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From random point processes to hierarchical cavity master equations for stochastic dynamics
of disordered systems in random graphs: Ising models and epidemics
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We start from the theory of random point processes to derive n-point coupled master equations describing
the continuous dynamics of discrete variables in random graphs. These equations constitute a hierarchical set
of approximations that generalize and improve the cavity master equation (CME), a recently obtained closure
for the usual master equation representing the dynamics. Our derivation clarifies some of the hypotheses and
approximations that originally led to the CME, considered now as the first order of a more general technique. We
tested the scheme in the dynamics of three models defined over diluted graphs: the Ising ferromagnet, the Viana-
Bray spin-glass, and the susceptible-infectious-susceptible model for epidemics. In the first two, the equations
perform similarly to the best-known approaches in literature. In the latter, they outperform the well-known pair
quenched mean-field approximation.
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I. INTRODUCTION

Emissions from a radioactive source, time series of electri-
cal energy in a nerve fiber, the instants of arrival of customers
in a queue, and the flips of a spin due to thermal activation
are all examples of random processes that occur in such short
intervals of time that can be classified as punctual. Sometimes
the distinction between point processes and other stochastic
processes is hard to define. For example, any stochastic pro-
cess in continuous time in which the sample paths are step
functions is associated with a point process, also any process
with a discrete state space where a time of entry into a state
occurs randomly.

The theory of random point processes (TRPP) [1,2]
provides a formal and practical background to study and
understand these and similar random collections of point oc-
currences. Usually, it is a matter of taste of the researchers
or convenient for the research to attain, or not, the TRPP to
approach a specific problem.

In this paper, we study the continuous dynamics of a sys-
tem of discrete interacting variables. The model systems of
interest can be viewed as a multivariate and multidimensional
random point process. Alternatively, the dynamics of each
variable can be considered as a random point process itself.
We will show that starting from the TRPP it is possible to
write hierarchical masterlike equations for any group of vari-
ables in the system.

An attempt in this direction was proposed a few years ago
through the adaptation of dynamic message-passing equations
from discrete-time to continuous-time dynamics. It landed
first in the field of epidemics propagation [3,4] without a
general formulation but with good results. Later, Ref. [5]
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proposed a closure for the master equation that exploited the
TRPP. The core of this method is a differential equation for
the cavity conditional probability densities: the cavity mas-
ter equation (CME). This approach has proven to be very
general as it has been applied to several models in graphs
with finite connectivity like the Ising ferromagnet, the random
field Ising model and the Viana-Bray spin-glass model [5], the
ferromagnetic p-spin under Glauber dynamics [6], and, more
recently, also the dynamics of a focused search algorithm to
solve the random K-satisfiability (K-SAT) problem in the case
with K = 3 [7]. In this paper, we generalize the CME derived
in Ref. [5], providing master equations for the probability
densities of any group of connected variables.

We concentrate on the continuous-time dynamics of
discrete-spin variables. They can be described by a mas-
ter equation for the probability density of the states of the
system [8,9]. But to fully solve this master equation is a
cumbersome task and results have been elusive, except for
special cases. For example, the Sherrington-Kirkpatrick (SK)
model in its nonsymmetric version has received preferential
attention among the fully connected family [10,11], and the
exact solution for parallel and asynchronous dynamics of the
dilute fully asymmetric neural network model dates back to
1987 [12].

We provide here a general alternative solution that im-
proves the approach presented in Ref. [5]. Although it is
devised for single instances, it does not prevent its use to ob-
tain global information. One can always numerically average
the results of the integration of the single-instance equations.
On the other hand, in Ref. [13] the CME equations were
used as the starting point in the derivation of an average case
description for the dynamics of the Ising ferromagnet, in this
case defined on Erdos-Renyi random graphs.

To compute averaged quantities, one of the greatest
advances in the field is the dynamical replica theory
(DRT), introduced in Ref. [14]. This approach permits the
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derivation of average case equations for the probabilities of
some macroscopic observables in fully connected [14,15]
and diluted [16,17] graphs. In practice, DRT successfully
reduces the dimensionality of the system, making the prob-
lem tractable. However, it also assumes that the microscopic
probability distribution function is a constant within a sub-
space with a finite number of order parameters, something
that has been put into question on specific models [18,19]
and is not necessarily true for general nonequilibrium
situations.

Another relevant approach to these problems is the scheme
of analytical approximations introduced in Refs. [20,21] for
the description of the dynamics of local search algorithms.
In Ref. [22], this methodology is revisited and consolidated,
also showing its equivalence to DRT under the assumption
of replica symmetry. Due to its successful combination of
accuracy and simplicity, we will come back to this scheme
as a reference for evaluating our numerical results.

This paper contributes to the settlement of the dynamic
cavity method as a general tool to study the continuous-time
dynamics of discrete-spin models. A brief description of the
theory of RPP is given in Sec. II. Section III presents our
hierarchical system of corrections to the original equations
derived in Ref. [5] and used in Refs. [6,7,13]. They are numer-
ically tested in Sec. IV. We do not intend either to compare
these directly with DRT, whose numerics we consider ap-
preciably harder in this kind of graph, nor to give a better
description of the dynamics of average quantities. Instead,
we use the equivalent but simpler approximation schemes in
Ref. [22] as a theoretical and numeric reference and as a proxy
to the comparison with DRT.

Unlike the two approaches previously described, our
method gives information about local probability distributions
and can be straightforwardly used to study problems that
are intrinsically out of equilibrium [7], i.e., where detailed
balance is not conserved. As an example, Sec. IV C is devoted
to the exploration of susceptible-infectious-susceptible (SIS)
model for epidemics. Finally, Sec. V contains the conclusions
of our paper.

II. RANDOM POINT PROCESSES

To facilitate the reading of Sec. III, we take a brief tour
into the TRPP, which we will use to parametrize probability
distributions of spin histories. After some basic definitions and
for completeness, we will refer in Sec. II A to the simple case
of an independent binary variable that randomly changes its
state. There, we will use the random point processes formal-
ism to derive a master equation for the variable’s dynamics,
and we will show how to extend this to the case of many
interacting variables.

The core object of random point processes are spin tra-
jectories or histories. For binary spin variables σ = ±1, a
specific history that starts with σ (t0) = σ0 and ends with
σ (t ) = σ is parametrized by the number of spin flips, the time
in which they occur and the initial state of the system. Thus,
we are in the presence of a random point process [1,2] where
the probability measure may be denoted as

Qt (X ) = Qs(t0, t1, ..., ts, t |σ (t0) = σ0). (1)

Equation (1) represents the probability density of having a
trajectory with s jumps at (t1, t1 + dt1), ..., (ts, ts + dts). When
we need to highlight that the final time of the spin history is
t , we may write X as X (t ). Seeking simplicity, in almost all
equations we will not write the conditioning of all dynamic
quantities on a given initial condition [for example, in (1) we
have σ (t0) = σ0].

The probability density Q(X ) fulfills the following normal-
ization relation:

1 =
t∑
X

Qt (X ) =
∞∑

s=0

∫ t

t0

dt1

∫ t

t1

dt2...

×
∫ t

ts−1

dts Qs(t0, t1, ..., ts, t |σ (t0) = σ0).

(2)

The sum
∑t

X in Eq. (2) goes over all histories that occur be-
tween t0 and t , starting with σ (t0) = σ0. It is explicitly written
on the right-hand side as a sum

∑∞
s=0 of time integrals. Each

term of that sum corresponds to histories that have exactly s
jumps, and the integrals account for all the possible jumping
times t1, t2, ..., ts.

Instantaneous magnitudes can be written as marginals of
Qt (X ). For example,

Pt (σ ) =
t∑

X |σ (t )=σ

Qt (X ), (3)

where the sum
∑t

X |σ (t )=σ goes over all the histories X (t )
such that σ (t ) = σ and can be written similarly as

∑t
X [see

Eq. (2)]. In what follows, we will use the symbol
∑t

X |σ as a
shortening of

∑t
X |σ (t )=σ .

As we will show, some properties of the time evolution of
magnitudes like Pt (σ ) can be obtained by working directly
over Qt (X ).

A. From random point processes to master equations

Master equations are a common instrument in the study of
continuous-time dynamics. As a proof of the validity of the
random point process approach, we will show its equivalence
with the formulation of master equations in two examples:
the time evolution of a single noninteracting variable and the
dynamics of N-interacting spins. Through the derivations, the
reader will become familiar with properties and procedures
that will be used in Sec. III.

