster, and aj = 0
otherwise. The cluster a(i) is defined by the set of nodes that
can be reached from node i by following occupied outgoing

edges including i itself. We will also address clusters obtained
by following incoming edges afterwards.

The PGF for the cluster distribution of node i takes the
form

H0i(x) =
∑

a

pi(a) · xa.

The actual approximation of the message-passing approach
is to allow for multiple counts of the same node within the
cluster. Hence, each finite cluster a ∈ NN

0 is described by the
number of occurrences of each node within the cluster, which
in terms of spreading processes means that a node can be tra-
versed multiple times regardless of whether the node has been
visited in the past. This reduces the complexity significantly
and allows for exact solutions, since the distributions for the
partial clusters obtained by following each edge become un-
correlated and independent of past events.

To formalize the message-passing approximation, let us
consider infinite trees G(i) obtained by recursively following
all outgoing edges without returning to the previously visited
node. G(i) contains an infinite number of copies of edges
and nodes from the underlying network G. The occupation
probabilities are considered to be the same as for the cor-
responding edges in G and independent for each copy. The
PGF for the cluster configurations of node i within the tree
G(i) can be calculated exactly and yields the message-passing
approximation for the network G.

Imagine the formation of a cluster of outgoing occupied
edges starting from node i within the tree G(i). First, instead
of nodes, we count recursively all edges within the cluster by
adding up the unit vectors ei→ j ∈ {0, 1}M for each occupied
edge. For each edge i → j that is encountered, the summand
b ∈ NM

0 is drawn independently from the distribution

fi→ j (b) =
⎧⎨
⎩

pi→ j, b = ei→ j,

1 − pi→ j, b = 0,

0 otherwise

with generating function

(1 − pi→ j ) + pi→ jyi→ j,

which represents a Bernoulli experiment for the edge occupa-
tion. According to Eq. (2), the PGF for the occupied edges in
the first step is

G0i(y; p) :=
∏

j∈N+(i)

(1 − pi→ j + pi→ jyi→ j ), (4)

where N+(i) denotes the set of successors of node i. Sim-
ilarly, the PGF for the occupied outgoing edges of node j,
which do not lead back to node i, is given by

Gi→ j (y; p) :=
∏

k∈N+( j)\i

(1 − p j→k + p j→ky j→k ). (5)

For simplicity, the parameter p is dropped where possible.
Equation (3) yields the joint PGF for the occupied edges for
the first and second step,

G0i(y1 ∗ G(y2)).

By recursively applying Eq. (3) n − 1 times, one obtains the
PGF for the edges within the cluster for each of the first n
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steps,

G0i ◦ [y1 ∗ G] ◦ · · · ◦ [yn−1 ∗ G](yn).

Hence, the PGF for the sum of all edges within the cluster up
to the nth nearest neighbors of node i is given by

G0i(H(n)(y)),

H(n)(y) = y ∗ G(H(n−1)(y)),

H(1)(y) = y.

This is the analog to Eq. (49) from Ref. [28] for the number
of the nth nearest neighbors on random graphs.

Now, define Hi→ j (y) : RM → R to be the PGF for the
edges in finite partial clusters when following the edge i → j,
including i → j. These PGFs are independent for all edges,
therefore, according to Eq. (3), H(y) satisfies the following
fixed-point equation and yields the PGF H0i(y) for all arbi-
trarily large but finite clusters of edges c ∈ NM

0 ,

H0i(y) = G0i(H(y)),

H(y) = y ∗ G(H(y)).

Finally, we obtain the PGF H0i(x) : RN → R for the distri-
bution of finite clusters a ∈ NN

0 by multiplying xi for the root
and applying the concatenation yi→ j = x j in order to count
nodes instead of edges, which are trivial cases of Eqs. (2) and
(3),

H0i(x; p) = xi · G0i(H(x; p); p), (6)

Hi→ j (x; p) = x j · Gi→ j (H(x; p); p). (7)

These message-passing equations fully determine the for-
mation of finite clusters, hence they are sufficient to solve
percolation on the tree G(i). This is completely analogous to
Eqs. (27) and (26) from Ref. [28] for the cluster size distribu-
tion on random graphs.

The solutions for percolation of incoming occupied edges
on the tree F (i), which is obtained by recursively following
all incoming edges without returning to the previously visited
node, can simply be obtained by flipping all arrows and intro-
ducing new letters without repeating the procedure. With the
definitions

F0i(y; p) :=
∏

j∈N−(i)

(1 − pi← j + pi← jyi← j ), (8)

Fi← j (y; p) :=
∏

k∈N−( j)\i

(1 − p j←k + p j←ky j←k ), (9)

where N−(i) is the set of predecessors of node i, the PGFs for
the distributions of finite clusters of incoming edges are given
by

Q0i(x; p) = xi · F0i(Q(x; p); p), (10)

Qi← j (x; p) = x j · Fi← j (Q(x; p); p). (11)

For x = x · 1 and pi→ j ≡ p, Eqs. (6) and (10) are reduced
to Eq. (3) from Ref. [10] for undirected networks, and Eqs. (7)
and (11) are reduced to Eqs. (3) and (4) from Ref. [31] for

directed networks by substitution according to

H (out)
i→ j (x) := 1 − p + p · Hi→ j (x · 1),

H (in)
i← j (x) := 1 − p + p · Qi← j (x · 1).

A. Percolation probability

Above the percolation threshold, there is a chance that the
cluster will become infinite. The cluster distribution contains
the probabilities for all finite clusters, hence H0i(1) and Q0i(1)
are the probabilities that node i is in a finite cluster of outgoing
and incoming edges, respectively. Thus, according to Eqs. (6),
(7), (10), and (11), the percolation probabilities for a randomly
chosen node are given by

Pout = 1

N

N∑
i=1

Pout(i), (12)

Pout(i) = 1 − G0i(H), (13)

H = G(H), (14)

Pin = 1

N

N∑
i=1

Pin(i), (15)

Pin(i) = 1 − F0i(Q), (16)

Q = F(Q), (17)

where Hi→ j := Hi→ j (1) is the probability that the partial clus-
ter obtained by following the occupied edge i → j is finite,
and Qi← j := Qi← j (1) is the probability that the partial cluster
obtained by backtracking the occupied edge i ← j is finite.
For pi→ j ≡ p, Eqs. (12) and (15) are equivalent to Eqs. (5)
and (6) from Ref. [31] for directed networks and Eq. (6) from
Ref. [10] for undirected networks. The probabilities for a node
to be part of an infinite cluster of outgoing and incoming edges
are independent, therefore the probability that a randomly
chosen node is part of an infinite cluster of outgoing and
incoming edges simultaneously is given by

PS = 1

N

N∑
i=1

Pin(i)Pout(i). (18)

For pi→ j ≡ p, Eq. (18) is equivalent to Eq. (7) from Ref. [31].
Pout, Pin, PS approximate the probability for a randomly
chosen node to be part of the giant in-component, giant out-
component, and giant strongly connected component of the
network after removal of all vacant edges, respectively; see
Sec. IV.

