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Attractors in Boolean network models representing complex systems such as ecological communities cor-
respond to long-term outcomes (e.g., stable communities) in such systems. As a result, identifying efficient
methods to find and characterize these attractors allows for a better understanding of the diversity of possible out-
comes. Here we analyze networks that model mutualistic communities of plant and pollinator species governed
by Boolean threshold functions. We propose a novel attractor identification method based on generalized positive
feedback loops and their functional relationships in such networks. We show that these relationships determine
the mechanisms by which groups of stable positive feedback loops collectively trap the system in specific regions
of the state space and lead to attractors. Put into the ecological context, we show how survival units—small
groups of species in which species can maintain a specific survival state—and their relationships determine the
final community outcomes in plant-pollinator networks. We find a remarkable diversity of community outcomes:
up to an average of 43 attractors possible for networks with 100 species. This diversity is due to the multiplicity
of survival units (up to 34) and stable subcommunities (up to 14). The timing of species influx or outflux does
not affect the number of attractors, but it may influence their basins of attraction.

DOI: 10.1103/PhysRevE.104.054304

I. INTRODUCTION

The interactions between the components of complex
systems give rise to emergent, collective behaviors; elucidat-
ing this relationship has been of great interest to physicists
[1–4]. Representation as a network and network-based dy-
namic modeling are useful tools to understand these emergent
properties in such systems [2,3,5]. Ecological systems are
composed of many interlinked species that interact directly
or through their shared environment. Stable community out-
comes are key emergent ecosystem properties. The resilience
of such communities, i.e., their propensity to return to their
previous state after a stress or perturbation, is of key impor-
tance to species survival and has been studied widely in the
context of network science (e.g., Refs. [6–9]).

There are various types of interactions among species
in ecological systems: competition for common resources,
predator-prey interactions, and mutualistic interactions (pol-
lination and seed dispersal). Network science methods have
been successfully implemented to characterize the systems
involving such interactions. Studies range from the statistical
analysis of food webs [10–13], to network models of com-
munities in which species have mutualistic and competing
interactions [14], and the use of multilayer networks to incor-
porate several types of interactions simultaneously [15,16].
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Here we focus on plant-pollinator mutualistic interactions
that sustain plant communities. Due to a global loss of pollina-
tor species, the composition of plant-pollinator communities
is being threatened continuously across the world [17–20].
Since the majority of food crops need pollination to survive
[21], the decline in pollination may cause a loss of biodiversity
in crop species [22]. The study of plant-pollinator interaction
networks and possible stable community outcomes also con-
tributes to the general goal of maintaining species richness and
conservation of biodiversity in the ecosystem [23–28].

A plant-pollinator community can be described by a bipar-
tite network in which plants and pollinators are represented
by two different types of nodes and their interactions are
represented by edges [29]. The structure of these networks
has been analyzed using metrics such as connectance (the
fraction of all possible links that are realized in a network),
degree distribution (the probability distribution of the number
of interactions per species), nestedness (which shows how
much the interactions among more specialized species are a
subset of the interactions among generalist species), central-
ization (the extent to which a network has central species),
and modularity (the extent to which the interactions among
species can be organized into modules) [30–35].

The assembly of a new plant-pollinator community was
previously modeled by Campbell et al. [26] using two key
assumptions: First, there is an influx of species from a regional
species pool, simulated as recurring invasion attempts; sec-
ond, species persist due to their interactions with each other.
As a result, the regional source pool determines a network
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of mutualistic interactions that does not necessarily repre-
sent a stable community, but a subset of the species may be
able to form and sustain a stable community outcome. These
possible stable community outcomes represent the attractors
(long-term behaviors) of the model. The properties of such
possible stable communities in this model have been stud-
ied extensively. For instance, the effect of global and local
species loss [24,36], invasion of new species [25], and tran-
sient species [27] on final community composition have been
characterized. The results of this model have been supported
by experimental evidence, for instance the potential beneficial
effect of the introduction of a generalist plant into an existing
plant-pollinator community has been experimentally verified
in Russo et al. [37].

Here we aim to complement these studies by asking a
question that was not a focus of previous analyses: How
many alternative stable communities can form from the same
regional species pool? Put in technical terms, we aim to deter-
mine and understand the repertoire of attractors of mutualistic
networks. Previous studies have emphasized the necessity of
positive feedback loops for the formation of alternative sta-
ble communities [38–40]. Here we focus on the connection
between the the stable positive feedback loops and the emer-
gent dynamics and stable community outcomes. We show that
these stable positive feedback loops determine survival units
of species, whose compositions shape the repertoire of final
community outcomes.

In this work we first propose a method to simplify the
plant-pollinator interaction networks obtained from the dy-
namical model of Campbell et al. [26], and we show that
the loss of fidelity in this simplification is minimal. Then we
characterize the attractors of these networks, and examine the
relationship between the number of attractors and the number
of independent self-sustaining feedback loops in the networks.
Last, we show that the relationships between the stable posi-
tive feedback loops of these networks determine the number of
possible attractors. Understanding these relationships allows
for developing control and management strategies for mutual-
istic networks.

II. BACKGROUND AND METHODS

A. Properties of the Campbell et al. model

In the model of Campbell et al. [26], plant and pollinator
species are represented by two different types of nodes. An
interaction between a plant species and a pollinator species
means that the pollinators of this species habitually visit the
plants. As this interaction affects the survival of both species
involved, it is represented as two directed edges of opposite di-
rection. The expectation is that the interaction is mutually ben-
eficial: the plant provides nectar for the pollinator, and the pol-
linator helps the plant reproduce. This is not always the case as
there can be a mismatch between the length of the pollinator’s
proboscis (lpo) and the plant’s nectar depth (lpl):

(1) If lpl > lpo, then the plant is pollinated, but the pol-
linator cannot take sustenance from it. The time and effort
spent on visiting the plant is wasted. This type of interaction is
represented as a positive edge toward the plant and a negative
edge toward the pollinator.

(2) If lpl < lpo, then the pollinator feeds from the plant
but the plant is not pollinated. This type of interaction is
represented as a negative edge toward the plant and a positive
edge toward the pollinator.

Due to the scarcity of information on the structure and
dynamics of real plant-pollinator systems, Campbell et al. use
ensembles of prototypical models informed by distributions
published in the literature, aiming to uncover general prop-
erties of stable communities. There are 36 ensembles (from
networks of size 10 with 5 plants and 5 pollinators to size 100
with 50 plants and 50 pollinators). Each ensemble consists of
1000 networks that have the same source pool size and com-
position, while the degree and characteristic length of each
node is different. As commonly observed in real ecological
systems, the probability of each plant (pollinator) interacting
with n pollinators (plants) follows an exponentially cutoff
power law with properties that are taken from the literature
[41]. The plants’ nectar depths and pollinators’ proboscis
lengths are taken from skew normal distributions reported in
Stang et al. [42]. As a consequence of the mismatch informed
by these distributions, only about 7.7% of the interactions are
mutually beneficial, and the rest are beneficial in one direction
and detrimental in the other direction.

In this model it is assumed that each species i is either
present with the state σi(t ) = 1, meaning that its population
abundance is above a threshold value, or absent with the state
σi(t ) = 0, meaning that its population abundance is below a
threshold value at time t . We will also use the more generic
terms “active” for σi(t ) = 1 and “inactive” for σi(t ) = 0. The
state of the whole network at a given time t is denoted by
the vector [σ1(t ), σ2(t ), . . . , σN (t )], which corresponds to a
unique community composition. The model uses synchronous
update, meaning that the state of every node is recalculated at
multiples of a time step. The state of each node at time t + 1 is
determined by the state of its regulators at time t via an update
function f . Specifically,

σi(t + 1) = fi(σ j (t )) = H
[ ∑

j

W ( j, i)σ j (t )
]
, (1)

where σi(t ) is the state of node i at time t , {σ j} are the states
of the regulators of node i at time t , and W ( j, i) is the weight
of the interaction from node j to node i. The update function
expresses that for each species to be able to survive at time
t + 1, the sum of the weights of its active (present) regulators
at time t should be larger than zero. We denote this with a step
function H (x), which is equal to 1 if x > 0 and zero otherwise.
In the work of Campbell et al., a weight of −1 is assigned to
negative interactions and the weight of positive interactions
is set to 4 (see Ref. [26] for more details). This asymme-
try reflects that negative interactions are relatively minor in
severity. Pollinators that spend time unsuccessfully attempting
to feed do not lose their opportunity to feed on other plants,
and plants that provide nectar without achieving pollination
can be pollinated by other pollinators in a community. The
threshold function in Eq. (1) resembles the Hamiltonian of
the 2D Ising model in the absence of a magnetic field H (σ ) =∑

j Ji jσiσ j , in which Ji j denotes the interaction strength be-
tween a pair of spins (i, j), and σk are discrete variables
that take binary values. One important distinction of plant-
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FIG. 1. Illustration of the expanded network that incorporates the
update functions, and identification of stable motifs. Panel (a) shows
a bipartite network, in which a regular edge represents a beneficial
(positive) effect on the target node, while the an edge with a diamond
arrowhead represents a harmful (negative) effect. Panel (b) shows the
update function of node B in a truth table format. The update function
expresses that the simultaneous activity of node C and inactivity of
node D results in the activation of node B. Nodes A, C, and D have
only one positive regulator and their future state is solely determined
by the current state of their positive regulator. Panels (c) and (d) show
the same update functions using Boolean operators and threshold
functions, respectively. Panel (e) shows the expanded network of
the network shown in panel (a). For each node in panel (a), there
are two virtual nodes in panel (e) that represent the two possible
states of that node: the active state is labeled with the node name,
and the inactive state is labeled with the node name prefixed by ∼.
The composite node that corresponds to the “AND” operator in the
functions of node B is shown with a black circle. There are two stable
motifs in this network, highlighted with gray (A=0 and C=0) and
gray gradient (A=1 and C=1). Locking-in of the gray stable motif
yields the system’s convergence to a point attractor in which all nodes
are inactive. Locking-in of the gray gradient stable motif yields an
attractor in which A and C are active, B and D oscillate.

pollinator networks is that certain Ji js are positive (+4 for
beneficial interactions) and others negative (−1 for harmful
interactions).

B. Attractors, stable motifs, and stochastic updating

In general, Boolean update functions can be specified by
truth tables [Fig. 1(b)], Boolean operators [Fig. 1(c)], or
threshold functions [Fig. 1(d)]. Every temporal trajectory in
a Boolean model reaches a set of states in which it is trapped.
This set of states is referred to as the attractor of the Boolean

model. Attractors that consist of a single system state are
called point attractors, fixed points, or steady states. In a point
attractor the output of each node’s update function is the same
as the node’s state. Attractors that consist of multiple states
depend on the manner of update of the nodes. Synchronous
update (where all nodes are updated at the same time) leads
to deterministic limit cycles, while stochastic update (e.g.,
updating a randomly selected node at each time) leads to
so-called complex attractors.