1. Single variable

The master equation for the time evolution a single spin
without interactions reads

dPt (σ )

dt
= −r(σ )Pt (σ ) + r(−σ )Pt (−σ ), (4)

where r(σ ) is the transition rate between the states σ and −σ .
To derive Eq. (4) from the TRPP, we will differentiate (3).

Differentiation in this context should be handled carefully
since increasing t means we are changing the sample space
itself. Instead of using calculus rules to differentiate, we use
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the definition of derivative as the limit of the incremental ratio:

dPt (σ )

dt
= lim

�t→0

Pt+�t (σ ) − Pt (σ )

�t
. (5)

For the sake of the discussion in the next sections, let us write down the calculations in detail.
Let us say that the final state of the trajectory X is X (t ) = σ . Then the probability density Qt (X ) can take the form [1,2]

Qt (X ) = r(σ0)e−r(σ0 )(t1−t0 )r(−σ0)e−r(−σ0 )(t2−t1 ) . . . r(−σ )e−r(−σ )(ts−ts−1 )e−r(σ )(t−ts ). (6)

The right-hand side of Eq. (6) is the probability density of the waiting times of the history X : [t0, t] → {1,−1}, whose jumps
occur at (t1, t2, ..., ts), with rates r(σ ).

Now we will write Pt+�t (σ ) as the marginalization of Qt+�t (X ) and then expand to first order in �t . Explicitly writing that
marginalization as in Eq. (2):

Pt+�t (σ ) =
∑

s

∫ t+�t

t0

dt1

∫ t+�t

t1

dt2 . . .

∫ t+�t

ts−1

dts Qt+�t (X ). (7)

Here, the sum on the right-hand side goes over all the values of the number of jumps (denoted as s) such that X (t ) = σ .
Now we must keep only the order �t term in (7). Let us expand first Qt+�t (X ) and leave the rest untouched. Equation (6) can

be rearranged as

Qt+�t (X ) =
[

s∏
l=1

r(σ (tl ))

]
exp

{
−
∫ t+�t

t0

r(σ (τ ))dτ

}
, (8)

where the jumps in the history X occur at the times tl , with l = 1, 2, . . . , s.
In (8), the probability of having the last jump in the interval [t, t + �t] is r(−σ )�t and, more generally, the probability

of occurrence of n jumps is proportional to (�t )n. Therefore, when �t goes to zero, with probability 1 there are no jumps in
[t, t + �t] and none of the times tl belongs to that interval.

We can then expand the exponential in (8) and write

Qt+�t (X ) =
[

s∏
l=1

r(σ (tl ))

]
exp

{
−
∫ t

t0

r(σ (τ ))dτ

}
[1 − r(σ )�t] + o(�t ),

Qt+�t (X ) = Qt (X )
[
1 − r(σ )�t

]+ o(�t ). (9)

On the other hand, the sum of iterated integrals in (7) is of order (�t )s by itself. However, for each integral we have the
property

∫ t+�t
t0

dτ = ∫ t
t0

dτ + ∫ t+�t
t dτ , and we can write

∑
s

∫ t+�t

t0

dt1

∫ t+�t

t1

dt2 . . .

∫ t+�t

ts−1

dts =
∑

s

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−1

dts +
∑

s

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t+�t

t
dts + o(�t ). (10)

The first term of the right-hand side of (10) is an operator over the space of the histories that occur in the interval [t0, t]. It can
be safely applied to the expansion (9) of the probability density Qt+�t (X ) to give a contribution of order O((�t )0) ≡ O(1),

I0 =
∑

s

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−1

dtsQ
t (X ) = Pt (σ ), (11)

and a contribution of order O(�t ):

I1 = −
∑

s

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−1

dtsQ
t (X ) r(σ )�t = −Pt (σ ) r(σ )�t . (12)

Together, I0 + I1 represent the probability density of having σ (t ) = σ and no jumps in [t, t + �t].
In the second sum of (10), we have an operator that acts over the space where all jumps, except the last one, took place in

[t0, t], and the last jump occurs in [t, t + �t]. Therefore, we can obtain a second contribution of order O(�t ) by applying this
operator to the probability density Q of having only one jump in [t, t + �t]. Remembering the parametrization (8) and expanding
in powers of �t :

I2 =
∑

s

∫ t

t0

dt1 . . .

∫ t

ts−2

dts−1

[
s−1∏
l=1

r(σ (tl ))

]
e− ∫ t

t0
r(σ (τ ))dτ

∫ t+�t

t
dts r(σ (ts))e− ∫ t+�t

t r(σ (τ ))dτ ,

I2 =
(∑

s

∫ t

t0

dt1 . . .

∫ t

ts−2

dts−1

[
s−1∏
l=1

r(σ (tl ))

]
e− ∫ t

t0
r(σ (τ ))dτ

)
(r(−σ )�t ) + o(�t ). (13)
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In (13) we have used that, to fulfill the condition σ (t ) = σ , the last jump must happen from −σ to σ , with rate r(−σ ). The
sum inside parenthesis in the equation now goes over all histories that end with σ (t ) = −σ , and therefore is equal to Pt (−σ ).
Thus I2 = Pt (−σ ) r(−σ )�t + o(�t ) represents the probability density of having σ (t ) = −σ and only one jump in [t, t + �t].

Putting all this together:

Pt+�t (σ ) = I0 + I1 + I2 + o(�t ), Pt+�t (σ ) = Pt (σ ) − Pt (σ ) r(σ )�t + Pt (−σ ) r(−σ )�t + o(�t ). (14)

By subtracting Pt (σ ) from both sides of (14), dividing by �t and taking the limit �t → 0, we obtain the desired result (4):

dPt (σ )

dt
= −r(σ )Pt (σ ) + r(−σ )Pt (−σ ).

2. Multiple variables

In this case, where we have the time evolution of the N-interacting spins �σ = {σ1, ..., σN }, the master equation is

dPt (�σ )

dt
= −

N∑
i=1

[ri(�σ )Pt (�σ ) − ri(Fi[�σ ])Pt (Fi[�σ ])], (15)

where Fi[�σ ] is an operator that transforms the state �σ = {σ1, ..., σi, ..., σN } into the state Fi[�σ ] = {σ1, ...,−σi, ..., σN }, and ri(�σ )
is the transition rate between �σ and Fi[�σ ].

Similarly as in (3), the probability density Pt (�σ ) is given by

Pt (�σ ) =
t∑

�X |�σ
Qt ( �X ), (16)

where �X = {X1, . . . , XN } is the vector of the histories of all spins.
Now we must differentiate (16) similarly as with (3):

dPt (�σ )

dt
= lim

�t→0

Pt+�t (�σ ) − Pt (�σ )

�t
. (17)

The set of individual histories of N-interacting spins, Qt ( �X ), can be written as a product of probability densities �t
a(Xa| �X\a)

of the history Xa with the histories of all the other spins �X\a fixed [23]:

Qt (X1, X2, ..., XN ) =
N∏

i=1

�t
i (Xi| �X\i ). (18)

Each �t
i (Xi| �X\i ) can be parametrized like in (8) [1,2]:

�t
i (Xi| �X\i ) =

[
si∏

li=1

ri(�σ (tli ))

]
exp

{
−
∫ t

t0

ri(�σ (τ ))dτ

}
. (19)

As before, we will write Pt+�t (�σ ) as the marginalization of Qt+�t ( �X ) and then expand to first order in �t . Explicitly writing
that marginalization as in (7):

Pt+�t (�σ ) =
∞∑

s1=0

∞∑
s2=0

. . .

∞∑
sN =0

[
N∏

i=1

∫ t+�t

t0

dt i
1

∫ t+�t

t i
1

dt i
2 . . .

∫ t+�t

t i
si−1

dt i
si

]
Qt+�t (X1, X2, . . . , XN ). (20)

To expand Qt+�t ( �X ) requires expanding each �t+�t
i (Xi| �X\i ), which is almost the same we did in (9):

�t+�t
i (Xi| �X\i ) = �t

i (Xi| �X\i ) [1 − ri(�σ (t )) �t] + o(�t ). (21)

Thus,

Qt+�t ( �X ) =
N∏

i=1

�t+�t
i (Xi| �X\i ), Qt+�t ( �X ) =

N∏
i=1

�t
i (Xi| �X\i )

[
1 − �t

N∑
k=1

rk (�σ (t ))

]
+ o(�t ),

Qt+�t ( �X ) = Qt ( �X )

[
1 − �t

N∑
k=1

rk (�σ (t ))

]
+ o(�t ). (22)
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Similarly, as with (11) and (12), we will use (22) to get two contributions of order O(1) and O(�t ), respectively:

I0 =
∞∑

s1=0

. . .