Using the Chebyshev integral inequality, it has previously
been proven that the message-passing approach yields an
upper bound for the percolation probabilities for bond per-
colation on undirected networks [8,10]. In the following, we
establish an alternative argument. Consider each copy of node
i in G(i) and F (i) to be vacant with independent probabilities
qi ∈ [0, 1). The PGFs for the distribution of occupied nodes
within finite clusters of occupied edges are

H0i(q + (1 − q) ∗ x),

Q0i(q + (1 − q) ∗ x).
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Hence, the probabilities that node i is part of a vacant cluster
without any occupied nodes is obtained by inserting x = 0 and
therefore given by the PGFs for the distribution of clusters
evaluated at x = q, i.e., H0i(q) and Q0i(q). Clearly, in the limit
of large networks with many loops, the probabilities for a node
to be part of a vacant cluster obtained by the message-passing
approximation must always be smaller than or equal to the
true probabilities due to the overcount of nodes,

H true
0i (q) � H0i(q) ∀q∈[0,1)N ,

Qtrue
0i (q) � Q0i(q) ∀q∈[0,1)N .

Consider the limit N � 1 with ‖1 − q‖∞ ∈ o(1) and ‖1 −
q‖1 ∈ ω(1) and assume that the giant in-component (after
removal of all occupied edges) covers a nonvanishing fraction
of the network. Then, as N → ∞, a node within the giant
in-component is almost surely part of a cluster of outgoing
edges in which at least one node is occupied. Hence,

Ptrue
out � 1

N

N∑
i=1

[
1 − H true

0i (q)
]

� 1

N

N∑
i=1

[1 − H0i(q)]

� 1

N

N∑
i=1

[1 − H0i(1)]

+ 1

N

N∑
i=1

‖1 − q‖∞〈nout(i)〉H0i(1),

〈nout(i)〉 := 1

H0i(1)

[
d

dx
H0i(x1)

]
x=1

,

where Ptrue
out is the probability that a randomly chosen node

is part of the giant in-component and 〈nout(i)〉 ∈ O(1) is the
average finite cluster size; see Sec. III B. Thus,

Ptrue
out � Pout, (19)

Ptrue
in � Pin. (20)

Therefore, the message-passing approach yields a rigorous
upper bound for the percolation probabilities and a rigorous
lower bound for the percolation threshold for networks with
loops in the large-N limit. If the overcount of nodes becomes
negligible, the message-passing approximation must converge
to the exact result in the large-N limit, which is the case
if the probability for a finite cluster to contain closed loops
vanishes. This is true for locally treelike networks, except at
the percolation threshold, where the average finite cluster size
diverges and the largest finite-size effects are expected.

B. Cluster size distribution

The PGFs for the distribution of finite cluster sizes are

H0i(x) :=
∑
a�0

pi(a) · x|a| = H0i(x · 1), (21)

Q0i(x) = Q0i(x · 1). (22)

After averaging over all nodes and normalization, we obtain
the average size of finite clusters for a randomly chosen node,

〈nout〉 =
∑N

i=1 H ′
0i(1)∑N

i=1 H0i(1)
, (23)

H ′
0i(1) = H0i(1) + G′

0i(H) · H′, (24)

H′ = H + G′(H) · H′, (25)

〈nin〉 =
∑N

i=1 Q′
0i(1)∑N

i=1 Q0i(1)
, (26)

Q′
0i(1) = Q0i(1) + F ′

0i(Q) · Q′, (27)

Q′ = Q + F′(Q) · Q′, (28)

where H′ := H′(1) · 1 and Q′ := Q′(1) · 1. The average finite
cluster sizes for node i are given by

〈nout(i)〉 = H ′
0i(1)/H0i(1),

〈nin(i)〉 = Q′
0i(1)/Q0i(1).

These are equivalent to Eq. (8) from Ref. [10] for undirected
networks with pi→ j ≡ p. Below the percolation threshold, we
have H = Q = 1 and H0i = Q0i = 1, thus

〈nout〉 = 1

N

N∑
i=1

H ′
0i(1), (29)

H ′
0i(1) = 1 + G′

0i(1) · H′, (30)

H′ = 1 + G′(1) · H′, (31)

〈nin〉 = 1

N

N∑
i=1

Q′
0i(1), (32)

Q′
0i(1) = 1 + F ′

0i(1) · Q′, (33)

Q′ = 1 + F′(1) · Q′. (34)

Within the nonpercolating phase, the average cluster sizes ob-
tained by the message-passing approximation must be greater
than or equal to the true value, due to the overcount of nodes

H ′
0i(1)true � H ′

0i(1), (35)

Q′
0i(1)true � Q′

0i(1). (36)

For ρ(G′(1)) < 1 and ρ(F′(1)) < 1, where ρ denotes the
spectral radius, we find

H′ = [id − G′(1)]−1 · 1,

Q′ = [id − F′(1)]−1 · 1,

therefore the average finite cluster sizes possess a singularity
at ρ(G′(1)) = 1 and ρ(F′(1)) = 1, respectively. These singu-
larities mark the critical points at which the formation of giant
clusters becomes possible, which is again analogous to the
theory of random graphs; see Eqs. (31) and (32) from Ref. [28]
and Eq. (22) from Ref. [2].
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C. Percolation threshold

First, consider percolation of incoming edges. The perco-
lation threshold is the critical point at which the percolation
probability Pin becomes positive. For p ∈ [0, 1]M , the set of
all critical points is defined by

Pc = ∂{p | Pin = 0} ∩ ∂{p | Pin > 0}. (37)

Below the percolation threshold, Q = 1 is the trivial solution
of the fixed-point equation Q = F(Q). The percolation prob-
ability Pin is positive if and only if at least one component of
Q becomes smaller than 1. Thus, for continuous phase tran-
sitions, consider the first-order expansion of the fixed-point
equation for Q = 1 − ε,

ε = F′(1) · ε.