Since each node i in the interaction network has two states,
there are 2N states for any Boolean model that has N nodes.
The exponential dependence of the size of the state space
on the number of nodes makes the systematic mapping of
the state space computationally expensive. To resolve this
problem, we use a novel attractor-finding method that relies on
the construction of an expanded network, which integrates the
structure of the interaction network and the Boolean functions
governing the dynamics [43,44]. The analysis of the expanded
network allows for identification of stable subnetworks called
stable motifs [45,46]. Stable motifs are the smallest positive
circuits (generalized positive feedback loops) that can sustain
a specific state regardless of the state of the rest of the nodes
outside the stable motif. In plant-pollinator networks each
stable motif can be interpreted as the smallest group of species
that maintain a specific survival state. Thus, it corresponds to
a survival unit, which can either be a subcommunity (if the
stable motif expresses the presence of some species) or the
simultaneous extinction of all species in the group. Locking-in
of a stable motif (i.e., achieving and then maintaining the
associated state) confines the system trajectories into a trap
space. A trap space is a region of the state space in which (i)
a subset of the nodes have a fixed state, and (ii) if the system
enters the trap space, it cannot escape [47]. Point attractors are
another important type of trap space, in which all the nodes
have a fixed state.

The recently introduced most permissive Boolean network
represents the most general update framework: By adding two
intermediate states, called “increasing” and “decreasing,” and
instantaneous transitions out of these states, this framework
is equivalent to allowing all possible update orders (includ-
ing partial synchrony among nodes) in the original Booolean
network [48]. A major advantage of this framework is that all
of its attractors are minimal trap spaces, i.e., trap spaces that
do not include a different trap space. Clearly, point attractors
are minimal trap spaces, as the state of every node is fixed
in a point attractor. An innovation of the most permissive
Boolean network is the assurance that attractors made up by
multiple states are minimal trap spaces as well, and that a
minimal trap space cannot contain more than one attractor
[48]. In this work we will implicitly use the most permissive
Boolean network framework. We do not explicitly include the
two intermediate states, but allow all possible update orders,
as these need not to be explicitly invoked to characterize the
trap spaces and attractors. Ecologically this means that we
make no assumptions about the simultaneity of species influx
or outflux. Our analysis does not need to follow the dynamics
of the community in time, but rather considers the way in
which the successive locking-in of stable motifs restricts the
trajectory of the system, and confines it to trap spaces of
decreasing size.
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Once there are no more stable motifs to lock in, the system
reaches a minimal trap space, with the maximum possible
number of nodes that acquire a stationary state as a result
of locking-in of stable motifs. This minimal trap space is
guaranteed to contain a single attractor [48]. If the states of
all nodes are determined (1 or 0) within the trap space, then
the trap space corresponds to a point attractor. If the states of a
set of nodes remain undetermined, then these nodes oscillate
and the trap space corresponds to a complex attractor. Since
stable motif and trap space based attractor-finding methods
do not require the full search of state space, they simplify
the attractor-finding task considerably and are more efficient
[45,46,49,50].

The expanded network expresses the Boolean update func-
tions of each node in disjunctive prime form. For each node
in the interaction network, two virtual nodes are defined in the
expanded network which represent the two possible states the
node can take: The active state is labeled with the node name
and the inactive state is labeled with the node name prefixed
by ∼. Also, “AND” operators among two or more node states
in an update function are represented using composite nodes.
An edge from a virtual node to a composite node means that
the node state described by the virtual node is a necessary
condition for the node state described by the virtual node
that the composite node points to. An edge from one virtual
node to another means that the node state described by the
first one is a sufficient condition for the node state described
by the second one. A stable motif is a strongly connected
subgraph (SCS) of the expanded network, meaning that for
any pair of virtual nodes there is at least one path in both
directions. There are three additional requirements: (i) it is
consistent, meaning that it cannot contain a virtual node and
its negation; (ii) it is composite-closed, meaning that if it
includes a composite node, it also includes all of the input
nodes to that composite node as well; (iii) it is a minimal
subgraph, meaning that it does not have any subsets that are
strongly connected and satisfy the previous two conditions
[see Fig. 1(e)]. To find the stable motifs we used the Java
implementation of Refs. [45,46] available at Ref. [51] and the
python package PyBoolNet [52] available at Ref. [53]. All the
executions in this study were ran on a Macintosh desktop PC
with 32 GB memory and a 3.2 GHz 8-core Xeon processor.

C. The current state of the art in computing the number
of attractors

At present there are no tools that determine the number
of attractors of most permissive Boolean networks. The clos-
est applications use general asynchronous update, in which
a randomly selected node is updated at each time. The
python package PyBoolNet, available at Ref. [53], has sev-
eral attractor-finding methods. The fastest of these methods
uses an answer set programming based algorithm to identify
minimal trap spaces [49,52] and approximate each (general
asynchronous) attractor with one of the minimal trap spaces.
We used the function trap_spaces() to find the minimal
trap spaces for plant-pollinator networks.

The stable motif based attractor-finding method introduced
in Refs. [45,46] follows an iterative approach: After the iden-
tification of the stable motifs of a system, one is chosen to

lock-in, and the system is then reduced by tracing the down-
stream effects of the stable motif in stabilizing other nodes.
Next, the reduced system’s stable motifs are identified; one is
then selected to lock in and the process repeats until there are
no remaining stable motifs. The process is repeated for each
stable motif and each reduced system until all successions
of stable motifs are explored. Each succession ends when
there is no other stable motifs to lock in and the system
reaches a minimal trap space. This minimal trap space is a
point attractor if the system reduced completely at the end of
the process. Otherwise, it is assumed to contain at least one
complex attractor in which a set of nodes of the final reduced
system oscillate (This method assumes general asynchronous
update, in which it is possible that more than one complex
attractor resides in a minimal trap space). The successive
steps in finding the minimal trap spaces is summarized in a
succession diagram, in which each succession starts with one
of the stable motifs of the original system, followed by the
stable motifs of the reduced systems and ends with a minimal
trap space. We will refer to this algorithm as “SM analysis
2013.”

A new and improved algorithm for stable motif succession
diagram-based attractor-finding was recently developed [50].
In addition to the implementation improvements, this algo-
rithm also identifies motif-avoiding complex attractors that
reside outside of minimal trap spaces. These complex attrac-
tors are rare but possible under asynchronous update, and not
possible in the most permissive Boolean network framework.
We will refer to this algorithm as “SM analysis 2021.”

The method introduced in this work is similar to these
previous methods in that it determines minimal trap spaces
based on stable motifs (and their weaker counterpart called
conditionally stable motif). Our method differs from the stable
motif succession-based identification in that we identify the
groups of stable motifs that determine each attractor without
the necessity to follow all successions of stable motif locking-
ins. We compared the performance of the four methods on
ensembles of plant-pollinator network models and report the
results in the Sec. III G. When comparing to the SM analysis
2021 method we disable the search for motif-avoiding attrac-
tors to maintain consistency with the other three methods.

D. Logical domain of influence

To determine the influence of a fixed node state or of a
locked-in stable motif on the state of the rest of the compo-
nents in a system, we use the concept of logical domain of
influence (LDOI) [54]. The LDOI of a node state σi(t ) = σi,
denoted LDOI(σi ), is determined by a percolation process on
the expanded network [54]. We start from the corresponding
virtual node in the expanded network and follow its outgo-
ing edges. If we reach another virtual node, then we add
it to the LDOI, because an edge from one virtual node to
another represents a sufficient relationship in the expanded
network. However, if we reach a composite node, then we
only add it to the LDOI if all the virtual nodes with incoming
edges to that composite node are already in the LDOI. This
search continues until no other new nodes can be added to the
LDOI. For instance, in Fig. 1(e), the LDOI of the node state
σA = 0 is LDOI(σA = 0) ≡ LDOI(∼A) = {∼C, ∼B, ∼D},
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while the LDOI of the node state σA = 1 is LDOI(σA = 1) ≡
LDOI(A) = {C}. The LDOI of a node state set (which can be
a stable motif) is determined similarly with the difference of
having multiple starting points in the expanded network. For
instance in Fig. 1(e), LDOI(σD = 0, σC = 1) ≡ LDOI(∼D,
C) = {C&∼D, A, B}. After reaching B in this example, we
reach D which is in conflict with the node state ∼D that is the
starting point. Since the LDOI algorithm [54] assumes that the
starting point node state is maintained, a contradictory state
cannot be in the LDOI; the percolation terminates prior to
adding D. In this study, we used the python implementation
of this algorithm which is available at Ref. [55].

III. RESULTS

Our objective, finding the stable motifs and attractors of
the Boolean threshold models governing the assembly of
plant-pollinator communities, requires (i) transformation of
the threshold functions of the Campbell et al. model to dis-
junctive prime form, (ii) identification of stable motifs and
conditionally stable motifs, and (iii) identifying groups of
(conditionally) stable motifs that lead to distinct attractors.
Each of these steps necessitated developing efficient methods
and algorithms. Each part of the analysis allows insights into
the composition of plant-pollinator communities. In this sec-
tion we alternate between presenting each novel methodology,
in the order of their application in the analysis, and the result
of their application.

The transformation and simplification of the Boolean
threshold functions and the results of this preprocessing step
are described in Secs. III A to III C. The construction of the
expanded network and identification of the stable motifs and
conditionally stable motifs are discussed in Sec. III D. In Secs.
III E to III G we determine the relationships among (condi-
tionally) stable motifs, and show that grouping them based on
these relationships and enumerating the effective number of
mutual exclusivities between these groups correctly identifies
the number of attractors. In the final Sec. III H we present
the statistical properties of the identified stable community
outcomes (attractors of the Boolean models) and discuss the
self-sustaining groups of species that contribute to the final
stable community outcome.

A. Conversion of threshold functions to disjunctive prime form
and finding the prime implicants of the threshold functions

In order to construct the expanded network of plant-
pollinator networks described by the Campbell et al. model,
the threshold functions described in Sec. II A need to be con-
verted to the disjunctive prime form, i.e., the complete sum
of prime implicants or Blake Canonical form. We propose a
method to find the prime implicants of threshold functions de-
fined as Eq. (1). Our method is equivalent with the MINTRUE
procedure of [56], with the difference that our method applies
directly to threshold functions that include negative weights.
An equivalent formulation of the threshold function in Eq. (1)
is

fi(σPk (t ), σNl (t )) = H
[ ∑

Pk

4σPk (t ) −
∑

Nl

σNl (t )
]
, (2)

where {Pk} are the positive regulators of node i, and {Nl}
are its negative regulators. Note that the coefficient of 4 for
the weight of positive interactions and −1 for the weight of
the negative interactions are assigned to be consistent with
Campbell et al. model, and in principle they can be altered. For
each prime implicant of the threshold function f , the minimal
condition in Eq. (2) should hold, that is, H (x) = 1. Assume
Np is the total number of positive regulators, Nn is the total
number of negative regulators, pa > 0 is the number of active
positive regulators, na is the number of active negative regula-
tors, and ni is the number of inactive negative regulators. Then
the minimal condition becomes

4pa − na = 1.

Substituting Nn = na + ni in this equation yields

ni = Nn − 4pa + 1, (3)

which is the minimum number of inactive negative regulators
in each prime implicant that has a number pa active positive
regulators. Starting from pa = 1 and increasing to pa = Np,
we are able to build all the prime implicants of the threshold
functions. Since ni should be non negative, this process ter-
minates after the first case of having ni � 0. An example of
applying this method is given in Appendix A.

B. Not all species and interactions can establish in
the community

Conversion from the threshold functions to the disjunctive
prime form of Boolean functions causes the loss of certain
edges. There are two mechanisms:

(1) If a node does not receive any positive influences in the
network (which represents the regional species pool), then the
species is not able to establish. An example of such a node is
pl_1 in Fig. 2. All other species whose sole positive influence
is from this species are also unable to persist. These species
are highlighted with gray in Fig. 2(c).