∞∑
sN =0

[
N∏

i=1

∫ t

t0

dt i
1 . . .

∫ t

t i
si−1

dt i
si

]
Qt ( �X ) = Pt (�σ ), (23)

I1 =
( ∞∑

s1=0

. . .

∞∑
sN =0

[
N∏

i=1

∫ t

t0

dt i
1 . . .

∫ t

t i
si−1

dt i
si

]
Qt ( �X )

)(
−�t

N∑
k=1

rk (�σ (t ))

)
, I1 = −Pt (�σ ) �t

N∑
k=1

rk (�σ (t )). (24)

As in (10), we can split the sum of iterated integrals on the right-hand side of (20) to get O(�t ) contributions. The latter is
an operator that acts over the space of the histories where one and only one spin jumps in [t, t + �t]. The rest is a calculation
essentially equal to the one in (13):

I2 =
N∑

k=1

∞∑
s1=0

. . .

∞∑
sN =0

[∏
i �=k

∫ t

t0

dt i
1 . . .

∫ t

t i
si−1

dt i
si

]∫ t

t0

dtk
1 . . .

∫ t

tsk −2

dtk
sk−1

[∏
i �=k

�t
i (Xi| �X\i )

]

×
[

sk−1∏
lk=1

rk (�σ (tlk ))

]
e− ∫ t

t0
rk (�σ (τ ))dτ rk (Fk[�σ (t )])�t + o(�t ),

I2 =
N∑

k=1

Pt (Fk[�σ ]) rk (Fk[�σ (t )]) �t . (25)

Finally, the expansion of Pt+�t (�σ ) gives

Pt+�t (�σ ) = I0 + I1 + I2 + o(�t ),

Pt+�t (�σ ) = Pt (�σ ) − �t
N∑

k=1

Pt (�σ )rk (�σ ) + �t
N∑

k=1

Pt (Fk[�σ ])rk (Fk[�σ ]) + o(�t ), (26)

and using (17) we obtain the usual master equation [1] for a
set of N-interacting spins (15):

dPt (�σ )

dt
= −

N∑
i=1

[ri(�σ )Pt (�σ ) − ri(Fi[�σ ])Pt (Fi[�σ ])]. (27)

Unfortunately, to solve (27), even numerically, is in general
a very difficult task because the densities Pt (�σ ) are high
dimensional objects.

III. HIERARCHICAL CAVITY MASTER EQUATIONS

This section contains the main analytical contribution of
our paper. We will exploit techniques similar to the ones
presented above to write down a set of closed differential
equations for the stochastic dynamics of discrete variables in
a random graph. We generalize a closure presented in Ref. [5]
substituting an uncontrolled approximation by new equations
derived from first principles through the TRPP.

To simplify the reading, this section is divided in five
subsections. In Sec. III A, we introduce the dynamic cavity
method to study systems defined over treelike graphs. In
Sec. III B, we use that formulation to write the local prob-
ability densities sitting on any group of connected nodes
in terms of dynamic cavity messages. Then we derive the
known local master equations for those probability densities.
In Sec. III C, we repeat the same procedure to obtain anal-
ogous equations for cavity probability densities. A general
approximated method for closing these equations is presented
and discussed in Sec. III D. There, we show how these closed
dynamic equations can be organized in a system of hierarchi-
cal approximations.

A. Treelike architecture and cavity messages

In this subsection, we will introduce the dynamic cavity
messages for treelike graphs. Now, every spin σi interacts only
with the spins sitting in its neighborhood: σ∂i (the symbol ∂i
denotes the set of nodes in the neighborhood of i). Therefore,
our stochastic process involves flipping rates ri that depend
only on σi and σ∂i.

In this scenario, it is possible to separate the spins into two
disconnected networks just by removing a single connection
between two nodes. We first select a spin, say i, and rewrite
Eq. (18) following the treelike structure around it:

Qt (X1, . . . , XN ) = �t
i (Xi|X∂i )

∏
k∈∂i

[
�t

k (Xk|X∂k )
∏

m∈∂k\i

×
(

�t
k (Xm|X∂m)

∏
l∈∂m\k

. . .

)]
. (28)

Those are the only spins that directly interact with i and
therefore we adapted the previous notation of the � probabil-
ity densities. The symbol X∂i represents the set of histories
of the nodes in ∂i. Furthermore, let G(i)

k be the subgraph
expanded from the site k after removing the link (ik). Let us
define {X }ik as the set of histories related to the spins included
in G(i)

k except for Xk . Now we can express (28) as

Qt (X1, . . . , XN ) = �t
i (Xi|X∂i )

∏
k∈∂i

Mt
ki(Xi, Xk, {X }ik ). (29)

Here Mt
ki is just a shortening for the expression inside

brackets. Marginalizing Q on all histories except Xi, X∂i,
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we get

Qt (Xi, X∂i ) = �t
i (Xi|X∂i )

∏
k∈∂i

μt
k→(ki)(Xk|Xi ). (30)

The new functions μt
k→(ki)(Xk|Xi ), called dynamic cavity

messages, are the marginals:

μt
k→(ki)(Xk|Xi ) =

t∑
{X }ik

Mt
ki(Xi, Xk, {X }ik ). (31)

It can be shown that μt
k→(ki)(Xk|Xi ) can be properly normal-

ized to one, and it is convenient to do so. Each cavity message
has the interpretation of the probability density of history Xk

given Xi fixed.
If we now take two neighbors, i and j, and make a similar

reasoning, we conclude that their marginal probability density
can be written as

Qt (Xi, Xj ) = μt
i→(i j)(Xi|Xj )μ

t
j→( ji)(Xj |Xi ). (32)

These cavity messages can be parametrized as other similar
dynamical quantities [see Eqs. (6) and (19)]:

μt
i→(i j)(Xi|Xj ) = λi→(i j)(Xi, Xj, t0) e− ∫ t1

t0
λτ

i dτ

× λi→(i j)(Xi, Xj, t1)e− ∫ t2
t1

λτ
i dτ

× · · · × λi→(i j)(Xi, Xj, tsi )e
− ∫ t

tsi
λτ

i dτ
, (33)

only that now the jumps occur with unknown rates
λi→(i j)(Xi, Xj, t ), which in general are functions of the full
histories Xi and Xj taken from t0 to t .

Then, as in (21) we can expand � and μ to order �t (for
the latter, see Appendix B):

�t+�t
i (Xi|X∂i )

= �t
i (Xi|X∂i ) [1 − ri(σi(t ), σ∂i(t )) �t] + o(�t ), (34)

μt+�t
i→(i j)(Xi|Xj )

= μt
i→(i j)(Xi|Xj ) [1 − λi→(i j)(Xi, Xj, t )�t] + o(�t ). (35)

Equations (31)–(35) were already present in Ref. [5], but
they will also be at the basis of our derivation. They will be
exploited below to write a more general set of equations than
the ones presented in Ref. [5].

B. Equations for local probability densities

In this subsection, we further explore the connection be-
tween the TRPP and masterlike equations, now exploiting
a message-passing formalism usually found when studying
problems in treelike graphs. Although the final equation to be
obtained can be deduced using simpler techniques, we believe
that the approach presented here has a pedagogical value and
will clarify the methodology used in Sec. III C to obtain more
original results.

By eliminating a group of connected nodes from a treelike
graph, we always divide it into several treelike subgraphs. We
illustrate this in the top-left panel of Fig. 1. There, we colored
in gray the subtrees obtained after removing the white nodes
in the center. As we learned in Sec. III A, if we marginalize the
full distribution Qt ( �X ) over all the histories in these gray sub-

graphs, we obtain the probability density of the set of histories
corresponding to the connected group we have selected.

Therefore, if we denote the central node in the top-left
panel of Fig. 1 by i, and remembering the steps from (28)
to (30), we have

Qt ( �Xconnected set ) =
t∑

�Xgray nodes

Qt ( �X ),

Qt (Xi, X∂i ) = �t
i (Xi|X∂i )

∏
k∈∂i

μt
k→(ki)(Xk|Xi ). (36)

This procedure can be easily generalized to write any local
probability density of the histories of a connected set of nodes.
We just have to recognize inner and outer nodes: the first ones
have all their neighbors belonging to the connected set and the
second ones have at least one neighbor outside the connected
set. The top-right and the bottom-left panels of Fig. 1 show
examples of connected sets. In each case, we have a group of
inner nodes (in white) and a group of outer nodes (in black).