Following the same line of argumentation as for ordinary
percolation [10], the trivial solution ε = 0 becomes unstable if
the spectral radius of F′(1) exceeds 1, which marks the point
at which a nontrivial solution is obtained and the percolation
threshold is exceeded. Hence, for any p ∈ Pc,

ρ(F′(1; p)) = 1. (38)

Similarly, the critical points at which Pout becomes positive
satisfy

ρ(G′(1; p)) = 1, (39)

which is the analog of Eq. (32) from Ref. [28]. We introduce
the Hashimoto-matrix B or nonbacktracking matrix [53]

BT
i← j,k←l = Bi→ j,k→l := δ jk (1 − δil ), (40)

which is useful in applications such as community detection
[54,55] and network centrality [56]. Note that the Hashimoto
matrix is often defined by BT instead. With this we find

F′(1) = BT · diag(p), (41)

G′(1) = B · diag(p). (42)

For pi→ j ≡ p, the well-known percolation threshold pc =
ρ(B)−1 is retrieved [10,31,34].

The percolation thresholds for Pin and Pout are the same,
since

ρ := ρ(F′(1)) = ρ(G′(1)), (43)

which is proven using the Leibniz formula in Lemma 1.
Hence, either Eq. (38) or (39) can be used to derive criteria
that prohibit the formation of giant clusters on any large net-
work, as illustrated for the SIR model in Sec. V B.

Lemma 1. The characteristic polynomials for F′(1) and
G′(1) are equal.

Proof. Each permutation σ ∈ SM can be represented by
a concatenation of cyclic permutations σ = π1 ◦ · · · ◦ πn ex-
cluding identity permutations. Each πk permutes a sequence
of distinct indices Ik = (i1, . . . , im(k) ), such that πk (il ) =
il+1 if il ∈ Ik , and πk (il ) = il otherwise, where im(k)+1 :=
i1. Further, let I0 := {1, . . . , M} \ ∪n

k=1Ik . The characteristic

polynomial of G′(1) is given by

∑
σ∈SM

sgn(σ )
M∏

i=1

[Bdiag(p) − λid]i,σ (i)

=
∑
σ∈SM

(−λ)|I0|
n∏

k=1

sgn(πk )
∏
i∈Ik

[Bdiag(p)]i,πk (i)

and for F′(1)

∑
σ∈SM

sgn(σ )
M∏

i=1

[BT diag(p) − λid]σ (i),i

=
∑
σ∈SM

(−λ)|I0|
n∏

k=1

sgn(πk )
∏
i∈Ik

[BT diag(p)]πk (i),i.

However,

∏
i∈Ik

[Bdiag(p)]i,πk (i) =
{∏

i∈Ik
pi,

∏
i∈Ik

Bi,πk (i) = 1,

0 otherwise,

=
∏
i∈Ik

[BT diag(p)]πk (i),i,

which concludes the proof. �
In the following, we derive some additional, rigorous re-

sults for the percolation threshold for percolation of incoming
edges. The same results are obtained for percolation of out-
going edges by replacing F, Q, and Pin with G, H, and Pout,
respectively.

Lemma 2. Let p(λ) : [0, 1] → [0, 1]M be a continuous
parametrization of the occupation probabilities. If a contin-
uous phase transition occurs at λc ∈ [0, 1), then

ρ(λc) � 1.

Proof. Since Pin(λc) = 0 is continuous in λc, we have
limλ→λc Q(λ) = 1, where the components of Q are defined as
the probabilities to obtain a finite partial cluster when back-
tracking the corresponding edges. Q solves Q = F(Q) and is
continuous at λc, thus we may apply the first-order expansion
for Q = 1 − ε with ε � 0 and without loss of generality for
the limit from the right limλ↘λc ε = 0,

‖ε‖ = ‖F′(1) · ε‖ + o(‖ε‖).

For any induced matrix norm, we have

‖F′(1) · ε‖ � ‖F′(1)‖ · ‖ε‖,
hence for λ ↘ λc we find

‖F′(1; λc)‖ � 1.

Further, for any ε > 0 an induced matrix norm exists, such
that

ρ(λc) + ε � ‖F′(1; λc)‖ � 1,

which yields a contradiction for ρ(λc) < 1. �
For irreducible Hashimoto matrices B, the expression for

the percolation threshold is a consequence of the Perron-
Frobenius theorem. For C ∈ RM×M , let G(C) be the graph
with adjacency matrix Ai j = 0 if Ci j = 0, and Ai j = 1 other-
wise. Then, the matrix C is irreducible if and only if G(C) is
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strongly connected (see Ref. [57], p. 671). For non-negative
irreducible matrices C, the Perron vector x > 0 is defined by
Cx = ρ(C)x with ‖x‖1 = 1. The Perron-Frobenius theorem
for non-negative irreducible matrices states that x exists and
is the only non-negative eigenvector, except for multiples of x
([57], p. 673). Further, ρ(C) is a simple eigenvalue. Note that
for reducible non-negative matrices, x � 0 exists, but linear
independent non-negative eigenvectors may exist and ρ(C)
does not need to be a simple eigenvalue.

Lemma 3. Let the Hashimoto matrix B � 0 be irreducible.
Let p(λ) : [0, 1] → (0, 1]M be a continuous parametrization
of the occupation probabilities. If a continuous phase transi-
tion occurs at λc ∈ [0, 1), then

ρ(λc) = 1.

Proof. As in Lemma 2, we may apply the first-order expan-
sion for Q = 1 − ε,

ε = F′(1) · ε + o(‖ε‖).

Thus, for λ ↘ λc, ε converges to a non-negative eigenvector
of F′(1, λc) with eigenvalue 1. F′(1; λc) � 0 is irreducible,
hence ε converges to a multiple of the Perron vector with
eigenvalue ρ(λc) = 1. �

Above the percolation threshold, the fixed-point equation
possesses a nontrivial solution. For irreducible Hashimoto
matrices, this can be shown using the Brouwer fixed-point the-
orem, which states that any continuous function f : D → D
on a compact convex subset D �= ∅ of a finite-dimensional
normed vector space has a fixed point (see, e.g., Ref. [58],
p. 194).