(2) If a node has at least one positive regulator and three or
fewer negative regulators, then its future state is determined by
the current state of its positive regulators [ni � 0 in Eq. (3)].
An example of such node is pl_2 in Fig. 2. The truth table in
panel (b) shows that regardless of the state of its three negative
regulators, pl_2 is active if po_2 is active, and the negative
edges are dropped in the in disjunctive prime form, as seen in
Fig. 2(c).

Implementing the conversion from threshold functions to
disjunctive normal Boolean functions causes an average of
92.2% of all the negative edges and 63.98% of the positive
edges to be dropped. We note that all the mutually beneficial
interactions, which are shown as double-positive edges in the
network model, are preserved in the conversion. Figure 3
shows the average percentage of the species in the network
(species pool) that could not establish. The percentage of
these species decreases from 78.7% in the smallest networks
to 57.9% in the largest networks. This decreasing tendency
is expected since increasing the species pool gives rise to
an increased possibility of finding beneficial interactions for
each species. Overall, the networks to be analyzed are reduced
considerably, as on average 66% of the species in each species
pool are found to not be able to establish.
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FIG. 2. A small plant-pollinator network depicting the mecha-
nisms of edge loss when converting the threshold functions of the
Campbell et al. model to disjunctive prime form. Panel (a) shows
the bipartite network; plants are denoted with “pl” and pollinators
are denoted with “po.” Edges with a regular arrowhead show positive
influence, while edges with diamond arrowheads show negative in-
fluence on the target species. Panel (b) shows the truth tables for pl_1
and pl_2. The “X” in table entries means that the state of that partic-
ular species can be either 0 or 1. In this model, pl_1 becomes extinct
because neither po_1 nor po_2 are able to pollinate it; this leads to
the extinction of po_1. The future state of pl_2 depends only on the
current state of po_2, because the weight of this positive influence
is larger than the cumulative weight of the negative influences from
po_3, po_4, and po_5. These observations allow us to simplify the
network, as shown in panel (c), reducing computational complexity.
The species that were not able to persist are highlighted with gray.

C. Simplification of the Boolean functions

The disjunctive prime form of a Boolean threshold func-
tion can become extensive due to combinatorial explosion.
This problem is acute for larger network sizes, where the
number of variables in the update functions is larger than 5.
To limit the combinatorial complexity, we propose regulator
sparsification during the conversion of the threshold functions.
We develop a simplification method that reduces the negative
regulators by selecting a subset of such regulators of each
node randomly. We minimize the reduction in fidelity by hav-
ing roughly the same probability of H (x) = 1 for each node
after simplification. The intuitive meaning of this sampling
is that the remaining negative regulator(s) of each node are
representative of the corresponding species’ aggregated costs
and wasted opportunities due to interactions with mismatched
partners. We assume that any remaining negative regulator
can out-compete the positive regulator(s); in other words, the
aggregated costs can overcome the effect of positive interac-

FIG. 3. Average percentage of the species in the original species
pool that could not establish in the community for each network size.
Examples of such species are depicted in Fig. 2.

tions. This assumption yields an inhibitor-dominant Boolean
function.

Assuming that node i has Np positive regulators and Nn

negative regulators, we hypothesize that the Boolean function
in disjunctive prime form can be written as

fi = [σP1 (t ) OR . . . OR σPNp
(t )]

AND NOT σN1 (t ) . . . AND NOT σNx (t ), (4)

in which {Pk} are the positive regulators, {Nl} are randomly
sampled negative regulators, and x is the number of negative
regulators we keep. We use the conservation of probability of
H (x) = 1 to calculate x. The probability of H (x) = 1 in the
original threshold function is

pt =
∑Np

pa=1

(Np

pa

) ∗
[∑4pa−1

na=0

(Nn

na

)]
2(Np+Nn )

.

The probability of having H (x) = 1 for the simplified Boolean
function is

pb = 2Np − 1

2(Np+x)
.

Conservation of probability (pt ≈ pb) requires that

∑Np

pa=1

(Np

pa

) ∗
[∑4pa−1

na=0

(Nn

na

)]
2(Np+Nn )

≈ 2Np − 1

2(Np+x)
. (5)

Equation (5) can be solved to find x, the number of randomly
selected negative regulators to be kept in the Boolean function.
Considering that

∑Np

pa=1

(Np

pa

) = 2Np − 1, one can see that the
numerator of the left hand side is always greater than the nu-
merator of the right hand side, which guarantees that x < Nn

(for further information see Appendix B 1). The solution to
the equation is not necessarily an integer, and hence a choice
of direction for the inequality between pb and pt is needed.
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(1) pb � pt : This choice introduces a slight bias toward 1
for pb, meaning that less number of negative regulators are
kept in the Boolean function. In this case, the stable commu-
nities will have more species and be more diverse.

(2) pb � pt : This choice introduces a slight bias toward 0
for pb, meaning that more number of negative regulators are
kept in the Boolean function. In this case, the stable commu-
nities will have less species and be less diverse.

We compared the attractors of simplified Boolean models
using each direction of the inequality with the exact Boolean
models, as described in Appendix B 1. We found the attractors
of both simplified Boolean models show an average of 95%
agreement with the attractors of the exact Boolean model.
We chose pb � pt , which gives slightly more diversity and
more rich stable community outcomes. This choice yields an
equation one can solve to find the number x for each number
of positive and negative regulators. As further validation of the
simplification, described in Appendix B 2, we found a 98.8%
agreement of the attractors of the simplified and exact Boolean
models under perturbations.

1. Summary statistics of the simplified networks

Implementing the proposed simplification of the Boolean
functions causes an additional loss of 7.6% (on average) of
the original number of negative edges. Altogether, the vast
majority (an average of 99.8%) of the original negative edges
were dropped in the conversion from threshold functions. The
node pairs that are connected by at least one edge fall into
three categories:

(1) Nodes connected by a positive feedback loop (mutu-
ally beneficial interaction). The edges are positive on both
ends. After simplification, on average 31.84% of the con-
nected node pairs are connected by this type of edge pattern.

(2) Nodes connected by a single positive edge: This in-
teraction is beneficial for one party and detrimental for the
other; the negative edge was dropped. After simplification an
average of 67.76% of the node pairs are connected by this type
of edge.

(3) Nodes connected by a negative feedback loop: These
are also interactions beneficial for one party and detrimental
for the other, and the negative edge remains. After simplifica-
tion, an average of 0.4% of the node pairs are connected by
this type of edge pattern. The negative edges in this category
are the only negative edges that are present in the models.

As in the simplified models a very small fraction of the
edges is negative, we expect that a majority of the models do
not have any negative edges. Indeed, as shown in Fig. S1 in
the Supplemental Material [57], we find that 92% of the net-
works do not contain any negative edges, which significantly
simplifies the analysis of such models.

D. Finding the conditionally stable motifs (CSMs) and
their supports

Having the update functions in disjunctive prime form,
stable motif analysis can be implemented to find the survival
units of plant-pollinator network models. A key generalization
of the concept of stable motif (SM) is the concept of condi-
tionally stable motif (CSM). Intuitively, a CSM becomes a SM
if a specific condition or set of conditions is satisfied. CSMs

are identified in the expanded network as strongly connected
subgraphs (SCSs) that are not composite-closed (i.e., they
contain at least one composite node without containing all of
its inputs) but satisfy the consistency criterion (i.e., the set of
their virtual nodes and composite node inputs does not contain
both a virtual node and its negation) [58]. The set of external
inputs of composite nodes inside of the SCS makes up the
condition of the CSM. If during the dynamics of the system
the locking-in of a SM fixes the external input node(s) of the
composite node(s) inside the CSM, then the CSM becomes
a SM. For example, in Fig. 4(b) the virtual nodes ∼po_2,
∼pl_2, ∼po_3 and ∼pl_3 and two composite nodes form a
CSM whose condition is ∼pl_1. The locking-in of the SM
formed by the virtual nodes ∼po_1 and ∼pl_1 satisfies the
condition of this CSM. We call the group of SMs whose
locking-in satisfies the condition of a CSM, the support of
the CSM, and the CSM that has a support, a supported CSM.
Ecologically, this represents a situation in which the presence
or absence of specific species (e.g., a survival unit) enables
another survival unit to sustain a survival or extinction state.
The interpretation of the previous example is that the absence
of pl_1 results in a situation in which all the species in the
survival unit of pl_2, po_2, pl_3, and po_3 become extinct in
at least one of the stable community outcomes. We developed
an algorithm to find the CSMs and their supports, as described
in Secs. III D 1 and III D 2.

1. Identification of CSMs by merging consistent cycles

In the expanded network representation, every minimal
cycle that satisfies the consistency criterion is called a con-
sistent cycle. Each consistent cycle corresponds to a positive
feedback loop in the plant-pollinator interaction network (see
Fig. 4). Each consistent cycle that contains composite node(s)
is a CSM. However, larger CSMs that contain multiple cycles
may also exist. We are especially interested in larger CSMs
that have a smaller set of conditions than their constituent
cycles because the cycles satisfy each other’s conditions. We
propose an efficient way to identify such larger CSMs by
adapting the concept of cycle graph initially introduced in
Ref. [58]. The nodes of the cycle graph are the consistent
cycles of the expanded network. A directed edge in the cycle
graph indicates that (i) a virtual node in the source cycle
satisfies one of the conditions of the target cycle and (ii) the
source and target cycles and their conditions are all consistent
with each other. For example, in Fig. 4(b), the virtual node
∼po_2 is a member of the pink cycle and the condition of the
green cycle; thus, the pink cycle satisfies the condition of the
green cycle. This relationship is shown in Fig. 4(c) as an edge
that starts at the node of the cycle graph that corresponds to
the pink cycle and ends at the node that corresponds to the
green cycle.

Mutual partial condition satisfaction between two cycles
C1 and C2 implies that in the expanded network there is a
path between any virtual node in C1 to any virtual node in
C2 and vice versa; meaning that the union of these two cycles
is an SCS in the expanded network. For instance, in Fig. 4, the
pink and green cycles mutually satisfy (one of) each other’s
conditions (∼po_2 and ∼po_3, respectively). The union of
the two cycles is an SCS in the expanded network. Moreover,
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FIG. 4. Finding the CSMs from the consistent cycles. Panel (a) shows an interaction network that has 4 plants and 4 pollinators after
simplification. Panel (b) indicates the corresponding expanded network. There are four SMs, each identifiable as a cycle between a virtual
node associated to a pollinator and a virtual node associated to a plant. In addition to the SMs, there are several consistent cycles in this
expanded network, three of which are highlighted with blue, pink and green lines alongside the edges. Panel (c) shows the cycle graph that
corresponds to the expanded network in panel (b). The nodes of this graph (rectangular symbols) represent consistent cycles in the expanded
network, and are highlighted with the same colors. The label of each node consists of two parts separated by a vertical line: the first part is
the node states in that consistent cycle, and the second part is the conditions of that consistent cycle. Consistent cycles without any conditions
are SMs. A directed edge in the cycle graph shows that one or more virtual node of the source cycle satisfies one or more condition of the
target cycle. The hollow edge from the light green SM to the virtual node ∼po_2 (which is only added for illustration purposes) represents that
∼po_2 is in the LDOI of the light green SM. The blue, pink and green cycles partially satisfy each others’ conditions and make up an SCC
in the cycle graph. They also form a consistent SCC in the expanded network in panel (b); as a result, they can be merged to form the yellow
CSM, whose condition is ∼pl_1. The green cycle has the condition ∼po_2, which has two ways of being satisfied: one through the yellow
CSM, and one through the light green SM. This is because po_2 can become extinct due to the extinction of pl_2, or as a consequence of the
inhibitory edge from pl_4. As a result, this cycle not only participates in the yellow CSM but also qualifies as a separate supported CSM.

this SCS is consistent and composite-open, thus it is also a
CSM. More generally, a strongly connected subgraph (SCS)
in the cycle graph indicates a group of cycles that (partially)
satisfy each others’ conditions and are pairwise consistent. If
all the cycles in the SCS are consistent, then it corresponds to
a (C)SM.