The probability density of a connected set is always a
marginal of the full probability density. However, to avoid a
more involved analysis, we will separate the connected sets
into two categories. A connected set is of the first kind when
all its outer nodes have only one neighbor inside the set, and
is of the second kind when at least one outer node has more
than one neighbor inside the set. This distinction is important
because in the first case we can directly write the correspond-
ing probability density as a product of local weights � and
dynamic cavity messages μ. We must simply include a local
weight for each inner node and a cavity message for each outer
node.

For example, the probability density corresponding to the
connected set in the top-right panel of Fig. 1 is

Qt ( �Xconnected set ) =
t∑

�Xgray nodes

Qt ( �X ),

Qt (Xi, X∂i, X∂k\i, X∂l\i )

= �t
i (Xi|X∂i )

[ ∏
m∈∂i\ j

�t
m(Xm|X∂m)

]
μt

j→( ji)(Xj |Xi )

×
[ ∏

n∈∂k\i

μt
n→(nk)(Xn|Xk )

][ ∏
n∈∂l\i

μt
n→(nl )(Xn|Xl )

]
,

(37)

where j, k, l ∈ ∂i. A representation of this product of � and
μ functions is shown in the bottom-right panel of Fig. 1.

Connected sets of the second kind do not require a different
treatment. Fortunately, we can always add nodes to convert
these into sets of the first kind. For example, we can transform
the bottom-left panel of Fig. 1 into the top-right panel just
by adding node l1 to the connected set. Then we can simply
compute a

Qt
(
Xi, X∂i, X∂k\i, Xl2

) =
t∑

Xl1

Qt
(
Xi, X∂i, X∂k\i, Xl1 , Xl2

)
. (38)

Thus, the probability density of any set of the second kind
can be written as a marginal of the probability density of a set
of the first kind just like (38) is written in terms of (37).
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FIG. 1. (a) Selection of a connected set with four nodes (white) from a treelike graph. The full graph is divided in six treelike subgraphs
(gray nodes). (b) Dividing a connected set with eight nodes in two groups: inner (white) and outer nodes (black). This is a connected set of the
first kind, because every outer node has only one neighbor inside the set. (c) Connected set with seven nodes. According to our classification,
the connected set is of the second kind because node l has two neighbors, i and l2, which belong to the set. (d) Local weights and cavity
messages present in the probability densities related to the connected set shown in top-right panel.

To derive a differential equation for the time evolution of
any instantaneous local probability density Pt , we should con-
centrate on connected sets of the first kind. To fix ideas, let us
work with such a connected set containing n inner nodes and
m outer nodes. We will say that the sets I = {i1, i2, . . . , in}
and O = {o1, o2, . . . , om} contain the inner and outer nodes,
respectively. Furthermore, we can define a function ϕ : O →
I that gives, for every outer node ok , the corresponding inner
node ϕ(ok ). Let us use the notation ϕ(ok ) ≡ ϕk to simplify the
writing of the following equations.

The instantaneous probability density can be written as

Pt (�σO, �σI ) =
t∑

�XI |�σI

t∑
�XO |�σO

Qt ( �XO, �XI ), (39)

where �σI and �σO are the vectors of the instantaneous states of
the inner and outer nodes, respectively, and �XI and �XO are the
corresponding vectors of the histories of those nodes. On the
other hand,

Qt ( �XO, �XI )=
[

m∏
k=1

μt
ok→(okϕk )

(
Xok

∣∣Xϕk

)][ n∏
k=1

�t
ik

(
Xik

∣∣X∂ik

)]
,

(40)

where
Now we need to expand (39) to order �t . As in Sec. II A

we can write an order �t expression for Qt+�t ( �XO, �XI ). Re-
membering (34) and (35), we have

Qt+�t ( �XO, �XI ) =
[

m∏
k=1

μt
ok→ϕk

[
1 − λt

ok→ϕk
�t
]+ o(�t )

][
n∏

k=1

�t
ik

[
1 − rt

ik �t
]+ o(�t )

]
,

Qt+�t ( �XO, �XI ) = Qt ( �XO, �XI ) − �t
n∑

l=1

rt
il

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
− �t

m∑
l=1

λt
ol →ϕl

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
, (41)

054303-7



D. MACHADO AND R. MULET PHYSICAL REVIEW E 104, 054303 (2021)

FIG. 2. This figure illustrates what happens when we apply the relation (46) to Eq. (47) in the particular case of the connected set of the
right panels of Fig. 1. We took the outer node k2 (see Fig. 1) as ol . After including a new local weight �t

k2
and two new messages μt

k21→k2
and

μt
k21→k2

, we end up having the probability density of a bigger connected set that includes all neighbors of k2.

where we have shortened our notation as follows:

�t
ik

(
Xik

∣∣X∂ik

) ≡ �t
ik , μt

ok→(okϕk )

(
Xok

∣∣Xik

) ≡ μt
ok→ϕk

,

rik

(
σik (t ), σ∂ik (t )

) ≡ rt
ik , λok→(okϕk )

(
Xok , Xik , t

) ≡ λt
ok→ϕk

. (42)

Similarly as before, there are three contributions to the expansion of (39) to order �t :

I0 =
t∑

�XO |�σO

t∑
�XI |�σI

Qt ( �XO, �XI ) = Pt (�σO, �σI ), (43)

I1 = −�t
t∑

�XO |�σO

t∑
�XI |�σI

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

][
n∑

l=1

rt
il +

m∑
l=1

λt
ol →ϕl

]
, (44)

I2 = �t
n∑

l=1

t∑
�XO |�σO

t∑
�XI |Fil [�σI ]

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
rt

il + �t
m∑

l=1

t∑
�XO |Fol [�σO]

t∑
�XI |�σI

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
λt

ol →ϕl
. (45)

In Appendix B [see Eq. (B12)], we derive the identity

λt
i→ j μt

i→ j =
t∑

X∂i\ j

rt
i �t

i

∏
k∈∂i\ j

μt
k→i, (46)

which leads to

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
λt

ol →ϕl
=

⎡
⎢⎢⎢⎣

m∏
k=1
k �=l

μt
ok→ϕk

⎤
⎥⎥⎥⎦
[

n∏
k=1

�t
ik

]
λt

ol →ϕl
μt

ol →ϕl
, (47)

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
λt

ol →ϕl
=

⎡
⎢⎢⎢⎣

m∏
k=1
k �=l

μt
ok→ϕk

⎤
⎥⎥⎥⎦
[

n∏
k=1

�t
ik

]
t∑

X∂ol \ϕl

rt
ol

�t
ol

[ ∏
k∈∂ol \ϕl

μt
k→ol

]
,

[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
λt

ol →ϕl
=

t∑
X∂ol \ϕl

rt
ol

⎡
⎢⎢⎢⎣

m∏
k=1
k �=l

μt
ok→ϕk

⎤
⎥⎥⎥⎦
[

n∏
k=1

�t
ik

]
�t

ol

[ ∏
k∈∂ol \ϕl

μt
k→ol

]
. (48)

Now, what does the product [
∏m

k=1
k �=l

μt
ok→ϕk

][
∏n

k=1 �t
ik ]�t

ol
[
∏

k∈∂ol \ϕl
μt

k→ol
] on the right-hand side of (48) stand for? As in

the example of Fig. 2, we took (47) and removed the factor λt
ol →ϕl

μt
ol →ϕl

. Then, we included a local weight, �t
ol

, and a group
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of cavity messages μt
k→ol

. Therefore, in (48) we have all the local weights and cavity messages that appear in the probability
density of a bigger connected set, which now includes all the neighbors of ol .