Theorem 1. Let the Hashimoto matrix B be irreducible,
p ∈ (0, 1]M , and ρ > 1. Then, there exists a nontrivial solu-
tion Q = F(Q) ∈ [0, 1]M \ 1.

Proof. F : [0, 1]M → [0, 1]M is a continuous function on a
finite-dimensional normed vector space. Using the Brouwer
fixed-point theorem, it is sufficient to find a compact convex
subset Dδ ⊆ [0, 1]M \ 1, such that F(Dδ ) ⊆ Dδ . Let λi be the
eigenvalues and λ1 = ρ. Consider the (M − 1)-dimensional
affine subspace

Uδ := 1 − δx + U, U :=
⊕
i�2

V [λi],

where V [λi] are the generalized eigenspaces and x > 0 is the
Perron vector for F′(1). Now we cut off the edge at 1 from
the domain using the cut surface Uδ ∩ [0, 1]M to obtain the
compact convex subset Dδ ⊆ [0, 1]M \ 1. F is monotonic, thus
it is sufficient to show that there exists a δ > 0 such that F
maps the cut surface to Dδ . Let v ∈ Uδ ∩ [0, 1]M arbitrary,
where v =: 1 − δ · x + u with u ∈ U . Then,

F(v) = 1 + F′(1) · (v − 1) + o(‖v − 1‖)

= 1 + F′(1) · (u − δ · x) + o(δ)

⇔ F(v) − F′(1) · u = 1 − δ · ρ · x + o(δ).

Hence, for ρ > 1 there exists a δ > 0 such that

F(v) − F′(1) · u ∈ Dδ.

Since F′(1) · u ∈ U and F(v) ∈ [0, 1]M , we find

F(v) ∈ Dδ,

which concludes the proof. �

IV. NUMERICAL SOLUTIONS

The directed network obtained by removing all vacant
edges can be represented by the bow-tie diagram [59], which
is widely used to describe the structure of directed networks
[24,28,31,60,61]. The giant strongly connected component
(GSCC) is defined by the largest strongly connected compo-
nent. The giant in-component (GIN) is the set of nodes for
which a path to GSCC exists, and the giant out-component
(GOUT) is the set of nodes that can be reached from GSCC,
where GIN ∩ GOUT = GSCC. The relative sizes of the giant
components GSCC, GIN, and GOUT are denoted by SS , Sin,
and Sout, respectively. The rest of the network consists of
tendrils and disconnected components.

We require that the sizes of the tendrils and disconnected
components are small compared to the size of GSCC. Then,
for locally treelike networks, the percolation probabilities
from Eqs. (10), (13), and (16) converge to the relative sizes
of the giant components in the large-N limit,

Sin ∼ Pout, Sout ∼ Pin, SS ∼ PS. (44)

Further, let sout be the size of clusters of outgoing edges
averaged over all nodes that are not part of GIN, and let sin

be the size of clusters of incoming edges averaged over all
nodes that are not part of GOUT. Then,

sout ∼ 〈nout〉, sin ∼ 〈nin〉, (45)

where 〈nout〉, 〈nin〉 are the average finite cluster sizes from
Eqs. (23) and (26).

In the following, we investigate the solutions for two non-
symmetric parametrizations p+(λ), p−(λ) with p±(0) = 0,
p±(1) = 1, and linear components, except at λ = 0.5, where

p+
i→ j (0.5) := |N+( j) \ i|−1, (46)

p−
i← j (0.5) := |N−( j) \ i|−1. (47)

If N±( j) \ i = ∅, the corresponding occupation probability
at λ = 0.5 is set to 1. Figures 1 and 2 show the solutions
for two undirected random graphs, where each edge is de-
composed into two antiparallel edges, and Figs. 3–5 show
the solutions for real directed networks from the Stanford
collection (SNAP) [62]. Simulations were averaged over 1000
realizations.

The numerical simulations in Figs. 1 and 2 for (locally
treelike) undirected random graphs coincide perfectly with
the theoretical predictions for the percolation probabilities
and average finite cluster sizes, which confirms Eqs. (44) and
(45). Further, Fig. 1 shows a uniform distributed graph for
which ρ(0.5) = 1 for both parametrizations; see Appendix
A. Indeed, the percolation threshold occurs exactly at λc =
0.5, in agreement with Eqs. (38) and (39). Near the per-
colation threshold, finite-size effects occur. Here, GSCC is
the largest strongly connected component, thus the relative
sizes of the giant components below the percolation threshold
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FIG. 1. Uniform distributed graph with 104 nodes, 60 068 di-
rected edges, and degree distribution f (z) = 1/9 for z = 2, . . . , 10.
Theoretical results (lines) and simulations (symbols) for the perco-
lation probabilities (top) and the average finite cluster sizes for a
randomly chosen node (bottom) for the parametrization p+ (labeled
with +), which yields complementary results with respect to p−

(labeled with −). The vertical line shows the theoretical percolation
threshold at λc = 0.5; see Appendix A.

FIG. 2. Power-law distributed graph with degree distribution
f (z) ∝ z−2 for z = 1, . . . , 1000. Shown are the percolation probabil-
ities and finite cluster sizes for pi→ j ≡ p with 104 nodes and 43 078
directed edges (top) in comparison to the results for p+ with 105

nodes and 471 234 edges (mid, bottom), which yields complemen-
tary results with respect to p−.

FIG. 3. Percolation probabilities and finite cluster sizes for the
Gnutella peer to peer network [62] with 10 876 nodes and 39 994
edges for p−.

are proportional to 1/N and will only vanish in the large-N
limit. For random graphs, the finite size yields a chance to
encounter small loops, which can be seen in the average
cluster size below the percolation threshold in Figs. 1 and 2,
where the theoretical results are an upper bound in agreement
with Eqs. (35) and (36), which also hold for real networks;
see Fig. 3. On large networks, the finite-size effects become
negligible, however the occurrence of loops decreases the

FIG. 4. Theoretical percolation probabilities (lines) and relative
sizes of the giant components averaged over 1000 runs (symbols) for
the Epinion trust network for consumer reviews [62] with 75 879
nodes and 508 837 edges for pi→ j ≡ p (top), p+ (mid), and p−

(bottom).
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FIG. 5. Theoretical percolation probabilities (lines) and relative
sizes of the giant components averaged over 1000 runs (symbols)
for the Slashdot network for authors of technology-related news
consisting of friends and foes [62] with 77 360 nodes and 905 468
edges for pi→ j ≡ p (top), p+ (mid), and p− (bottom).

percolation probabilities in accordance with Eqs. (19) and
(20); see Figs. 4 and 5 for the Epinion and Slashdot networks.
In contrast to Epinion, the Slashdot network shows large devi-
ations, which is explained by a higher average degree resulting
in a larger GSCC and significant node overcount due to closed
loops.