We identify CSMs by merging the cycles that form SCSs
in the cycle graph. In particular, we identify maximal strongly
connected subgraphs (in other words, strongly connected
components) in the cycle graph. Each strongly connected
component (SCC), when consistent, is a SM if it is composite-
closed or a CSM if it is composite-open. As can be seen in
Fig. 4(c), the blue, pink and green cycles form an SCC in the
cycle graph, and hence are part of an SCC in the expanded
network in Fig. 4(b) as well. This SCC highlighted with
yellow is consistent and composite-open, thus it is a CSM,
with condition (∼pl_1). The virtual node ∼pl_1 is a member
of a SM, thus this SM serves as the support of the yellow
CSM.

In a network that contains negative edges, it is possible
that an SCC of the cycle graph is not consistent and thus it
is not a CSM. In this case, we find the pair(s) of cycles in the
SCC that are not consistent with each other and connect them
with an edge that represents inconsistency. For each node of
the SCC that has an inconsistency relationship, we exclude
the nodes that it is inconsistent with and determine the SCC

formed by the remaining nodes. Each of these sub-SCCs of
the original SCC is kept and recorded as a separate CSM. Due
to the scarcity of negative feedback edges in the networks after
simplification, there was a single case of inconsistent SCC in
the ensemble of 36 000 networks.

Within a consistent SCC in the cycle graph (which is either
a SM or a CSM), there may be smaller SCSs or individual
cycles whose condition can be satisfied outside the consistent
SCC. We describe the identification of CSMs resulting from
such SCSs in Sec. III D 3. Finally, we find the single consistent
cycles that did not participate in any SCCs. These sole cycles
are also separate CSMs and recorded as new entities. An
example of such cycles is the consistent cycle consisting of
node states ∼pl_4 and ∼po_4 in Fig. 4(c). While this cycle is
not participating in the SCC, it is a separate CSM.

2. Finding the support(s) of each CSM

The condition(s) of each CSM can be satisfied directly
or indirectly, i.e., through the logical domain of influence
(LDOI) of a virtual node (see Sec. II D). There are three
specific ways:

(1) The condition can be a virtual node inside a SM or
CSM.

(2) The condition can be a virtual node in the LDOI of a
SM or CSM.
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FIG. 5. Finding the supports of a CSM. Panel (a) shows an interaction network consisting of six plants and six pollinators after
simplification. Panel (b) shows the expanded network and panel (c) shows the cycle graph. The orange cycle in panels (b) and (c) is a CSM
with the condition ∼po_2. This condition can be satisfied using two different paths: The first one is through the LDOI of the blue SM from
po_6 to pl_6, po_4, pl_4, po_5, pl_3, and ∼po_2. The second is through the yellow CSM, whose condition ∼po_4 is satisfied by the LDOI
of the pink SM that consists of ∼pl_5 and ∼po_6. Both the blue SM and the union of the pink SM and yellow CSM are valid supports of the
orange cycle. They are mutually exclusive in the state of pl_5 and po_6. We note that the SM made up by pl_2 and po_3 is not a support of
the orange cycle: It satisfies its condition but it contradicts its node states. For a similar reason the cycle in the bottom left of panel (c) has no
support.

(3) The condition can be a virtual node in the LDOI of a
combination of SMs or SMs and CSMs.

Let us consider the situation that we want to find the sup-
ports of one particular CSM in an expanded network whose
SMs are known. We start with the single SMs in set M =
{M1, M2, . . . } and their LDOIs. If the conditions of the CSM
are a subset of Mi ∪ LDOI(Mi ) and the node states in the
CSM and its conditions are consistent with the node states in
Mi ∪ LDOI(Mi ), then Mi is a support for the CSM. This con-
tinues until all single-motif supports of the CSM are found.
For example, in Fig. 5, the blue SM can satisfy the conditions
of the orange CSM and is consistent with it, and hence is
its single-motif support. Note that the green SM, although
satisfies the condition of the orange SM, is not consistent with
it, and hence is not a support. Next, combinatorial supports
of each CSM are found. Combinations of (C)SMs that are
consistent with each other, can satisfy all the conditions of
the CSM, and do not include previously found supports are
found and added to the list of supports of the CSM. The union
of each of these supports and the CSM can be a (member of
a) support for another CSM. For example, in Fig. 5, another
way of satisfying the condition of the orange CSM, ∼po_2,
is through the union of the pink SM and the yellow CSM. As
a result, this union is a combinatorial support of the orange
CSM.

Following the same procedure, all supports of all CSMs are
found. It is of particular importance to find all the supports for
each CSM, because two supports of the same CSM can be
mutually exclusive (i.e., inconsistent with each other because

they stabilize the same node(s) to opposite states). Mutually
exclusive supports of the same CSM result in two separate trap
spaces and consequently two different attractors (see Fig. 5).
Since we are interested in finding all the attractors, we need to
find all the supports of each CSM. This task is simpler in the
majority of plant-pollinator networks that do not have negative
edges, as in these networks it is not possible that a CSM has
mutually exclusive supports.

3. Identifying intermediate supported CSMs within a
consistent SCC

A consistent SCC in the cycle graph has multiple smaller
SCSs or individual cycles inside, each of which is what we
call an intermediate CSM. The support of these intermediate
CSMs can be the same as the support of the SCC, but this is
not always the case. We developed an algorithm to find the
intermediate CSMs who have their own support(s).

Consider a consistent SCC in the cycle graph. By construc-
tion, at least one of the conditions of each cycle in this SCC
is satisfied by a virtual node in another cycle of the SCC. This
condition may also be satisfied by a SM. We first determine
the LDOI of all SMs Mi in the network, and form the union
L = ∪LDOI(Mi ) in which i goes over all indices of SMs in the
set M. If the intersection of L and the virtual nodes inside the
consistent SCC is nonempty, then one or more of the virtual
nodes in the LDOI of a SM may also serve as condition(s) of
intermediate SCSs inside the SCC. As a result, intermediate
CSMs inside the SCC might be independently supported by
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SMs; we need to identify these SMs. We consider Si, defined
as the intersection of LDOI(Mi ) and of the virtual nodes
inside the SCC. Each virtual node from each set Si may be
a condition of one or multiple CSMs we want to identify.
These CSMs do not contain members of Si as virtual nodes;
instead the members of each Si are inputs to the composite
node(s) of CSMs. This restricts the cycles that participate in
the intermediate CSMs we want to identify to cycles that do
not intersect Si. We identify the consistent SCSs and single
cycles among these cycles. If there exists a consistent SCS
or cycle such that (i) it is supported and (ii) the support is
different than the support of the consistent SCC, then it is kept
as a separate CSM. For example, in the expanded network in
Fig. 4(b) the union of SM LDOIs (the set L) consists of the
virtual node ∼po_2, which is also a virtual node of the SCC
highlighted with yellow. As a result, there might be smaller
CSMs within the SCC that are supported by the SMs from the
outside. Eliminating the blue and pink cycles, both of which
contain ∼po_2, leaves the green cycle. As the condition of the
green cycle is ∼po_2, and its support (the light green SM) is
different than the support of the yellow SCC (the SM made
up of ∼pl_1 and ∼po_1), the green cycle is recorded as a
separate supported CSM. This search continues until all Sis
are separately explored and the relevant CSMs are identified.

4. Regularities of the CSM and support structure of
plant-pollinator networks

The vast majority of the networks in the plant-pollinator
model ensemble do not contain negative edges (see Fig. S1 in
the Supplemental Material [57]). In these networks all regu-
lators have a positive effect and the activity of any individual
regulator is able to sustain the activity of a target species. In
the following we will refer to a (C)SM made up by virtual
nodes that express the inactive state of the constituent species
as “inactive (C)SM.” We determined that in networks with no
negative edges all CSMs are inactive, and each of them has a
single (possibly combinatorial) support, which also consists of
inactive (C)SMs. Because of the unique nature of the support
in these networks (i) it is not necessary to search for smaller
CSMs within maximal CSMs and (ii) the support identifica-
tion process can be stopped after the first hit. We derive and
illustrate these properties in Appendix D 1.

Analysis of the ensemble of all networks that contain only
positive edges after simplification confirms this result. The
30 431 networks in this ensemble collectively have 30 068
CSMs, each of which has a single support. All of the CSMs
and their supports express the absence of the constituent
species. In summary, in plant-pollinator networks that lack
negative edges, the mutualistic interactions lead to stable sub-
communities (active SMs), irreversible extinction of certain
groups of interdependent species (inactive SMs), and condi-
tional extinction of other groups of interdependent species
(inactive CSMs).

As described in Sec. III C 1, following the conversion and
simplification of the regulatory functions only 0.4% of node
pairs in our ensemble are connected with a negative edge.
These negative edges form specific patterns in the interaction
network as well as the expanded network. Any node that has
an incident negative edge must have at least one incident

positive edge; otherwise, it would have been eliminated dur-
ing co version from threshold functions to disjunctive prime
form. Inhibition is combined with activation via “AND NOT.”
Furthermore, each negative edge must appear together with a
positive edge in the opposite direction. These regularities have
strong consequences, as we derive in Appendix D 2.

In these systems it is not possible to have mutual condition
satisfaction between a cycle that expresses the activity of the
constituent species and a cycle that expresses the inactivity of
the constituent species. Networks that contain negative edges
may have supported active or mixed-state CSMs. However,
the conditions leading to such CSMs did not occur in our
ensemble (see Appendix D 2 for details). Finally, in our net-
works the only situation in which an intermediate CSM has
its own support is if it has an active SM in its support, while
the cycle graph SCC that contains the intermediate CSM only
has inactive SM(s) as support. Only 3.5% of the ensemble of
36 000 networks can have CSMs with more than one support.

E. The number of (C)SMs as well as their relationships
determine the number of attractors

As attractors are the minimal possible trap spaces, a first
hypothesis could be that the number of SMs and CSMs deter-
mines the number of attractors. The ecological intrepretation
of this hypothesis is that the number of community outcomes
is determined by the number of survival units in the plant-
pollinator network. To test this hypothesis, we determined the
number of minimal trap spaces with PyBoolNet (as described
in Sec. II C). The number of minimal trap spaces is equal
to the number of attractors of most permissive Boolean net-
works. In Fig. 6 we plot the number of minimal trap spaces
(attractors) against the number of (C)SMs. This figure indi-
cates that the majority of networks have less than 10 CSMs
and attractors. The data point closest to the origin has a single
SM and a single attractor. Networks in this category have a
single positive feedback loop whose states correspond to one
SM and one unsupported CSM, leading to only one attractor.
The most frequent result among small networks is two SMs
(arising from the two opposite states of the same positive
feedback loop) and two attractors. Other highly occurring data
points are (4,4), mainly coming from two independent positive
feedback loops, and (6,8), arising from three independent
positive feedback loops.