Equation (48) transforms into[
m∏

k=1

μt
ok→ϕk

][
n∏

k=1

�t
ik

]
λt

ol →ϕl
=

t∑
X∂ol \ϕl

rt
ol

Qt
(
X∂ol \ϕl , �XO, �XI

)
. (49)

Thus, we can rewrite (44) and (45) to get

I1 = −�t
t∑

�XO |�σO

t∑
�XI |�σI

⎡
⎣ n∑

l=1

rt
il Q

t ( �XO, �XI ) +
m∑

l=1

t∑
X∂ol \ϕl

rt
ol

Q
(
X∂ol \ϕl , �XO, �XI

)⎤⎦,

I1 = −�t

⎡
⎣ n∑

l=1

ril

(
σil , σ∂il

)
Pt (�σO, �σI ) +

m∑
l=1

∑
σ∂ol \ϕl

rol

(
σol , σ∂ol

)
Pt
(
σ∂ol \ϕl , �σO, �σI

)⎤⎦, (50)

I2 = �t
n∑

l=1

t∑
�XO |�σO

t∑
�XI |Fil [�σI ]

rt
il Q( �XO, �XI ) + �t

m∑
l=1

t∑
�XO |Fol [�σO]

t∑
�XI |�σI

rt
ol

Q(X∂ol \ϕl , �XO, �XI ),

I2 = �t

⎡
⎣ n∑

l=1

ril

(−σil , σ∂il

)
Pt
(
�σO, Fil [�σI]

)+
m∑

l=1

∑
σ∂ol \ϕl

rol

(−σol , σ∂ol

)
Pt
(
σ∂ol \ϕl , Fol [�σO], �σI

)⎤⎦, (51)

where we have returned to the longer notation for the rates rt
i [see Eq. (42)].

Putting (43), (50), and (51) together:

Pt+�t (�σO, �σI ) = I0 + I1 + I2 + o(�t ),

Pt+�t (�σO, �σI ) = Pt (�σO, �σI )−�t
n∑

l=1

[
ril

(
σil , σ∂il

)
Pt (�σO, �σI )−ril

(−σil , σ∂il

)
Pt
(
�σO, Fil [�σI]

)]

−�t
m∑

l=1

∑
σ∂ol \ϕl

rol

(
σol , σ∂ol

)
Pt
(
σ∂ol \ϕl , �σO, �σI

)+ �t
m∑

l=1

∑
σ∂ol \ϕl

ril

(−σil , σ∂il

)
Pt
(
σ∂ol \ϕl , Fol [�σO], �σI

)+ o(�t ),

(52)

and, finally,

dPt (�σO, �σI )

dt
= −

n∑
l=1

[
ril

(
σil , σ∂il

)
Pt (�σO, �σI ) − ril

(−σil , σ∂il

)
Pt
(
�σO, Fil [�σI]

)]

−
m∑

l=1

∑
σ∂ol \ϕl

[
rol (σol , σ∂ol )P

t
(
σ∂ol \ϕl , �σO, �σI

)− rol

(−σol , σ∂ol

)
Pt
(
σ∂ol \ϕl , Fol [�σO], �σI

)]
. (53)

Equation (53) is like a master equation for the combined
set of variables {�σO, �σI}, but it has a very peculiar structure.
The first sum represents the contribution to the derivative
due to flipping rates of spins sitting at inner nodes, and the
second and third lines are the contribution related to outer
nodes. Precisely, there we can notice that the time derivative of
Pt (�σO, �σI ) depends on probability densities defined over big-
ger connected sets: Pt (σ∂ol \ϕl , �σO, �σI ). This means that this is
not a closed system of equations, and we need to complement
it with other relations to obtain the time dependence of its
variables.

Summarizing, in this subsection we presented a general
method to obtain the exact differential equation of any lo-
cal probability density for a treelike graph exploiting the
TRPP. As we already mentioned, this equation can be derived
through much simpler procedures and in more general con-

texts (see Appendix A for an example). However, we believe
that the technique introduced here, and, in particular, the use
of functions that act as messages may clarify the path to be
followed in the next section.

C. Equations for cavity probability densities

To proceed further, it is necessary to find a way to close
the set of equations (53). To do this, we need to first intro-
duce a new set of masterlike equations. They will represent
CMEs to be solved separately. With them, we may write
Pt (σ∂ol \ϕl , �σO, �σI ) in terms of the quantities Pt (�σO, �σI ) (see
below), therefore closing the full system.

We start from the idea that, in a treelike graph, any local
probability density Q of the histories of a connected set can
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FIG. 3. This figure illustrates the relation between probability densities Q (left panel) and cavity probability densities q (right panel) defined
over connected sets. In this case, q is obtained by removing the cavity message μt

j→i, and we say that q is defined in the cavity where Xj is
fixed.

be written as

Qt ( �XO, �XI )=
[

m∏
k=1

μt
ok→(okϕk )

(
Xok |Xϕk

)][ n∏
k=1

�t
ik

(
Xik |X∂ik

)]

(54)

or as a marginal of this kind of expressions. The densities Q
are defined over the space of all possible configurations of the
N-vector �X of nodes histories.

On the other hand, we may introduce a cavity probability
density, q, defined over a reduced space where we partially
or completely fix some of the histories. Thus, Q and q are
fundamentally different.

Here, we will deal only with cavity probability densities
which are defined over connected sets. As in the previous
subsection, we can focus on connected sets of the first kind
without any loss in generality. The reduction of the config-
uration space that gives birth to a cavity treatment occurs in
this case by fixing the history of one outer node. We can write
one of those q densities in terms of local weights and cavity
messages from a probability density Q just by removing the
cavity messages μ corresponding to the fixed outer node. For
example,

qt
( �XO\o j , �XI || Xoj

)

=

⎡
⎢⎢⎣

m∏
k = 1
k �= j

μt
ok→(okϕk )

(
Xok

∣∣Xϕk

)
⎤
⎥⎥⎦
[

n∏
k=1

�t
ik

(
Xik

∣∣X∂ik

)]
. (55)

It is possible to show that the quantities on the left-hand
side of (55) can be properly normalized to one, and the rela-

tion (55) can be interpreted as an identity only in that case.
We will use that interpretation in what follows without loss of
generality.

We say that qt ( �XO\o j , �XI || Xoj ) is defined in the cavity
where Xoj is fixed, which is represented by the symbol ||.
Figure 3 illustrates this idea by revisiting a particular example
shown in the previous subsection.

Let us clarify a bit more the meaning of a cavity relation,
in opposition to a conventional conditional relation. Consider
a simple stochastic process with two random variables A and
B. There, an example of conditional cavity probability density
is pt (a || b) and the analogous conventional conditional prob-
ability density reads Pt (a|b). We have used the notation a and
b for some specific values of the variables A and B.

Notice that we used two different symbols to represent
conditional and cavity relations: | and ||, respectively. We
remark that these are conceptually different. In this example,
the conventional conditional probability density Pt (a|b) is a
measure of the set of configurations with A(t ) = a restricted
to the subspace where B(t ) = b. However, this magnitude is
defined in a stochastic process where A and B can take any
of its possible values in the full configuration space. On the
other hand, a cavity condition pt (a|| b) is a modification to
our stochastic problem whose realizations are now defined on
a configuration space where B(t ) = b in all cases. If that is
not clear, a look back to (55) shows that a cavity density is a
result of removing the probabilistic weight that corresponds
to the fixed variable (B in this case). The question about
what might be happening with B at time t is simply not
asked.

With this in mind, we can go on without derivation. By
marginalizing (55), we get instantaneous cavity probability
densities,

pt
(
�σO\o j , �σI

∥∥ Xoj

) =
t∑

�XO\o j |�σO\o j

t∑
�XI |�σI

qt
( �XO\o j , �XI

∥∥ Xoj

)
, (56)

whose time differentiation is analogous to what we did in the previous subsection. We will have n terms like the ones in the first
line of (53) and m − 1 terms like the ones in the second and third lines of the same equation, only that now everything is defined
in the cavity where Xoj is fixed.
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Thus, proceeding as in Sec. III B it is easy to verify that

d pt
(
�σO\o j , �σI

∥∥ Xoj

)
dt

= −
n∑

l=1

[
ril (σil , σ∂il ) pt

(
�σO\o j , �σI

∥∥ Xoj

)− ril

(−σil , σ∂il

)
pt
(
�σO\o j , Fil [�σI]

∥∥ Xoj

)]

−
m∑

l=1
l �= j

∑
σ∂ol \ϕl

[
rol (σol , σ∂ol ) pt

(
σ∂ol \ϕl , �σO\o j , �σI

∥∥ Xoj

)−rol (−σol , σ∂ol ) pt
(
σ∂ol \ϕl , Fol

[
�σO\o j

]
, �σI

∥∥ Xoj

)]
.