Interestingly, the parametrizations p± significantly delay
the formation of giant clusters in comparison to the standard
case pi→ j ≡ p. For p+, the occupation probabilities are an-
ticorrelated with the number of outgoing edges of the end
node, which creates a bottleneck for Pin. Similarly, for p− the
occupation probabilities are anticorrelated with the number
of incoming edges of the starting node, which creates a bot-
tleneck for Pout. At the percolation threshold the bottleneck
is overloaded, which may induce an abrupt increase of the
respective percolation probabilities; see Figs. 2 and 5.

V. SIR EPIDEMIC MODEL

Within the scope of the SIR model, each node represents
an individual that is either susceptible (S), infected (I), or
recovered (R). Each edge i → j represents a contact through
which a transmission might occur. The transmission probabil-
ity pi→ j (τi ) is the probability that an infected node i transmits
the disease to node j if node j is not infected by another neigh-
bor, where τi is the time span for which node i is infectious. At
time τi after infection, node i will recover and gain immunity.
The recovery times τi are drawn independently from arbitrary
distributions ri(τi ). For fixed recovery times, the transmission
of the disease along directed edges is assumed to be indepen-
dent.

A. Late-time behavior

First, consider fixed recovery times τ. Then, the contagions
are independent and the state of the network at the end of an
epidemic can be interpreted as a percolation problem, where
the occupation probabilities equal the transmission proba-
bilities p(τ). Clusters of outgoing edges represent clusters
of infected individuals for a singly infected node. Thus, the
major outbreak probability for node i equals the probability
Pout(i) from Eq. (13) that node i is part of a giant cluster
of outgoing edges, and the major outbreak probability for a
randomly chosen node is given by Eq. (12) for the percolation
probability Pout.

Similarly, a node i will contract the disease if an initially
infected node is part of the cluster of incoming edges of node
i. Hence, the probability that node i will be infected during the
epidemic, if (1 − q) ∈ [0, 1)N are the probabilities for each
node to be initially infected, is given by the probability 1 −
Q0i(q) that node i is not part of a vacant cluster of incoming
edges, where Q0i is given by Eqs. (10) and (11). Therefore,
the total fraction of infected individuals is

1

N

N∑
i=1

[1 − Q0i(q)].

For a small fraction of initially infected individuals
(‖1 − q‖∞ � 1), the probability that node i will be infected
equals the probability Pin(i) from Eq. (16) that node i will
be part of a giant cluster of incoming edges. Thus, the total
fraction of infected individuals for a small fraction of ini-
tially infected nodes is given by Eq. (15) for the percolation
probability Pin. Below the percolation threshold, the average
outbreak size for a randomly chosen node is given by 〈nout〉
from Eq. (29).

Now, consider the general case where the recovery times
τ are drawn from the distribution f (τ) = ∏

i ri(τi ). Then, the
conditional PGFs from Eqs. (4), (5), (8), and (9) depend on
the random variable τ and must be replaced by their average,

F 0i(x) := F0i(x; p),

F i→ j (x) := Fi→ j (x; p),

G0i(x) :=
∫ ∞

0
ri(τi ) · G0i(x; p(τ )) dτi,

Gi→ j (x) :=
∫ ∞

0
r j (τ j ) · Gi→ j (x; p(τ )) dτ j .

Note that G0i(x; p(τ )) and Gi→ j (x; p(τ )) only depend on τi

and τ j , respectively. With these definitions, the interpretation
in this section remains valid, and one obtains the exact results
on large locally treelike networks. This can be shown either by
repeating the derivation in Sec. III using the new PGFs, or by
averaging over the recovery times to obtain the exact solutions
on the infinite trees G(i) and F (i), where the recovery times
are drawn independently for each node from the infinite trees,

Q0i(x) = Q0i(x; p), (48)

H0i(x) = xi · G0i(H(x)), (49)

Hi→ j (x) = x j · Gi→ j (H(x)). (50)

054305-8



GENERATING FUNCTIONS FOR MESSAGE PASSING ON … PHYSICAL REVIEW E 104, 054305 (2021)

Thus, nondegenerate recovery times τ result in a lack of
symmetry due to statistically dependent transmission proba-
bilities (which was previously shown for the SIR model on
random graphs [5]). The major outbreak probability Pout for a
randomly chosen node and the fraction of infected individuals
Pin for a small fraction of initially infected nodes are given by

Pout = 1

N

N∑
i=1

[1 − H0i(1)], (51)

Pin = 1

N

N∑
i=1

[1 − Q0i(1; p)]. (52)

Similar to Eqs. (38) and (39), the epidemic threshold at
which the fraction of infected individuals as well as the ma-
jor outbreak probability become positive satisfies ρ(F

′
(1)) =

ρ(G
′
(1)) = 1 with

F
′
(1) = BT · diag(p),

G
′
(1) = B · diag(p).

Since G
′
0i(1) = G′

0i(1; p) and G
′
(1) = G′(1; p), the average

outbreak size for a randomly chosen node below the perco-
lation threshold is given by

〈nout〉 = 1

N

N∑
i=1

H ′
0i(1; p);

see Eqs. (29)–(31).
On large networks with loops, the solutions we have given

remain a lower bound for the epidemic threshold as well as an
upper bound for the average outbreak size below the epidemic
threshold, the major outbreak probability, and the fraction
of infected individuals. Similar to Refs. [5,6], by recursively
applying Jensen’s inequality to Eqs. (49) and (50), we find

H0i(x) � H0i(x; p),

where we assume the convergence for the initial value H(x) to
the fixed-point H(x; p). Hence, using the PGFs from Eqs. (4),
(5), (8), and (9) for bond percolation, the occupation proba-
bilities can be chosen to be p = p, which yields the correct
results for the fraction of infected individuals, the average
outbreak sizes below the epidemic threshold as well as the
epidemic threshold, but an upper bound for the major outbreak
probability on large locally treelike networks, in agreement
with the results from Refs. [5,6].