This figure shows that there is a large range of the number
of attractors possible for the same number of (C)SMs. For
example, in the case of 15 (C)SMs the number of attractors
can be anywhere between 2 and 21. Due to the high degree
of scatter seen in this figure, we conclude that there is no
one-to-one relationship among the number of (C)SMs and the
number of attractors. To better understand the mapping from
motifs to attractors, we identify the functional relationships
among SMs and CSMs. We find that there are three types
of relationships: dependence, mutual exclusivity and logical
determination.

(1) Dependence: If motif M2 is a CSM and has a condition
that can be satisfied by motif M1, then we say that motif M2 is
dependent on motif M1.

(2) Logical determination: Motif M1 logically determines
motif M2 if M2 ⊂ LDOI(M1).
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FIG. 6. Scatter plot of the number of attractors against the number of (conditionally) stable motifs. The 36 batches of networks were
categorized by size into three groups: small networks (10–35 nodes), medium networks (40–65 nodes), and large networks (70–100 nodes).
The area of the data points represents the relative occurrence of each data point.

(3) Mutual exclusivity: Two motifs M1 and M2 are mutu-
ally exclusive if they share at least one node that is in different
states in the two motifs.

These relationships are the underlying mechanisms by
which the (C)SMs successively stabilize, confine the system
to specific smaller trap spaces in each step, and finally result
in attractors. Dependence enforces all motif successions to
follow the necessity of having a support of a CSM lock in
(achieve and then maintain the corresponding state) earlier
within the same succession. For example, in Fig. 5(c), the pink
SM satisfies the condition of the yellow CSM, and thus the
yellow CSM is dependent on the pink SM to stabilize. As a re-
sult, it is not possible to have a motif succession sequence that
contains the yellow CSM but not the pink SM. If two (or more)
motifs are mutually in the LDOI of each other, then it means
they can lock-in in arbitrary order and will trap the system in
the same region of state space. Mutual exclusivity enforces
that there is no motif succession that contains two motifs that
share at least one node but in different states. For example, in
Fig. 5, the pink and the blue SMs consist of the same nodes but
in opposite states. A succession sequence that would contain
both of these SMs would be self-contradictory and hence
is not possible. These two SMs correspond to contradictory
regions of the state space; they anchor motif successions that
lead to at least two separate attractors. This suggests that
the most dominant relationship in determining the number of
attractors is the mutual exclusivity: distinct attractors result
from mutually exclusive motif successions. In the next section
we propose a method in which the functional relationships are
used to construct the allowed successions that are mutually
exclusive and hence lead to distinct attractors.

F. Finding the number of attractors using the functional
relationships between SMs and CSMs

All attractors of the networks in our ensemble have a
nonempty set of nodes that have a stationary state. The nodes
in these sets and their stationary states are determined by
the successive locking-in of (C)SMs within the minimal trap
space; the stabilized nodes include the nodes of these motifs
and their LDOI. The SM succession diagram based attractor-
finding process (described in Sec. II C) requires repeated SM
based network reduction, which becomes time consuming for
large networks. Also, the SM succession diagram discovers
and exhaustively lists all the motif successions (often consist-
ing of the same motifs but in different order) that lead to the
same minimal trap space. The identification of equivalent mo-
tif permutations significantly increases the time necessary for
building the succession diagram and for the attractor-finding
process.

Here we propose a method that eliminates the need for
identifying all the sequences in which SMs can lock in. We
determine CSMs and their supports as described in Sec. III D
and identify the compatible motif combinations based on the
relationships discussed in Sec. III E. We then find the mutually
exclusive motif combinations that successfully lead to distinct
attractors. A key pillar of this method is the observation that
the locking-in of a CSM necessitates the prior locking-in of
its support, or if it has multiple supports, one of its supports.
Thus, we define a motif group as a CSM merged with one of
its supports. If the CSM has more than one support, then there
will be separate motif groups, each of which consists of one of
the supports and the CSM itself. For instance, in Fig. 7(d), M4
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FIG. 7. The functional relationships among SMs and motif
groups and construction of the allowed successions to find the num-
ber of attractors. Panel (a) shows an example subnetwork consisting
of 2 plants and 2 pollinators. Panel (b) shows the cycle graph for the
interaction network in (a). Three consistent cycles M1, M2, and M3
are SMs, while the last consistent cycle M4 is a CSM with the condi-
tion of ∼pl_1, which is satisfied by M3. Thus, motifs M3 and M4 are
merged into the motif group M3M4. Panel (c) illustrates the network
of functional relationships among the two SMs M1 and M2 and the
motif group M3M4. M2 is in the LDOI of M1, and by definition
M3 is in the LDOI of the motif group M3M4. These relationships
are shown by hollow arrows from M1 to M2 and from M3M4 to
M3. M3M4 and M1, M3 and M1, as well as M3M4 and M2 are
mutually exclusive (they have shared nodes but in different states),
which is represented as diamond arrowheads between these nodes.
Following the construction of this network, the LDOI of each SM
and maximal motif group is calculated to determine if any of them
lead to a point attractor. As a result of stabilization of M1 or M3M4,
all the nodes in the interaction network stabilize, and since they are
mutually exclusive, each leads to a separate attractor. The first and
second figures from left in panel (d) represent the attractors resulting
from stabilization of M1 and M3M4 respectively. The nodes that are
in gray (white) represent the extinction (persistence) of the corre-
sponding species in that specific attractor. In one of these attractors
all species persist and in the other they all become extinct. There also
exists a combination of motifs, {M2, M3}, which stabilizes all nodes
and excludes both previously found attractors, and hence it leads to
a new attractor. The last figure in panel (d) shows this attractor in
which half the species persist and the other half become extinct.

is a CSM whose support is M3. M4 is merged with its support
to create the merged motif group M3M4.

This merging step implements the first functional rela-
tionship, dependence. The other two functional relationships,
logical determination and mutual exclusivity, are then deter-
mined between all SMs and all the newly constructed motif
groups. The definition of logical determination and mutual
exclusivity applies the same way to motif groups as to single
motifs. By definition, there is a logical determination edge
from each motif group to every constituent SM or more el-
ementary motif group.

The functional relationships among SMs and motif groups
are illustrated in the form of a network in Fig. 7(c). In this
network, each node represents either a motif group (a merger
of a CSM with one of its supports) or a SM, and each edge rep-
resents a specific type of functional relationship. Logical de-
termination is shown by hollow arrows and mutual exclusivity
is shown by diamond arrowheads. For instance, in Fig. 7(c),

M2 is in the LDOI of M1, meaning that if M1 stabilizes, M2
automatically stabilizes as well. This is shown by a hollow
arrow from M1 to M2. Also, M3M4 and M1 or M3 and M1
or M3M4 and M2 have shared nodes but in different states,
which results in diamond arrowheads between these nodes.

Having constructed this network, we calculate the LDOI
of each SM and motif group. This step is to find the SMs and
motif groups that stabilize the whole network and lead to point
attractors; in other words if all the nodes in the interaction
network attain a fixed state as a result of stabilization of a
SM or motif group and its LDOI, then it leads to a point
attractor. The only motif groups that might stabilize the whole
network are the maximal motif groups, i.e., motif groups that
are not subgroups of other motif groups. As a result, SMs and
maximal motif groups are analyzed to find the ones that lead
to immediate point attractors. Each point attractor that differs
from all previously recorded point attractors is to be recorded
as a new distinct attractor. In the example of Fig. 7, M3M4 and
M1 do not leave any nodes nonstationary in the interaction
network and as a result, each leads to a point attractor. Since
they are also mutually exclusive, they lead to two separate
attractors.

Next we find all the combinations of SMs and motif groups
that alone do not lead to point attractors, yet together they
successfully stabilize the nodes in the interaction network
and lead to an attractor. The search can be targeted by these
considerations:

(1) The SMs and motif groups in these combinations must
be consistent.

(2) Combinations of two SMs or motif groups that have a
LDOI relationship do not need to be considered, as the effec-
tiveness of that combination in trapping the system would not
surpass the effectiveness of the source of the LDOI relation-
ship. The same argument holds for SMs and motif groups that
have a mutual LDOI relationship.

(3) As a specific application of the previous point, combi-
nation of a motif group with any of its subsets does not need
to be considered.

In the example of Fig. 7, the only allowed combination is
{M2, M3}. As M2 is mutually exclusive with M3M4, and M3
is mutually exclusive with M1, this combination leads to a
distinct new attractor. Overall, this example network has three
attractors.

It should be noted that it is possible that a SM or motif
group alone cannot stabilize all the nodes in the interaction
network, but it also cannot participate in a consistent combi-
nation. Such a motif leads to a complex attractor, in which the
nodes outside of the LDOI of the motif oscillate. If the motif is
mutually exclusive with all previously found attractors, then it
is added to the list of attractors and counted as a separate one.
Examples of such motifs can be seen in Fig. 1(e), in which the
gray gradient stable motif cannot stabilize the nodes B and D
and leaves them nonstationary. This motif cannot be grouped
with the other SM (in gray), because they are mutually exclu-
sive. The gray gradient motif leads to a complex attractor in
which A=C=1 and B and D oscillate, as seen in the expanded
network.

As a further illustration, in Fig. S2 in the Supplemental
Material [57] we go through all the steps of this attractor
identification method for the example network of Fig. 5.
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TABLE I. Summary of the completion percentage of attractor identification by four methods: consistent groups of SMs (suggested in this
work), PyBoolNet, SM analyses 2013 and 2021. For network sizes of 40 and 55, 100 networks were randomly selected and were analyzed
using all four methods. For network sizes of 70 and 100, 50 networks were randomly selected and the same 50 networks were analyzed using
all four methods. For each network size there are four rows, each showing the cumulative completion percentages for one of the methods
within the specified time limits.

Network size Method Completion % Completion % Completion % Completion % Completion %
30 s 1 min 3 min 15 min 30 min

40 Consistent Groups of SMs 100 100 100 100 100
40 PyBoolNet trap spaces 100 100 100 100 100
40 SM analysis 2021 71 75 79 86 91
40 SM analysis 2013 51 65 78 92 95
55 Consistent Groups of SMs 100 100 100 100 100
55 PyBoolNet trap spaces 100 100 100 100 100
55 SM analysis 2021 44 52 54 61 65
55 SM analysis 2013 16 25 38 61 67
70 Consistent Groups of SMs 100 100 100 100 100
70 PyBoolNet trap spaces 100 100 100 100 100
70 SM analysis 2021 20 26 32 46 50
70 SM analysis 2013 4 8 14 22 34
100 Consistent Groups of SMs 92 94 98 100 100
100 PyBoolNet trap spaces 100 100 100 100 100
100 SM analysis 2021 0 2 10 12 18
100 SM analysis 2013 0 0 2 6 8

G. Performance

There are various features and optimization steps that we
implemented in each part of the attractor-finding process that
minimize the computational time of finding the attractors of
each network:

(1) We include a precheck of whether the network has
negative edges. As described in Appendix D, in networks
without negative edges each CSM has a single support, which
is confined to one half of the expanded network. In these
networks it is not necessary to search for smaller CSMs within
maximal CSMs and the support identification process can be
stopped after the first hit.

(2) We use the specific features of the plant-pollinator net-
works in our ensembles (described in Appendix D) to identify
additional networks in which it is not necessary to search for
smaller CSMs within maximal CSMs.