(57)

As (53), Eq. (57) is exact in treelike graphs. However, none of them can be analytically or numerically solved. Equations (53)
and (57) contain expressions for the time derivatives of densities Pt (�σO, �σI ) and pt (�σO\o j , �σI || Xoj ), but these expressions are
not closed on the same variables. They both depend on probability densities defined over bigger sets of nodes.

D. Closure and hierarchical approximations

Although cavity probability densities are defined over configuration spaces which are fundamentally different than the full
configuration space of all histories, we can use them to give a closure to equations like (53).

First, let us make a Markovian approximation in Eq. (56) by substituting the full history Xoj by its final state σo j :

d pt
(
�σO\o j , �σI

∥∥ σo j

)
dt

= −
n∑

l=1

[
ril (σil , σ∂il ) pt

(
�σO\o j , �σI

∥∥ σo j

)− ril

(−σil , σ∂il

)
pt
(
�σO\o j , Fil [�σI]

∣∣σo j

)]

−
m∑

l=1
l �= j

∑
σ∂ol \ϕl

[
rol

(
σol , σ∂ol

)
pt
(
σ∂ol \ϕl , �σO\o j , �σI

∥∥ σo j

)− rol

(−σol , σ∂ol

)
pt
(
σ∂ol \ϕl , Fol

[
�σO\o j

]
, �σI

∥∥ σo j

)]
.

(58)

Equation (58) gives the time derivative of a probability density pt (�σO\o j , �σI || σo j ) that can be defined over any connected set
in the graph. Its first two lines represent the contribution to the derivative due to flipping rates of spins sitting at inner nodes, and
the last two lines correspond to the contribution related to outer nodes (except for σo j ). As in (53), this equation is not closed.
Densities like pt (σ∂ol \ϕl , �σO\o j , �σI || σo j ) are defined over connected sets which include more nodes than pt (�σO\o j , �σI || σo j ).
Again, we need closure relations for (58).

1. First-order closures

It is useful at this time to revisit the closure presented in Ref. [5], considered now as the simplest approximation we can make
to equations like (58). Indeed, the CME in Ref. [5] is written for the cavity densities pt (σi || σ j ), each one involving only two
spins. Following (58), the equation for this variables reads

d pt (σi || σ j )

dt
= −

∑
σ∂i\ j

{ri(σi, σ∂i ) pt (σ∂i\ j, σi || σ j ) − ri(−σi, σ∂i ) pt (σ∂i\ j,−σi || σ j )}. (59)

To close (59), we need to write pt (σ∂i\ j, σi || σ j ) in terms of pt (σi || σ j ). To do so in a transparent way, we first make a small
detour.

Similarly as in Sec. III C, consider the simple case of a stochastic process with three random variables A, B, and C. There, an
example of conditional cavity probability density reads

pt (A = a|B = b || C = c) = pt (a, b || c)

pt (b || c)
, (60)

where a, b, and c are values of the variables A, B, and C. Again, notice that we used two different symbols to represent conditional
and cavity relations: | and ||, respectively. Following the language we used in Sec. III C, we say that the density (60) is a measure
of the set of configurations with A(t ) = a restricted to the subspace where B(t ) = b of a stochastic process whose realizations
always have C(t ) = c.

Now, we can write the exact relation:

pt (σ∂i\ j, σi || σ j ) = pt (σ∂i\ j |σi || σ j ) pt (σi || σ j ). (61)
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In Ref. [5], this relation is approximated by

pt (σ∂i\ j, σi || σ j ) = pt (σ∂i\ j |σi || σ j ) pt (σi || σ j ) ≈
⎡
⎣ ∏

k∈∂i\ j

pt (σk ||σi)

⎤
⎦ pt (σi || σ j ). (62)

The substitution in (62) can be interpreted as a series of changes made to pt (σ∂i\ j |σi || σ j ). First, the cavity relation with
σ j is dropped to get pt (σ∂i\ j |σi || σ j ) ≈ pt (σ∂i\ j |σi ). Then, the conditional relation with σi is substituted by a cavity relation
pt (σ∂i\ j |σi ) ≈ pt (σ∂i\ j || σi ). These approximations increase their accuracy when the correlations between σ∂i\ j , σ j and σi

decrease [5].
Completely dropping the dependence on σ j looks more drastic than replacing |σi by || σi, but we must notice that node j is

farther apart from any node in ∂i \ j than node i, thus, σ∂i\ j should be less correlated with σ j than with σi. Finally, it is easy to
see that pt (σ∂i\ j || σi ) can be exactly factorized to get (62), and we obtain the CME as presented in [5]:

d pt (σi || σ j )

dt
= −

∑
σ∂i\ j

⎧⎨
⎩ri(σi, σ∂i )

⎡
⎣ ∏

k∈∂i\ j

pt (σk || σi )

⎤
⎦pt (σi || σ j ) − ri(−σi, σ∂i )

⎡
⎣ ∏

k∈∂i\ j

pt (σk || − σi )

⎤
⎦pt (−σi || σ j )

⎫⎬
⎭. (63)

In Refs. [5–7,13] these kinds of equations are integrated together with

dPt (σi )

dt
= −

∑
σ∂i

{
ri(σi, σ∂i )

[∏
k∈∂i

pt (σk ||σi)

]
Pt (σi ) − −ri(−σi, σ∂i )

[∏
k∈∂i

pt (σk || − σi )

]
Pt (−σi )

}
, (64)

where a similar factorization is used:

Pt (σ∂i, σi ) = Pt (σ∂i|σi )P
t (σi ) ≈ pt (σ∂i || σi ) Pt (σi) =

[∏
k∈∂i

pt (σk ||σi )

]
Pt (σi ). (65)

Although these equations had proven their utility in previous works, we can go beyond Eq. (63) by directly obtaining the time
dependence of the probability densities pt (σ∂i\ j, σi || σ j ). These are defined over a larger connected sets, and according to the
general equation (58) its time derivative can be written as

d pt (σ∂i\ j, σi || σ j )

dt
= −ri(σi, σ∂i ) pt (σ∂i\ j, σi || σ j ) + ri(−σi, σ∂i ) pt (σ∂i\ j,−σi || σ j )

−
∑

l∈∂i\ j

∑
σ∂l\i

{rl (σl , σ∂l ) pt (σ∂l\i, σ∂i\ j, σi || σ j ) − rl (−σl , σ∂l ) pt (σ∂l\i, Fl [σ∂i\ j], σi || σ j )}. (66)

Again, we need to close these equations introducing some relation between the probability densities pt (σ∂l\i, σ∂i\ j, σi || σ j )
and pt (σ∂i\ j, σi || σ j ). We can always concentrate on conditional cavity densities, which allow us to write

pt (σ∂l\i, σ∂i\ j, σi || σ j ) = pt (σ∂l\i|σ∂i\ j, σi || σ j ) pt (σ∂i\ j, σi || σ j ). (67)

As before, we can take pt (σ∂l\i|σ∂i\ j, σi || σ j ) and drop the dependence on σ j . As all nodes in ∂i \ j, except for l , are at
the same distance from any node in ∂l \ i than node j, the corresponding spins will be in average equally correlated with σ∂l\i

than σ j . Let us also drop the conventional conditional dependence on these nodes to get the relation pt (σ∂l\i|σ∂i\ j, σi || σ j ) ≈
pt (σ∂l\i|σl , σi ). This procedure is now more accurate than with (63), because we are neglecting correlations associated with
nodes which are farther apart in the graph.

Then, we replace the conventional conditional relation with σi by a cavity relation to obtain

pt (σ∂l\i|σ∂i\ j, σi || σ j ) ≈ pt (σ∂l\i|σl || σi ) = pt (σ∂l\i, σl || σi )∑
σ∂l\i

pt (σ∂l\i, σl || σi )
. (68)

With this, we have closed (66) through approximations for conditional cavity probability densities.
Equations (66) and (68) must also be combined with differential equations for the probability densities Pt . In this case, we

can use, for example,:

dPt (σ∂i, σi )

dt
= −ri(σi, σ∂i ) Pt (σ∂i, σi ) + ri(−σi, σ∂i ) Pt (σ∂i,−σi )

−
∑
l∈∂i

∑
σ∂l\i

{rl (σl , σ∂l ) pt (σ∂l\i|σl || σi ) Pt (σ∂i, σi ) − rl (−σl , σ∂l ) pt (σ∂l\i| − σl || σi ) Pt (Fl [σ∂i], σi )}, (69)

which involves essentially the same approximations than (69):

Pt (σ∂l\i, σ∂i, σi ) = Pt (σ∂l\i|σ∂i, σi ) Pt (σ∂i, σi ) ≈ pt (σ∂l\i|σl ||σi ) Pt (σ∂i, σi ). (70)
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FIG. 4. A cavity probability density pt (�σO\o j , �σI || σo j ) is defined over a general connected set. This figure illustrates the classification of
these sets according to the distance between the outer nodes and the origin oj . (a) The maximum distance is d = 3. Thus, the set belongs to
class CS-3. In this example, all distances are not equal. (b) Every outer node is at a distance d = 3 from oj . Thus, the set is rCS-3 and belongs
to CS-3.