B. Suppression of large outbreaks

Let the occupation probabilities be defined by p := p as
described in the previous section. For any induced matrix
norm, one obtains two criteria, which prohibit large outbreaks
and guarantee vanishing percolation probabilities,

‖G′(1)‖ < 1,

‖F′(1)‖ < 1.

Both criteria yield ρ < 1, and according to Eqs. (38), (39), and
(43) this implies Pin = Pout = 0. For the row-sum and column-

sum norm, we find

∀i← j pi← j <
1

|N−( j) \ i| ⇒ ‖G′(1)‖1 < 1,

∀i→ j pi→ j <
1

|N+( j) \ i| ⇒ ‖F′(1)‖1 < 1,

∀i→ j

∑
k∈N+( j)\i

p j→k < 1 ⇒ ‖G′(1)‖∞ < 1,

∀i← j

∑
k∈N−( j)\i

p j←k < 1 ⇒ ‖F′(1)‖∞ < 1.

For convenience, let each edge possess an antiparallel edge,
such that N (i) = N±(i). If one of the following statements
holds for each node j:

max
i∈N ( j)

pi← j <
1

|N ( j)| − 1
,

max
i∈N ( j)

pi→ j <
1

|N ( j)| − 1
,

max
i∈N ( j)

∑
k∈N ( j)\i

p j→k < 1,

max
i∈N ( j)

∑
k∈N ( j)\i

p j←k < 1,

then Pin = Pout = 0. Hence, major outbreaks due to the in-
fection of a single node become impossible. Further, if a
vanishing fraction of the population is initially infected,
the total fraction of infected individuals at the end of the
spreading tends to zero as N approaches infinity. Since the
message-passing approximation yields an upper bound for
the percolation probabilities, these criteria hold for any large
network regardless of the existence of many small loops. For
|N ( j)| � 2, the first two criteria are sharp on large locally
treelike networks, except for increments of the transmission
probabilities, which leave ρ invariant; see Appendix.

VI. CONCLUSION

In summary, we derived the percolation transition and
generalized message-passing equations for the cluster size
distribution on weighted, directed networks by extending the
generating function formalism in analogy to the theory of ran-
dom graphs. These equations determine upper bounds for the
percolation probabilities (and hence a lower bound for the per-
colation threshold), which become exact for locally treelike
networks. Numerical simulations on large random graphs with
asymmetric occupation probabilities accurately confirm the
theoretical predictions for the percolation probability, percola-
tion transition, and average cluster size. We demonstrated that
the message-passing approximation on real directed networks
is still in very good agreement with numerical simulations
if the network is large and sparse. On scale-free and social
networks, we observed an eminent increase of the percolation
threshold if the occupation probabilities are anticorrelated
with the in-degree of the start node and the out-degree of
the end node, which induces a bottleneck for the size of the
giant in- and out-component, respectively. Furthermore, we
discussed the SIR model on weighted, directed networks, and
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we gave a lower bound for the epidemic threshold as well
as upper bounds for the average outbreak size, the major
outbreak probability, and the fraction of infected individuals.
In addition, we have proposed strategies to suppress major
outbreaks (“vaccination strategies”). The derivation naturally
includes modified message-passing equations that remain ex-
act on large locally treelike networks by taking into account
correlations between transmission probabilities due to nonde-
generate recovery times.
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APPENDIX

We prove that

∀i← j pi← j = |N−( j) \ i|−1 ⇒ ρ = 1,

∀i→ j pi→ j = |N+( j) \ i|−1 ⇒ ρ = 1.

We consider only the first statement, since the second is de-
rived in the same way.

Proof. It is easy to show that

∀i← j pi← j < |N−( j) \ i|−1 ⇒ ρ � ‖G′(1)‖1 < 1.

Since the spectral radius is continuous, it is left to prove that

∀i← j pi← j > |N−( j) \ i|−1 ⇒ ρ � 1.

Taking the first-order expansion, we have

G(1 − δek→l ) = 1 − δ · pk→l

∑
i→ j

Bi→ j,k→l · ei→ j + o(δ),

∥∥∥∥
∑
i→ j

Bi→ j,k→l · ei→ j

∥∥∥∥
1

= |N−(k) \ l|.

TABLE I. Notation used in this manuscript.

∗ Hadamard product
◦ concatenation
∼ asymptotic (N → ∞)
f ∈ o(g), O(g), ω(g) Bachmann-Landau notation
0, 1, a, b, c multi-indices
1 := (1, . . . , 1)T �= id
xa := ∏

j x
a j
j

|a| := ∑
j a j

N Number of nodes
M Number of directed edges
p occupation probabilities
〈 f 〉 := ∑

c p(c) f (c) c: cluster
f := ∑

τ p(τ) f (τ ) τ: recovery times
N±(i) successors/predecessors
Bi→ j,k→l := δ jk (1 − δil ) Hashimoto matrix
fi(x) := ∑

a pi(a) · xa probability generating function
fi(x) := fi(x · 1)
f ′
i (x) := ∂x fi(x) �= f ′

i (x1) scalar vs vector
‖x‖p, ‖f ′(x)‖p p-norm, induced matrix norm
ρ(M ) spectral radius of a matrix
ρ := ρ(F′(1)) = ρ(G′(1))
ρ(λ) := ρ(F′(1; p(λ)))

Thus,

∀i← j pi← j > |N−( j) \ i|−1 ⇒ ∃δ0>0∀0<δ<δ0 G(Cδ ) ⊆ Cδ,

Cδ := {y ∈ [0, 1]M | ‖1 − y‖1 � δ}.
Now, assume ρ < 1. Then, using the Perron vector x � 0 for
G′(1), we find a contradiction to the previous statement,

G(1 − δx) = 1 − δρx + o(δ)

⇒ ∃δ0>0∀0<δ<δ0‖1 − G(1 − δx)‖1 < δ

⇒ ∃δ0>0∀0<δ<δ0 (1 − δx) ∈ Cδ ∧ G(1 − δx) /∈ Cδ.