(3) At the stage when the CSMs in the system have just
been identified and before starting the search for the support
of the CSMs, we preorder the CSMs based on the likelihood
that their support will be combinatorial. If the condition of
CSM2 is part of CSM1, then it is likely that the support
of CSM2 will be combinatorial, thus it is analyzed later than
CSM1. For example, in Fig. 5, the condition of the orange
CSM is contained in the yellow CSM, thus the orange CSM
is analyzed after the yellow CSM. This consideration ensures
that all combinatorial supports of each CSM are found and
reduces the computational time of finding the supports of
CSMs such as the orange CSM.

(4) Realizing the importance of functional relationships
between the SMs and motif groups, the functional relation-
ships are included in the algorithm to find the supports of each
CSM. While finding combinatorial supports of each CSM, we
only search through the combinations that include SMs and
motif groups that are consistent and are not in the LDOI of
each other.

The python implementation of our method is available at
Ref. [59]. We first did an exploratory analysis to compare
the computational time of the attractor-finding process using
our method, minimal trap space identification with PyBool-
Net (described in Sec. II C), the SM analysis 2013 (Java
implementation of the SM succession diagram based attrac-
tor identification method) [45,46], and the SM analysis 2021
(python implementation of the SM succession diagram based
attractor identification method) [50]. We used four ensembles
with different number of nodes (40, 55, 70, and 100). The
PyBoolNet trap space identification and our method were able
to finish the analysis of all 1000 networks in each ensemble.
Both SM analyses 2013 and 2021 took several hours for
certain networks. To better compare the methods, we set time
limits after which the analysis of a network should be aban-
doned. We also restricted the analysis to a randomly selected
sample of 100 networks (for networks with 40 and 55 nodes)
or a randomly selected sample of 50 networks (for networks
with 70 and 100 nodes). The summary of time limits and
the percentage of completed networks within that time limit
using each method is shown in Table I. Analyzing the whole
ensemble of 1000 networks, the average runtime per network
with our method ranged from 0.1 s (for 40 node networks)
to 151 s (for 100 node networks). The average runtime per
network with PyBoolNet ranged from 0.1 s (for 40 nodes) to
1.3 s (for 100 nodes). This analysis shows that our method is
faster than the other two SM methods, while the minimal trap
space identification of PyBoolNet is the fastest. All methods
gave identical attractors.

Next we used our method to find the number of attractors
for all the network models in this study, 36 000 networks
with the size range of 10 to 100. We verified that for each
network the number of attractors using our method was the
same as the number of minimal trap spaces we found using
PyBoolNet. Furthermore, we found that the number of at-
tractors was preserved whether single or multiple nodes were
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FIG. 8. Box plot of the 10 based logarithm of the number of attractors (A) as a function of network size (N). The inset on the top left
represents the average of the 10 based logarithm of the number of attractors as a function of network size.

updated at the same time; see Appendix C for more details.
The ecological interpretation of this result is that the number
of community outcomes does not depend on the degree of
synchronicity of species influx and outflux. We conclude that
our method predicts the number of attractors correctly by
counting the mutually exclusive consistent groups of SMs
and CSMs. While our method is less efficient than minimal
trap space identification by PyBoolNet, it has the benefit of
identifying the motif groups (survival units) that lead to each
attractor (community outcome).

H. Properties of attractors in plant-pollinator
interaction networks

The 36 000 networks in the ensemble have altogether
384 282 attractors. The vast majority (99%) of these attractors
are point attractors and thus represent community outcomes in
which all species maintain a specific survival state. Only 4047
of the attractors are complex; in these attractors a small frac-
tion (14% on average) of the species oscillate between being
present and absent. These 4047 complex attractors belong to
1014 networks, which is 2.8% of all networks.

Noting that the distribution of the number of attractors
for networks of the same size is approximately log-normal,
we indicate the box plot of the 10 based logarithm of the
number of attractors as a function of network size in Fig. 8.
In this figure it is observed that as the network size increases,
the number of attractors increases as well. This is expected:
When the number of species increase in a potential species
pool, there is more chance for each species to find interaction
partners that can help it persist in the ecosystem.

Turning to the composition of the communities represented
by attractors, in Fig. 9 we indicate the percentage of species
present in attractors, averaged over networks of the same size.
Only a small percentage of the species oscillate (less than
2% of the species that had a chance to establish). Up to 48%
of the species that had a chance to establish did ultimately
establish. This indicates that although only an average of 7.7%
of the interaction pairs are mutually beneficial in the original
networks, they ensure the formation of stable communities
that encompass a sizable percentage of the original pool (up
to 20%). This finding is in line with the results of Campbell
et al. [26].

Our analysis allows for a deeper understanding of these
results and connects the number of possible community
outcomes with the number of stable subcommunities. We
estimate the latter by determining the number of active SMs
that are not mutually in the LDOI of each other. Two or more
active SMs that have mutual LDOI relationships with each
other lock in the same subset of nodes to the same state;
we interpret these as the same subcommunity. If n stable
subcommunities were independent of each other, then one
would expect that the number of community outcomes scales
as 2n. We find networks that accord with this scaling, but
also networks in which the number of community outcomes
is less than this expectation (see Fig. 10). In this figure, we
plotted the number of community outcomes (attractors) ver-
sus the number of independent subcommunities (active SMs
that are not mutually in the LDOI of each other). Networks
with 2n community outcomes represent the majority when
there are up to 6 subcommunities, are a minority for 7 and
8 subcommunities, and are not represented for nine or more
subcommunities. A contributing factor to the numbers lower
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FIG. 9. Average percentage of species present in the attractors
(community outcomes) as a function of network size. The percent-
ages are shown relative to the size of the original species pool (cross
marker) and relative to the number species in the species pool that
had a chance to establish (triangle marker). The inset represents the
average percentage of species that oscillate in the attractors as a func-
tion of network size. These percentages too were calculated relative
to the size of the original species pool (star marker) and relative to the
number of species in the species pool that had a chance to establish
(circular marker). As the network size increases, on average more
species manage to survive or oscillate in the attractors, but the rate of
increase slows (saturates).

FIG. 10. Scatter plot of the number of possible community
outcomes (attractors) versus the number of independent subcommu-
nities (active SMs that are not mutually in the LDOI of each other) in
each network. Each symbol represents a distinct pair of (x, y) values.
The solid line shows the function y = 2x , which corresponds to the
number of community outcomes in case of subcommunities that do
not affect each other’s survival states in any way. The actual number
of community outcomes is less than or equal to this expectation.

than 2n is the existence of subcommunities whose survival
sustains each other in an asymmetrical way (i.e., via a one
sided logical determination relationships among the corre-
sponding active SMs). In such cases, not every survival unit
can stabilize independently, and hence there are less than 2n

possible community outcomes.

IV. DISCUSSION

The development and analysis of models that capture
salient behavior of ecological systems such as plant-pollinator
communities without fine grain details are crucial to practical
efforts for maintaining pollinator species [60]. We contribute
to this endeavour by deeper analysis of the dynamic Boolean
network model of mutualistic plant-pollinator community as-
sembly developed in Ref. [26]. Here, we described a method
to identify and characterize stable communities of plants
and pollinators via identifying smaller groups of interacting
species, whose survival reaches a stable state and then de-
termining the relationships among these smaller groups of
species. We showed how these relationships contribute to the
eventual formation of distinct stable community outcomes.
By analyzing ensembles of networks generated by a well-
established model for plant-pollinator community assembly
[26], we found a remarkable community diversity: up to an
average number of 43 community outcomes possible for the
largest regional species pools, each community preserving an
average of 20% of the original species pool.

Our analysis relies on the expanded network representa-
tion, which represents the causal relationships between the
variables of a dynamical model. Construction of the expanded
network from the original threshold functions in the Campbell
et al. model required the identification of the prime implicants
of the Boolean threshold functions, which resulted in 92.2%
of the negative edges being dropped from the Boolean models.
We also proposed and implemented a simplification method
that samples the remaining negative edges while preserving
the survival probability H (x) = 1, which we found preserves
most attractors. This simplification considerably decreases the
complexity of the regulatory functions. For the example of
a node that has three positive regulators and five negative
regulators presented in Appendix A, the Boolean function
in disjunctive prime form has 33 prime implicants, while
the simplified function only has three prime implicants, each
corresponding to a positive regulator. After the conversion and
simplification almost all (99.8%) of the negative edges are
eliminated while 100% of the double positive edges are pre-
served. The vast majority of the edges represent single (67%)
or mutual (31%) positive interactions, in agreement with the
mutualistic nature of the plant-pollinator interactions. One of
the advantages of this simplification method is that it takes
the dynamics of the system and the threshold function (1) into
consideration. Other sparsification methods such as weighted
bipartite matching rely solely on the network topology. The
network selected by bipartite matching would contain only
one incoming edge, which is positive, to each target node.
This removes all the negative edges, 14% of single positive
edges (on average), and 30% of double positive edges, and
hence a smaller number of positive interactions remain. As
these positive interactions are important for the stability of
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plant-pollinator community outcomes, we expect that the net-
work obtained by bipartite matching would have lesser species
richness and fewer community compositions (attractors).

We propose a method of attractor identification that builds
on and improves previous methods to link stable motifs and
conditionally stable motifs to attractors. Both the stable motif
succession diagram based attractor-finding process [45,46,50]
and the method described here rely on the identification of
successions of SMs and CSMs; however, in this work instead
of building the succession diagram through stable motif-based
network reduction, we detect the functional relationships
among motifs and identify mutually exclusive combinations
of stable motifs and motif groups. Construction of motif
groups using the functional relationships eliminates a large
part of the combinatorial explosion observed in stable motif
succession diagrams. Indeed, due to the abundance of mutu-
ally positive interactions the plant-pollinator networks have
a large number of (conditionally) stable motifs; up to 35 in
the largest networks (see Fig. 6). While both the SM analyses
2013 and 2021 spent a considerable amount of time tackling
the combinatorial effect of exploring all motif successions
and permutations, we addressed this complexity by the use
of LDOI relationships among stable motifs and motif groups.
We took advantage of this relationship to simplify the com-
binations of stable motifs and motif groups and reduce the
computational time considerably.

The plant-pollinator interaction networks we analyzed in
this study have properties that significantly simplify the
attractor-finding process. The majority of these networks
(92% of 36 000 networks) do not contain negative edges,
which results in disjoint expanded networks that are simpler
to analyze. Being bipartite with power law degree distribution
is another property that restricts the number of edges in these
networks, and hence decreases the complexity considerably.
In addition, the Boolean functions follow the same template,
restricting the possible (conditionally) stable motif patterns.
This helps in focusing the search in the cycle graph and
expanded network.

The same features that simplify our analysis also allow the
preservation of the number of attractors for a very broad class
of update schemes (including single node and multi-node
stochastic update). The ecological interpretation of this result
is that the number of community outcomes does not depend on
the timing of species influx or outflux, but rather on the causal
relationships among species and survival units. Timing is ex-
pected to influence the trajectories that lead to each attractor.
For example, in cases where two mutually exclusive stable
motifs (survival units) exist, timing may influence which of
these stable motifs locks in. At that point the other stable
motif, and all community outcomes that contain it, are no
longer attainable.

While PyBoolNet can quickly identify attractors in these
networks, it does not uncover stable or conditionally stable
survival units and the relationships between them. Our method
allows for directly interpretable insights into the survival units
that make up each community outcome and their relation-
ships. We demonstrate that these relationships play a key role
in explaining the diversity of community outcomes. Another
advantage of our method is that it provides information about
the trajectories the system takes toward a community out-

come, not only in its initial formation but also in response
to perturbations in the form of species extinction, invasion,
interaction loss or gain.