The performance of the set of equations (66)–(70) that we call in the following CME-2 will outperform the CME as presented
in Ref. [5] [see Eqs. (63) and (64)]. This is illustrated below in Sec. IV.

2. General closure

Although we gave an initial idea of how to use the dynamic cavity method to obtain closed systems of differential equations
for local probability densities, our goal is to provide a general method that works for any equation like (57). This requires some
sense of structure and order that should facilitate the reader’s comprehension. We will move among connected sets of the first
kind (see Fig. 1) to establish a hierarchy using the concept of distance within the graph.

We can find a path that connects every pair of nodes in a connected set. Furthermore, for each pair there is always a path with
minimum length, and we can define a distance between nodes as the length of that minimal path. The distance d (k, l ) between
nodes k and l , with k �= l , is then a positive integer.

From this, we can classify the connected set {O \ oj, I, o j} according to the distances between the node o j (the origin) and
all the outer nodes O \ o j . When the maximum distance maxol ∈O\o j {d (o j, ol )} is equal to the integer Z , we will say that the
connected set is in the class CS-Z. If all the outer nodes (except oj) are at the same distance from o j ,i.e., if d (o j, ol ) = d (o j, ok )
for all ok, ol ∈ O \ o j , we will say that the connected set is regular and use the notation rCS-Z to refer to that specific set. Of
course, every rCS-Z belongs to the class CS-Z. Figure 4 illustrates this classification.

In this context, we can use the notation

pt
(
�σO\o j , �σI

∥∥ σo j

) ≡ pt
(
�σZ , �σZ−1, . . . , �σ2, �σ1

∥∥ σo j

) ≡ pt
(
�σZ , �σZ−1, . . . , �σ2, σi j

∥∥ σo j

)
, (71)

where i j is the inner node connected to o j .
In (71), the vector �σz (1 � z � Z) contains the spins σk such that d (k, o j ) = z, with the condition that k ∈ O or k ∈ I. The

cavity probability density in (71) is defined over a connected set that belongs to the class CS-Z, which we will represent with the
symbol pt (CS-Z). To simplify our language, we will simply say that all pt (CS-Z) are in CS-Z.

Using our new notation (71), the cavity probability densities in the last two lines of (58), which are in CS-(Z + 1), can be
rewritten as

pt
(
σ∂ol \ϕl , �σO\o j , �σI

∣∣ σo j

) ≡ pt
(
�σZ+1, �σZ , �σZ−1, . . . , �σ2, σi j

∥∥ σo j

)
, (72)

where �σZ+1 is exactly the same than σ∂ol \ϕl .
Notice that every pt (CS-Z) is a marginal of a cavity probability density defined over the corresponding regular set rCS-Z (see

left panels of Fig. 4). In view of all this, what we need to write is a system of equations like

d pt (rCS-Z)

dt
= F [pt (rCS-Z)], (73)

which in our case is equivalent to find a relation pt (CS-(Z+1)) = f [pt (CS-Z)].
With this classification of connected sets according, essentially, to their size, we are ready to find that f [·] function. Let us

write

pt
(
�σZ+1

∣∣�σZ , . . . , σi j

∥∥ σo j

) = pt
(
�σZ+1, �σZ , . . . , σi j

∥∥ σo j

)
pt
(
�σZ , . . . , σi j

∥∥ σo j

) . (74)
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If the distance Z + 1 is large compared to the system’s correlation length, we can assume that the fact of having fixed the
value of σo j at time t is irrelevant for the state �σZ+1 on the left-hand side of (73):

pt
(
�σZ+1

∣∣�σZ , . . . , σi j

∥∥ σo j

) ≈ pt
(
�σZ+1|�σZ , . . . , �σ2, σi j

)
. (75)

Following the same reasoning, we can drop all the spins in {�σZ , . . . , �σ2} whose distance to the nodes in �σZ+1 is larger than
Z . We have already done this kind of approximation when writing the equations for pt (σi ||σ j ) and pt (σ∂i\ j, σi ||σ j ); here we
are just generalizing. The remaining spins {�σZ+1, �σ ′

Z , . . . , �σ ′
2, σi j } are defined over a connected set of the class CS-Z, with origin

in i j .
Furthermore, when the spatial correlation between �σZ+1 and σi j is low, we can make the approximation [5]

pt
(
�σZ+1|�σ ′

Z , . . . , �σ ′
2, σi j

) ≈ pt
(
�σZ+1|�σ ′

Z , . . . , �σ ′
2

∥∥ σi j

) = pt
(
�σZ+1, �σ ′

Z , . . . , �σ ′
2

∥∥ σi j

)
pt
(
�σ ′

Z , . . . , �σ ′
2

∥∥ σi j

) . (76)

Notice that the distance between i j and the nodes related to �σZ+1 is equal to Z , so we are assuming that the correlation decays
noticeably at that distance.

From (75) and (76), we have

pt
(
�σZ+1|�σZ , . . . , σi j

∥∥ σo j

) ≈ pt
(
�σZ+1, �σ ′

Z , . . . , �σ ′
2

∣∣ σi j

)
∑

�σZ+1
pt
(
�σZ+1, �σ ′

Z , . . . , �σ ′
2

∥∥ σi j

) , (77)

and the probability densities (72) become

pt
(
�σZ+1, �σZ , . . . , σi j

∣∣ σo j

) = pt
(
�σZ+1|�σZ , . . . , σi j

∣∣ σo j

)
pt
(
�σZ , . . . , σi j

∥∥ σo j

)
,

pt
(
�σZ+1, �σZ , . . . , σi j

∥∥ σo j

) ≈ pt
(
�σZ+1, �σ ′

Z , . . . , �σ ′
2

∣∣ σi j

)
∑

�σZ+1
pt
(
�σZ+1, �σ ′

Z , . . . , �σ ′
2

∥∥ σi j

) pt
(
�σZ , . . . , σi j

∥∥ σo j

)
. (78)

Thus, we have managed to write the function f [pt (CS-Z)]
that gives any cavity probability density in CS-(Z + 1) in
terms of several densities in CS-Z. This constitutes a closure
for (58), and we can now numerically solve these equations.

It is important to say that after solving for pt (CS-Z), we can
compute all the cavity probability densities in CS-1, CS-2,...,
CS-(Z-1) as its marginals.

As for (53), we can write Pt (σ∂ol \ϕl , �σO, �σI ) in terms of
Pt (�σO, �σI ) and a cavity probability density whose value we
can obtain from the numerical integration of (58) with the
relation (78). We do

Pt
(
σ∂ol \ϕl , �σO, �σI

) = Pt
(
σ∂ol \ϕl

∣∣�σO, �σI
)

Pt (�σO, �σI ),

Pt
(
σ∂ol \ϕl , �σO, �σI

) ≈ pt
(
σ∂ol \ϕl |�σO\o j , �σI

∣∣σo j

)
Pt (�σO, �σI ).

(79)

Here we changed the conditional probability density
Pt (σ∂ol \ϕl |�σO, �σI ) by a conditional cavity density. Never-
theless, we introduced the cavity condition by fixing only
the spin σo j . Again, this substitution should be accurate
when the distance between o j and the nodes in ∂ol \ ϕl

is large enough compared with correlation length. Finally,
Eqs. (58), (74), (78), and (79) give a closure to the differential
Eq. (53) and we are ready to numerically obtain the time
dependence of system’s observables.

It is important to say that our closure relations could be
used in several ways, but the key point will always be how to
choose the distance Z at which we neglect correlations and
substitute conventional conditional relations by conditional
cavity relations. This distance will be the parameter that de-
fines what we will call a level of approximation.