�
Therefore, if N±( j) \ i �= ∅ for all edges i → j, we have

ρ(0.5) = 1 for the parametrizations p± from Eqs. (46) and
(47). Assuming that the spectral radius is strictly monotonic
near λ = 0.5, Eqs. (38) and (39) predict a phase transition at
λc = 0.5; see Fig. 1.

Table I contains a summary of the notation used in this
article.

[1] N. T. Bailey et al., The Mathematical Theory of Infectious
Diseases and Its Applications (Charles Griffin & Co., High
Wycombe, UK, 1975).

[2] M. E. J. Newman, Spread of epidemic disease on networks,
Phys. Rev. E 66, 016128 (2002).

[3] M. E. J. Newman, The structure and function of complex net-
works, SIAM Rev. 45, 167 (2003).

[4] A. Vázquez and Y. Moreno, Resilience to damage of
graphs with degree correlations, Phys. Rev. E 67, 015101(R)
(2003).

[5] E. Kenah and J. M. Robins, Second look at the spread of
epidemics on networks, Phys. Rev. E 76, 036113 (2007).

[6] J. C. Miller, Epidemic size and probability in populations with
heterogeneous infectivity and susceptibility, Phys. Rev. E 76,
010101(R) (2007).

[7] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[8] B. Karrer and M. E. J. Newman, Message passing approach for
general epidemic models, Phys. Rev. E 82, 016101 (2010).

054305-10

https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevE.67.015101
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.76.010101
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/PhysRevE.82.016101


GENERATING FUNCTIONS FOR MESSAGE PASSING ON … PHYSICAL REVIEW E 104, 054305 (2021)

[9] J. C. Miller, A. C. Slim, and E. M. Volz, Edge-based com-
partmental modelling for infectious disease spread, J. R. Soc.,
Interface 9, 890 (2012).

[10] B. Karrer, M. E. J. Newman, and L. Zdeborová, Percolation on
Sparse Networks, Phys. Rev. Lett. 113, 208702 (2014).

[11] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Epidemic processes in complex networks, Rev.
Mod. Phys. 87, 925 (2015).

[12] M. Newman, Networks (Oxford University Press, Oxford,
2018).

[13] B. Bollobás, B. Bollobás, O. Riordan, and O. Riordan, Percola-
tion (Cambridge University Press, Cambridge, 2006).

[14] M. E. J. Newman, Assortative mixing in networks, Phys. Rev.
Lett. 89, 208701 (2002).

[15] M. Boguñá and M. A. Serrano, Generalized percolation
in random directed networks, Phys. Rev. E 72, 016106
(2005).

[16] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Per-
colation on correlated networks, Phys. Rev. E 78, 051105
(2008).

[17] J. C. Miller, Percolation and epidemics in random clustered
networks, Phys. Rev. E 80, 020901(R) (2009).

[18] M. E. J. Newman, Random graphs with clustering, Phys. Rev.
Lett. 103, 058701 (2009).

[19] J. P. Gleeson, S. Melnik, and A. Hackett, How clustering affects
the bond percolation threshold in complex networks, Phys. Rev.
E 81, 066114 (2010).

[20] B. Karrer and M. E. J. Newman, Random graphs containing
arbitrary distributions of subgraphs, Phys. Rev. E 82, 066118
(2010).

[21] P.-B. Cui, F. Colaiori, and C. Castellano, Effect of network
clustering on mutually cooperative coinfections, Phys. Rev. E
99, 022301 (2019).

[22] P. Mann, V. A. Smith, J. B. O. Mitchell, and S. Dobson, Two-
pathogen model with competition on clustered networks, Phys.
Rev. E 103, 062308 (2021).

[23] P. Mann, V. A. Smith, J. B. O. Mitchell, and S. Dobson, Random
graphs with arbitrary clustering and their applications, Phys.
Rev. E 103, 012309 (2021).

[24] N. Azimi-Tafreshi, S. N. Dorogovtsev, and J. F. F. Mendes,
Giant components in directed multiplex networks, Phys. Rev.
E 90, 052809 (2014).

[25] M. De Domenico, C. Granell, M. A. Porter, and A. Arenas,
The physics of spreading processes in multilayer networks, Nat.
Phys. 12, 901 (2016).

[26] A. Hackett, D. Cellai, S. Gómez, A. Arenas, and J. P. Gleeson,
Bond Percolation on Multiplex Networks, Phys. Rev. X 6,
021002 (2016).

[27] D. Cellai, S. N. Dorogovtsev, and G. Bianconi, Message passing
theory for percolation models on multiplex networks with link
overlap, Phys. Rev. E 94, 032301 (2016).

[28] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random
graphs with arbitrary degree distributions and their applications,
Phys. Rev. E 64, 026118 (2001).

[29] L. A. Meyers, M. Newman, and B. Pourbohloul, Predicting
epidemics on directed contact networks, J. Theor. Biol. 240, 400
(2006).

[30] C. Widder and T. Schilling, High-density percolation on
the modified Bethe lattice, Phys. Rev. E 99, 052109
(2019).

[31] G. Timár, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes,
Mapping the structure of directed networks: Beyond the bow-tie
diagram, Phys. Rev. Lett. 118, 078301 (2017).

[32] A. Allard and L. Hébert-Dufresne, On the accuracy of
message-passing approaches to percolation in complex net-
works, arXiv:1906.10377 [physics.soc-ph].

[33] G. T. Cantwell and M. E. J. Newman, Message passing on
networks with loops, Proc. Natl. Acad. Sci. (USA) 116, 23398
(2019).

[34] B. Min and C. Castellano, Message-passing theory for cooper-
ative epidemics, Chaos 30, 023131 (2020).

[35] W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger,
Avalanche outbreaks emerging in cooperative contagions, Nat.
Phys. 11, 936 (2015).

[36] H.-K. Janssen, M. Müller, and O. Stenull, Generalized epidemic
process and tricritical dynamic percolation, Phys. Rev. E 70,
026114 (2004).

[37] P. S. Dodds and D. J. Watts, Universal behavior in a generalized
model of contagion, Phys. Rev. Lett. 92, 218701 (2004).

[38] P. Schumm, C. Scoglio, D. Gruenbacher, and T. Easton, Epi-
demic spreading on weighted contact networks, in 2007 2nd
Bio-Inspired Models of Network, Information and Computing
Systems (IEEE, 2007), pp. 201–208.