The information gained from stable motif analysis supports
ecological findings from field observations in plant-pollinator
communities. For instance, Vilà et al. conducted a meta-
analysis of the observed impacts of invasion of a single
species on established communities. This study reported that
alien plants caused an average of 43.5% decrease in native
plant species abundance and 17.3% decrease in native animal
species abundance [61]. While there is not enough informa-
tion to precisely model the real plant-pollinator networks, our
study allows qualitative insights into the observed decrease in
the species abundance. Certain invasive species mimic other
species to attract pollinators but do not provide any food for
them, thereby adding negative interactions to the system. Our
analysis illustrates that as the number of negative interactions
increases, there is a lower chance for the establishment of ac-
tive stable motifs. As a result, species richness and abundance
decrease due to detrimental invasive species.

Invasive species can also have a beneficial effect on the
community. Russo et al. observed that the introduction of a
highly pollinator-attracting plant to an established community
led to a 302% increase in the abundance of native pollinator
species as well as a 35% increase in the pollinator species
richness [62]. Such trends are verified in a previous simulation
study performed on the Campbell et al. model [25] and can be
explained via our analysis: as the number of positive interac-
tions increase, there is a higher chance for having active stable
motifs, thus stable communities with more present species
form.

Regarding species extinction, Biella et al. observed that
when removing a single generalist plant, an extinction cascade
follows [63]. This finding is in line with our results: the ab-
sence of generalist species can be a driver of an inactive stable
motif; if the driver is activated the whole stable motif locks in.
The stabilization of an inactive stable motif is equivalent to an
extinction cascade in the community.

Our method also allows the identification of attractor
control strategies. Based on the knowledge of the (C)SMs
stabilizing and participating in each trajectory leading to a
particular attractor, one can determine the minimal set of node
states such that if they are fixed, it is guaranteed that the
system reaches the desired attractor [45,46]. This information
can also form the basis of strategies to destabilize an undesired
attractor [64]. In the ecological landscape, this knowledge
can be used to propose targeted interventions for conservation
purposes.

We expect that the methods described here will effec-
tively uncover the attractor repertoire of Boolean models of
information spreading in social networks (such as the Voter
model), which do not contain negative influences [5]. Previous
methods to identify the attractors of the Voter model include
simulation and minimizing the Hamiltonian, which is similar
to the Ising model describing a ferromagnet in the absence
of an external field. The threshold function (1) can also be
thought of as the Hamiltonian of the Ising model; however,
one should note that biological and social systems are out-
of-equilibrium systems, so their attractors are not necessarily
minima of a Hamiltonian energy function. The search for
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suitable energy functions is an active area of research, see for
example the review article [65]. As a result not all the attrac-
tors of such systems can be found using the minimization of
the Hamiltonian; this has been observed in the Voter model as
well as in plant-pollinator networks.

When our method is applied to general ensembles of
Boolean networks, it is likely that new combinatorial bottle-
necks will be encountered. For example, in systems whose
negative edges are not coupled to positive edges there will be
a larger diversity in the composition of conditionally stable
motifs, both in terms of virtual nodes and in terms of cycles.
We expect that the number of motif groups will be larger than
in the plant-pollinator ensembles studied here. Nevertheless,
this increase will not be drastic, as the number of stable mo-
tifs determines the support of each CSM, and most Boolean
networks have fewer stable motifs than our ensembles. The
application of our method to general Boolean networks will
be a topic of future work.
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APPENDIX A: AN EXAMPLE ILLUSTRATING THE
CONVERSION OF THRESHOLD FUNCTIONS TO

DISJUNCTIVE PRIME FORM

We illustrate the conversion of threshold functions to dis-
junctive prime form with an example of a node A that has
3 positive regulators {P1, P2, P3} and 5 negative regulators
{N1, . . . , N5}. For simplicity of notation we will not explicitly
indicate the time dependence of the node states and thus we
will use σi instead of σi(t ). For pa = 1, the minimum number
of inactive negative regulators is ni = 2, hence two negative
regulators should be inactive for H (x) = 1. As a result, the
prime implicants are

σP1 AND
(
NOT σN1

)
AND

(
NOT σN2

)
,

σP1 AND
(
NOT σN1

)
AND

(
NOT σN3

)
,

...

σP1 AND
(
NOT σN4

)
AND

(
NOT σN5

)
.

As the number of cases of having 2 inactive regulators is(5
2

) = 10 and there are 3 positive regulators, there are 30 prime
implicants for pa = 1. For pa = 2, the minimum number of
inactive negative regulators is ni < 0, meaning that 2 active
positive regulators can overcome all negative regulators. This
leads to the additional prime implicants

σP1 AND σP2 ,

σP1 AND σP3 ,

σP2 AND σP3 .

Increasing the number of active positive regulators to pa =
3 increases the overall weight of the positive regulators
even further. The implicant (σP1 AND σP2 AND σP3 ) is not a
prime implicant since it can be covered by the more general
prime implicants of pa = 2 case, which are (σP1 AND σP2 ),
(σP1 AND σP3 ), and (σP2 AND σP3 ); thus the process termi-
nates at pa = 2. The disjunction of the constructed prime
implicants results in the complete Boolean update function of
node i:

fi = (
σP1 OR σP2 OR σP3

)
AND

[(
NOT σN1 AND NOT σN2

)
OR . . .

OR
(
NOT σN4 AND NOT σN5

)]
OR

(
σP1 AND σP2

)
OR

(
σP1 AND σP3

)
OR

(
σP2 AND σP3

)
. (A1)

APPENDIX B

1. Deciding the direction of the inequality in Equation (5)

To determine the proper direction for Eq. (5) in Sec. III C,
we compared the attractors of both cases of the simplified
Boolean models (i.e., both inequality directions) with the at-
tractors of the exact Boolean model which is generated using
the prime implicants discussed in Sec. III A. As the closeness
of the regulatory functions can be evaluated for any update
method, we use synchronous update, in which all the nodes
are updated simultaneously, due to its simplicity. We used four
different initial conditions:

(1) IC 100%: All of the species in the species pool are
present at t = 0.

(2) IC 75%: 75% of the species are selected randomly and
assumed to be present at t = 0.

(3) IC 50%: 50% of the species are selected randomly and
assumed to be present at t = 0.

(4) IC 25%: 25% of the species are selected randomly and
assumed to be present at t = 0.

There are two types of nodes in each attractor correspond-
ing to synchronous update: nodes that acquire a fixed state and
nodes whose state changes in a cyclic manner. We considered
that an attractor of the simplified model agrees with an at-
tractor of the exact model if (i) the sets of nodes that acquire a
fixed state and the sets of nodes that oscillate are the same, and
(ii) the state of each fixed node is the same. This comparison
was performed for the ensemble with the largest networks
(50 plants and 50 pollinators) and an ensemble of smaller
networks (20 plants and 30 pollinators) and the summary is
shown in Table II.

As it can be seen in Table II, the attractors of both simpli-
fied Boolean models show good agreement with the attractors
of the exact Boolean model. We choose the first case, pb �
pt , which gives slightly more diversity and more rich stable
communities. Subsequently, simplifying Eq. (5) yields the
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TABLE II. Average percent agreement between the attractors of
the exact Boolean model and the attractors of the simplified Boolean
models for two ensembles of networks (50-plant-50-pollinator and
20-plant-30-pollinator networks). Each ensemble has 1000 networks
that the averages are calculated over.

50 plants 50 pollinators
Initial condition pb � pt pb � pt

IC 100% 90.6 92.6
IC 75% 91.1 92.5
IC 50% 91.2 92.5
IC 25% 93 95.2

20 plants 30 pollinators
Initial condition pb � pt pb � pt

IC 100% 97.8 95.2
IC 75% 98 95.7
IC 50% 98.4 96.5
IC 25% 99 98.2

condition

x � Nn −
ln

(∑Np
pa=1 (Np

pa )∗
[∑4pa−1

na=0 (Nn
na )

]
2Np−1

)

ln 2
, (B1)

where x is the largest integer number that makes this inequal-
ity hold true. Fig. 11 shows the number of negative regulators
we keep (x) as a function of total number of negative reg-
ulators (Nn) for 4 different number of positive regulators.

FIG. 11. The number of negative regulators of each arbitrary
species that are kept after the simplification according to Eq. (B1).
The figure show examples of the number of negative regulators
kept in the simplified model versus the total number of negative
regulators in the threshold model, for four values of the number of
positive regulators. According to the in-degree distributions in these
networks, the maximum number of regulators a species can have
is 25. As the number of positive regulators increases, the number
of negative regulators they can overcome increases as well. Seven
positive regulators can overcome 18 negative regulators, thus in this
case there is no need to ensure the inactive state of any of the negative
regulators.

TABLE III. Average percent agreement between the syn-
chronous attractors of the exact and simplified Boolean models in
the case of perturbations for the set of networks that have 50 plants
and 50 pollinators. This average was calculated over an ensemble
of 1000 networks, and IC 25% was used as the initial condition.
The first column shows the percentage of the nodes (wp) that were
selected at random and fixed to the active state in both models.
The second column shows the percent difference in the attractor
of the exact model caused by the perturbation. The third column
shows the percent agreement between the attractors of the exact and
simplified models when they both undergo the same perturbation.
When 50% or more of the nodes were perturbed, the attractors of the
two models became identical.

wp Effect of perturbation Average % agreement

10 19.0 96.7
30 25.8 99.6
50 27.1 100

According to this figure a node that has 3 positive regulators
and 5 negative regulators (as presented in Appendix A) would
have a simplified Boolean function that does not have any
negative regulators.

2. Validation of the simplified networks

To further investigate the accuracy of the simplified model
in capturing the properties of attractors, the attractors of the
simplified and exact models are compared under synchronous
update and in the case of perturbations. We used the ensemble
of networks that have 50 plants and 50 pollinators. Since
according to Fig. 3 about 58% of the species are inactive in
all attractors, we decided to set and maintain in the active state
10–50% of the nodes (selected randomly). Also, given that the
simplified Boolean function results in a slight tendency toward
H (x) = 1 for each node, the initial condition IC 25%, which
can potentially cause a large discrepancy in the attractors,
was used. Table III shows that the attractors of the simplified
model capture the attractors of the exact model to a great
extent (98.8%).

APPENDIX C: THE ATTRACTORS ARE THE SAME
UNDER GENERAL ASYNCHRONOUS UPDATE

Under the update schedule that results from most permis-
sive Boolean networks (i.e., the update schedule that permits
simultaneous updates of any subset of nodes) the attractors
coincide with the minimal trap spaces. The software PyBool-
Net uses general asynchronous update, which does not allow
simultaneous updates. While the point attractors are preserved
under all update schemes, there are differences in the complex
attractors: Under general asynchronous update there can be
multiple complex attractors in the same trap space and there
can be complex attractors that lie outside of minimal trap
spaces. We were interested whether the update scheme affects
the number of attractors in our ensembles of plant-pollinator
networks.