[39] R. Yang, T. Zhou, Y.-B. Xie, Y.-C. Lai, and B.-H. Wang, Op-
timal contact process on complex networks, Phys. Rev. E 78,
066109 (2008).

[40] X. Chu, Z. Zhang, J. Guan, and S. Zhou, Epidemic spread-
ing with nonlinear infectivity in weighted scale-free networks,
Physica A 390, 471 (2011).

[41] T. Britton, M. Deijfen, and F. Liljeros, A weighted configuration
model and inhomogeneous epidemics, J. Stat. Phys. 145, 1368
(2011).

[42] Z. Yang and T. Zhou, Epidemic spreading in weighted net-
works: An edge-based mean-field solution, Phys. Rev. E 85,
056106 (2012).

[43] P. Rattana, K. B. Blyuss, K. T. D. Eames, and I. Z. Kiss, A
class of pairwise models for epidemic dynamics on weighted
networks, Bull. Math. Biol. 75, 466 (2013).

[44] C. Kamp, M. Moslonka-Lefebvre, and S. Alizon, Epidemic
spread on weighted networks, PLoS Comput. Biol. 9, e1003352
(2013).

[45] Y. Sun, C. Liu, C.-X. Zhang, and Z.-K. Zhang, Epidemic
spreading on weighted complex networks, Phys. Lett. A 378,
635 (2014).

[46] Q. Wu and F. Zhang, Threshold conditions for sis epi-
demic models on edge-weighted networks, Physica A 453, 77
(2016).

[47] M. Sun, H. Zhang, H. Kang, G. Zhu, and X. Fu, Epidemic
spreading on adaptively weighted scale-free networks, J. Math.
Biol. 74, 1263 (2017).

[48] K. Spricer and T. Britton, An sir epidemic on a weighted net-
work, Netw. Sci. 7, 556 (2019).

[49] G. J. Baxter and G. Timár, Degree dependent transmission
probabilities in epidemic processes, J. Stat. Mech. (2021)
103501.

[50] C. Peng, X. Jin, and M. Shi, Epidemic threshold and im-
munization on generalized networks, Physica A 389, 549
(2010).

[51] M. Deijfen, Epidemics and vaccination on weighted graphs,
Math. Biosci. 232, 57 (2011).

054305-11

https://doi.org/10.1098/rsif.2011.0403
https://doi.org/10.1103/PhysRevLett.113.208702
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.78.051105
https://doi.org/10.1103/PhysRevE.80.020901
https://doi.org/10.1103/PhysRevLett.103.058701
https://doi.org/10.1103/PhysRevE.81.066114
https://doi.org/10.1103/PhysRevE.82.066118
https://doi.org/10.1103/PhysRevE.99.022301
https://doi.org/10.1103/PhysRevE.103.062308
https://doi.org/10.1103/PhysRevE.103.012309
https://doi.org/10.1103/PhysRevE.90.052809
https://doi.org/10.1038/nphys3865
https://doi.org/10.1103/PhysRevX.6.021002
https://doi.org/10.1103/PhysRevE.94.032301
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1103/PhysRevE.99.052109
https://doi.org/10.1103/PhysRevLett.118.078301
http://arxiv.org/abs/arXiv:1906.10377
https://doi.org/10.1073/pnas.1914893116
https://doi.org/10.1063/1.5140813
https://doi.org/10.1038/nphys3457
https://doi.org/10.1103/PhysRevE.70.026114
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevE.78.066109
https://doi.org/10.1016/j.physa.2010.09.038
https://doi.org/10.1007/s10955-011-0343-3
https://doi.org/10.1103/PhysRevE.85.056106
https://doi.org/10.1007/s11538-013-9816-7
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1016/j.physleta.2014.01.004
https://doi.org/10.1016/j.physa.2016.02.036
https://doi.org/10.1007/s00285-016-1057-6
https://doi.org/10.1017/nws.2019.54
https://doi.org/10.1088/1742-5468/ac2a9b
https://doi.org/10.1016/j.physa.2009.09.047
https://doi.org/10.1016/j.mbs.2011.04.003


CHRISTOPH WIDDER AND TANJA SCHILLING PHYSICAL REVIEW E 104, 054305 (2021)

[52] W. Wang, M. Tang, H.-F. Zhang, H. Gao, Y. Do, and Z.-H. Liu,
Epidemic spreading on complex networks with general degree
and weight distributions, Phys. Rev. E 90, 042803 (2014).

[53] K. Hashimoto, Zeta functions of finite graphs and representa-
tions of p-adic groups, in Automorphic Forms and Geometry
of Arithmetic Varieties, Advanced Studies in Pure Mathematics
Vol. 15, edited by K. Hashimoto and Y. Namikawa (Academic
Press, Orlando, 1994), pp. 211–280.

[54] M. E. J. Newman, Spectral community detection in sparse net-
works, arXiv:1308.6494 [physics.soc-ph].

[55] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L.
Zdeborová, and P. Zhang, Spectral redemption in clustering
sparse networks, Proc. Natl. Acad. Sci. (USA) 110, 20935
(2013).

[56] T. Martin, X. Zhang, and M. E. J. Newman, Localization and
centrality in networks, Phys. Rev. E 90, 052808 (2014).

[57] C. D. Meyer, Matrix Analysis and Applied Linear Algebra
(Society for Industrial and Applied Mathematics, Philadelphia,
2000).

[58] D. Werner, Funktionalanalysis, 8th ed. (Springer Spektrum,
Berlin, 2018).

[59] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web,
Comp. Netw. 33, 309 (2000).

[60] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Giant
strongly connected component of directed networks, Phys. Rev.
E 64, 025101(R) (2001).

[61] N. Schwartz, R. Cohen, D. ben-Avraham, A.-L. Barabási, and S.
Havlin, Percolation in directed scale-free networks, Phys. Rev.
E 66, 015104(R) (2002).

[62] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large net-
work dataset collection, http://snap.stanford.edu/data (2014).

054305-12

https://doi.org/10.1103/PhysRevE.90.042803
http://arxiv.org/abs/arXiv:1308.6494
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1103/PhysRevE.90.052808
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1103/PhysRevE.64.025101
https://doi.org/10.1103/PhysRevE.66.015104
http://snap.stanford.edu/data