Following the identification of minimal trap spaces with
PyBoolNet, we implemented three criteria provided in the
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FIG. 12. An example of an interaction network without negative edges. Panel (a) shows the interaction network consisting of 4 plants and
5 pollinators. The sole case of a source SCC is the positive feedback loop made up of pl_3 and po_3. As a result, only this SCC leads to a SM
representing the inactive states of species (to an inactive SM). The rest of the SCCs lead to SMs representing active states of species or CSMs
representing the inactive states of species. Panel (b) shows the disjoint expanded network. The 4 inactive SMs and CSMs are highlighted with
color: The SM consisting of ∼pl_3 and ∼po_3 is highlighted with gray, the CSM consisting of ∼pl_2 and ∼po_2 is highlighted with green,
the CSM consisting of ∼pl_1 and ∼po_1 is highlighted with yellow, and the CSM consisting of ∼pl_4 and ∼po_5 is highlighted with pink.
Panel (c) shows the cycle graph with the cycles highlighted with the same colors. The green and yellow CSMs each have a single condition.
The condition of the green CSM is a virtual node within the gray SM, and the condition of the yellow CSM is a virtual node within the green
CSM. As a result, the sole support of the green CSM is the gray SM, and the sole combinatorial support of the yellow CSM is the union of the
gray SM and green CSM. The pink CSM has multiple conditions that are successfully satisfied by the union of the gray SM, green CSM, and
yellow CSM. This union is also the only support of the pink CSM.

package to determine the relationship of the attractors (under
general asynchronous update) and minimal trap spaces: “uni-
vocality,” which is satisfied if there is exactly one attractor
within each minimal trap space, “completeness,” which is sat-
isfied if there are no attractors outside the identified minimal
trap spaces, and “faithfulness,” which is satisfied when the
nonstationary variables within each minimal trap space oscil-
late in all the attractors contained in it [66]. The number of
minimal trap spaces is equal to the number of attractors if the
first two checks are true, i.e., if there is no attractor outside the
minimal trap spaces and each trap space contains exactly one
attractor; otherwise, it is a lower bound. If all three checks are
satisfied, then the attractors of the system are equivalent to the
identified minimal trap spaces, i.e., they have the same nodes
with stationary states and same nodes with oscillatory states.

We found that all three checks are satisfied in all 36 000
networks in our ensemble. This indicates that the number of
attractors equals the number of minimal trap spaces under
general asynchronous update as well. The ecological interpre-
tation of this result is that the number of community outcomes
is preserved whether species enter or leave the community
individually or in groups.

APPENDIX D: FEATURES OF CSMS AND THEIR
SUPPORTS IN PLANT-POLLINATOR NETWORKS

1. Networks without negative edges

The vast majority of the networks in the plant-pollinator
models do not contain negative edges (see Fig. S1 in the
Supplemental Material [57]). In these networks all regulators

have a positive effect and multiple regulators are connected
by the “OR” operator in the regulatory function of each node.
This means that the activity of any individual regulator is able
to sustain the activity of a target species. In this subsection we
determine the properties of CSMs and their supports in these
networks that do not contain negative edges.

For networks with no negative edges in the interaction
network, the expanded network does not have any paths
that connect a virtual node that expresses the active state
of a species with a virtual node that expresses the inactive
state of another species. As a consequence, the expanded
network is disconnected. The weakly connected components
(i.e., maximal subgraphs that are connected if we disregard
the directions of the edges) of the expanded network of these
networks fall into two categories: connected components
that consist of virtual nodes representing active states, and
connected components of virtual nodes representing inactive
states [see Fig. 12(b)].

Due to the sufficiency expressed by the “OR” operator,
in these networks any two-node positive feedback loop can
maintain the active state of its nodes, and yields a SM.
Conversely, each CSM, which by definition must contain a
composite node (AND gate), cannot fall in the component
made up by virtual nodes representing active states. Each
CSM must fall within a component made up by virtual nodes
representing inactive states, and its support(s) must be within
the same component.

A network that does not contain negative edges has a SM
made up by virtual nodes representing inactive states if and
only if the network has a strongly connected component of
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positive or double-positive edges that contains the incoming
edges of each of its nodes. A technical term for such strongly
connected component is source SCC. In other words, if a node
has an incoming edge that is not part of an SCC, then the
virtual node representing the inactive state of that node cannot
be part of a SM. This is because the inactivity of that node
depends on an “AND” gate that unites the inactive states of
all its regulators. Because inactive SMs are based on source
SCCs, and source SCCs cannot intersect or interact, it is not
possible that a virtual node is contained in multiple inactive
SMs in plant-pollinator networks that lack negative edges.

There are only a few possibilities for the support of an
inactive CSM. We first consider inactive CSMs that have a
single condition. The support could be a SM that contains the
condition of the focal CSM (i.e., the CSM in question). The
support could be a SM that contains a node that is connected
to the condition of the focal CSM by a linear chain of positive
edges. An example of such a chain is po_6, pl_6, and po_4
in Fig. 5; through this chain the pink SM forms the support
of the yellow CSM. The condition of the focal CSM could be
contained in another inactive CSM; in this case the focal CSM
has a combinatorial support. An example of such a situation
is the yellow CSM in Fig. 12: its support is made up by the
combination of the gray SM and green CSM. Finally, if the
focal CSM has multiple conditions, its support must be a
combination of the previously described ways of satisfying
a single condition. Such an example is the pink CSM in
Fig. 12: its three conditions are satisfied by the union of the
gray SM (both directly and via ∼po_4) and the green and
yellow CSMs. Because of the impossibility of overlaps among
inactive SMs and CSMs, in each of these situations there is a
single support.

2. Networks that contain negative edges

As shown in Fig. S1 in the Supplemental Material [57],
following the conversion and simplification of the regulatory
functions only 8% of all networks have negative edges. Im-
portantly, each negative edge appears together with a positive
edge in the opposite direction. Furthermore, any node that
has an incident negative edge must have at least one incident
positive edge; otherwise, it would have been eliminated during
model simplification. In the previous section we described the
simplifications to the CSM identification process in networks
that do not contain any negative edges. Here we focus on the
networks that do have negative edges and show that even in
these networks simplifications are possible due to the specific
patterns these negative edges form.

In a general Boolean model it is possible that a cycle
formed by virtual nodes corresponding to the activity of the
constituent species and a cycle formed by virtual nodes cor-
responding to inactivity of the constituent species mutually
satisfy each other’s conditions. This would require mutual
inhibition between two positive feedback loops. However, due
to the obligate pairing of negative edges with positive edges in
the opposite direction in plant-pollinator interaction networks,
such mutual inhibition must be combined with mutual activa-
tion. As illustrated in Fig. 13(c), this network leads to a SM
formed by the inactive state of all four nodes, and two active
CSMs, each of which has an empty support. We conclude that

FIG. 13. Mutual inhibition and activation between two positive
feedback loops leads to unsupported CSMs in plant-pollinator net-
works. Panel (a) shows the subnetwork after simplification. Note
that a negative edge always comes paired with a positive edge in
the opposite direction, and the species that have a negative regulator
must also have a positive regulator. As a consequence, the two
positive feedback loops mutually activate and inhibit each other at
the same time. The expanded network in (b) shows that there is an
inactive SM (highlighted with gray) and two active CSMs. These two
active CSMs are not supported, since the gray SM, which can satisfy
their conditions, is not consistent with them.

in these systems it is not possible to have mutual condition
satisfaction between a cycle that expresses the activity of the
constituent species and a cycle that expresses the inactivity of
the constituent species.

CSMs made up by virtual nodes expressing the active
state of the corresponding species (active CSMs) are possible
if a positive feedback loop of two nodes intersects a nega-
tive feedback loop of two nodes. The obligate coupling of a
negative edge with a positive edge in the other direction gener-
ally causes the active CSM to lack support. The simplest case
of a supported active CSM is shown in In Fig. 14(a). This con-
figuration is unlikely, as it requires that two nodes have seven
incoming negative edges each, and network simplification
results in these nodes forming two chained negative feedback
loops. We did not observe any such or similar configurations
in our ensemble of 36 000 networks. All the active CSMs in
the ensemble have an empty support.

In general, a positive feedback loop of more than two nodes
could contain an even number of negative edges, and the
corresponding consistent cycle in the expanded network could
contain a mixture of virtual nodes that represent the active
state of a species and virtual nodes that represent the inactive
state of a different species. Figure 14(c) indicates the simplest
subnetwork that can yield a mixed-state cycle that is a CSM
with a nonempty support.

Next, we identify the patterns related to the support of
CSMs. Consider an inactive CSM (a CSM made up by virtual
nodes that express inactive states). Applying Boolean nega-
tion to the specific Boolean functions in our ensembles, one
can realize that the “AND” gates in the virtual nodes express-
ing inactivity arise from the “OR” gates of positive regulators.
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FIG. 14. The simplest subnetworks that can yield supported active or mixed-state CSMs. Panel (a) shows a subnetwork that has 9 plants
and 8 pollinators. Nodes pl_2 and po_1 each have 1 positive and 7 negative incoming edges. For each of these nodes the starting point of
6 incoming negative edges can be arbitrary nodes outside of the nodes with labels. Only one of the negative incoming edges is kept during
network simplification. A single case among 49 possible choices, namely, keeping the negative edges from po_2 to pl_2 and from pl_2 to
po_1 results in a network consisting of pl_1, pl_2, pl_3, po_1, and po_2 that is capable of forming a supported active CSM. Panel (b) shows
the corresponding expanded network. The yellow SM consisting of po_2 and pl_3 is the support of the blue active CSM. Panel (c) shows a
subnetwork that has the same number of plants and pollinators. Keeping the negative edges from po_1 to pl_1 and from pl_2 to po_1 results
in a simplified network that has a mixed-state CSM, highlighted with green in the expanded network of panel (d). The purple SM consisting
of pl_3 and po_3 is the support of this mixed state CSM. This case has the same probability of 1 in 49 choices.

As a consequence, each condition of this CSM must be a
virtual node that expresses the inactivity of a species. One can
verify this property by inspecting the conditions of the CSMs
in Figs. 4, 5, and 12. The CSM can have a support that is a SM
made up by virtual nodes that express active states; we refer
to such a SM as “active SM.” There are two requirements for
an active SM to be (a part of) the support of an inactive CSM:
(i) the condition of the inactive CSM needs to be in the LDOI
of the active SM, and (ii) the active SM and its LDOI must
be consistent with the inactive CSM and all of its conditions.
The blue SM in Fig. 5 satisfies both of these conditions and is
a support of the orange CSM. The green SM only satisfies the
first condition but not the second, thus is not a support of the
orange CSM.

The two requirements indicated above are also relevant to
the identification of intermediate CSMs, subsets of an SCC
that have their own different support (see Sec. III D 3). Due
to the properties described earlier in this section, the only
situation in which an intermediate SCS needs to be kept is

if the corresponding intermediate CSM has an active SM in
its support, while the SCC only has inactive SM(s) as support.
Thus, we can make the search for intermediate SCSs of an
SCC more specific by determining the intersection of LA (the
union of the LDOIs of active SMs) and the virtual nodes of the
SCC. If LA does not contain any members of the SCC, then
there is no need to search for intermediate SCSs.

There exist networks in our ensemble that contain negative
edges yet none of their CSMs can be supported by an active
SM as the two conditions are not satisfied. In these networks
all CSMs have a single support. The only networks that can
have CSM(s) with multiple supports are the networks in which
active SMs can support at least one of the CSMs. In such
networks, CSMs can either have supports from both active and
inactive SMs and CSMs, or from multiple active SMs. In the
first case the supports can be mutually exclusive as in Fig. 5,
and in the second case at least one of them is in the LDOI
of the other(s). We found that only 3.5% of the ensemble of
36 000 networks can have CSMs with more than one support.
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