Summarizing, we define a level of approximation through
the differential equations for the cavity probability densi-

ties (58). If we write them for densities pt (CS-Z), we say that
we are in the Zth level of approximation. Within this context,
Eqs. (63) and (64) constitute a first-level approximation and
we will say they are in the level CME-1. On the other hand,
Eqs. (66)–(70) are in the second level, which is CME-2.

IV. NUMERICAL RESULTS

The information about the nature of the interactions and the
local dynamics goes into the spin-flip rates ri(σi, σ∂i ), which
of course depend on the graph’s structure. Here, we will work
over two families of diluted random graphs which are locally
treelike: Erdos-Renyi [24] and random regular graphs.

In practice, once interactions are set, we select an initial
condition for all probability densities (Pt0 and pt0 ), and the in-
tegration of the equations gives the full Pt and pt . In Sec. IV A,
we will explore the numerical differences obtained with first
and second levels of approximation, CME-1 and CME-2, into
two well-known spin models from statistical mechanics, the
Ising ferromagnet and the Viana-Bray spin-glass, both defined
over Erdos-Renyi graphs. In Sec. IV B, we compare CME-2
and CME-3 with the dynamical independent neighbor approx-
imation (DINA) presented in Ref. [22] for the dynamics of
the Ising ferromagnet. Finally, in Sec. IV C we also contrast
the results of CME-2, with the ones of pair quenched mean-
field approximation for the dynamics of the SIS model for
epidemics [25,26].

A. First and second levels of approximation

One of the traditional forms that theorists choose for
the spin flipping probabilities per time unit is Glauber’s
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FIG. 5. Dynamics of the Ising ferromagnet according to kinetic Monte Carlo simulations (points), and the integration of equations in levels
CME-1 (thick lines) and CME-2 (dashed lines). In all cases, an initially fully magnetized system evolves in time in contact with a heat bath
at a given temperature. Calculations were done for Erdos-Renyi graphs of size N = 5000 with mean connectivity c = 3. (a) Time evolution
of system’s magnetization [see Eq. (83)]. (b) Time evolution of the error (84) between local magnetizations predicted by CME-1, 2, and the
results of kinetic Monte Carlo simulations. (c) Time evolution of system’s energy density [see Eq. (85)]. (d) Time evolution of the error (86)
written for the expected values of local energy terms.

rule [8]:

ri(σi, σ∂i ) = 1

2

[
1 − σi tanh

(
β
∑
k∈∂i

Jkiσk + βhi

)]
. (80)

As usual, the spin variables σi can take the values σi = ±1.
The interaction between each pair of connected spins (σi, σ j )
is encoded in the couplings parameters Ji j = ±1 and can be
either satisfied (Ji jσiσ j = 1) or unsatisfied (Ji jσiσ j = −1). On
the other hand, the hi are local fields that we will set here to
zero. The parameter β is the inverse of the temperature T .

We can then write

ri(σi, σ∂i ) ≡ ri(ci, ui ) = 1
2 [1 − tanh(β(ci − 2ui ))], (81)

where ci is spin’s connectivity and we can use the Kronecker’s
delta to write

ui ≡ ui(σi, σ∂i ) =
∑
k∈∂i

δJki,−σkσi . (82)

When the number ui of unsatisfied interactions between i
and its neighbors is large, there is a high probability that σi

changes to −σi [see Eq. (81)].
Let us assume we have an Erdos-Renyi graph with N

nodes, and in every node a spin variable. The corresponding
ferromagnetic Ising model is the result of setting Ji j = 1 for
all the connected pairs (i, j). With this definition and with the
rules (81) we can make kinetic Monte Carlo simulations of the
system’s dynamics.

Figure 5 shows results of these simulations alongside the
semianalytical output of our dynamic cavity method in the
first (CME-1) and second (CME-2) levels of approximation.
These results were obtained by integrating Eqs. (63), (64),
and (66)–(70), respectively. In all cases, the initial condition
is a configuration with all spins pointing up. Top-left panel
contains the time evolution of the system’s magnetization
[Eq. (83)], while top-right panel illustrates the correspond-
ing error for the local magnetization [Eq. (84)] between a
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theoretical approach and the simulation (MC):

m(t ) = 1

N

N∑
i=1

∑
σi

σi Pt (σi ) ≡ 1

N

N∑
i=1

mi(t ), (83)

δmTH(t ) =
√√√√ 1

N

N∑
i=1

(
mTH

i (t ) − mMC
i (t )

)2
, (84)

The behavior depicted in the top-left panel is typical of
ferromagnets. A transition between two regimes occurs at
some TC = (arctanh[1/c])−1 [27] (when the average connec-
tivity is c = 3, we have TC ≈ 2.89). In the thermodynamic
limit, the spin’s up-down symmetry is broken, steady-state
magnetization is zero for high temperatures (T > TC), and at
low temperatures (T < TC) we have nonzero magnetization
for all times.

Both levels of approximation, CME-1 and CME-2, give
a good qualitative and quantitative description of the mag-
netization obtained from the simulations, especially at the
steady state. This is not surprising. In the cases where the
steady state is governed by a Boltzmann distribution,
the long-time limit of our dynamical scheme is equivalent to
the traditional equilibrium cavity method [13]. This means
that on the ferromagnet we will get the well-known be-
lief propagation (BP) solutions by integrating our dynamical
equations for long enough. At treelike networks, which here
implies taking the thermodynamic limit, the fixed point of BP
is the exact solution of the problem. Finite-size effects are
responsible for the discrepancies between the steady state of
our equations and the simulations.

The results of CME-2 are particularly accurate, in the
steady state and in the transient. The top-right panel of Fig. 5
shows CME-2 reproduces local magnetizations mMC

i (t ) also
quite well, with errors of order 10−3 − 10−2.

The bottom-left panel of Fig. 5 shows the time evolution of
the ferromagnet’s energy density,

e(t ) = − 1

2N

∑
i �= j

∑
σi

∑
σ j

Pt (σi, σ j )Ji jσiσ j = 1

2

∑
i �= j

ei j (t ),

(85)

which is a measure of how many unsatisfied interactions are
in the system. Again, our dynamic cavity method gives very
accurate results, even for the expected values of local energy
terms ei j (t ). The bottom-right panel of Fig. 5 shows the time
evolution of the local error,

δeTH(t ) =
√√√√ 1

2M

∑
i �= j

(
eTH

i j (t ) − eMC
i j (t )

)2
, (86)

where M is the number of connected pairs (i, j). This error
remains of order 10−3 − 10−2 for all times.

Another way of choosing the couplings is to draw each
one from the bimodal distribution d (Ji j ) = 1/2δ(Ji j − 1) +
1/2δ(Ji j + 1). In this model, also defined over Erdos-Renyi
random graphs, we have a transition to a spin-glass phase at
a finite temperature TSG. As correlations play an important
role when temperature decreases, we know that the approx-
imations we made in Sec. III D cannot be as accurate as with
the ferromagnet.

Figure 6 shows results for this model in a graph
with c = 3, where the transition temperature is TSG =
(arctanh[

√
1/c])−1 ≈ 1.52 [28]. As expected, below TSG the

description is not as successful as for the ferromagnetic case.
However, it still holds that CME-2 performs better than CME-
1. In the top-right panel, we see that for 0 � t � 100 the
errors are on a scale of 10−1, which is one order higher
than what we saw in the ferromagnet. Furthermore, even with
the approximation CME-2, the error seems to monotonically
increase with time.

However, our theoretical description of the simulations
is noticeably improved just by going up one level in our
hierarchical approximations. Not only errors for local magne-
tizations are appreciably smaller with level CME-2 than with
CME-1. If we look at the bottom panels of the figure, we see
how this second level of approximation already gives a good
description of the average e(t ) even at very low temperatures
like T = 0.25 � TSG. However, this result might be mislead-
ing because the errors for the expected values of local energy
terms are still of order 10−1.

Results in Figs. 5 and 6 indicate that the performance of the
approach used in Refs. [5–7,13] (in CME-1) is significantly
improved just by using the next level of approximation. It is
important to say that the integration of equations in the second
level, although very accurate, does not take high effort, con-
sidering the capabilities of present-day personal computers,
not to mention high-performance computers.

B. Comparison with other theoretical approaches

The hierarchical system of approximations introduced for
the study of stochastic local search algorithms [20,21] and
systematized in Ref. [22] combines theoretical simplicity with
numerical accuracy in a variety of traditional models from
statistical mechanics. Here, we will compare our theoretical
approach with the DINA, which constitutes the second level
of the scheme presented in Ref. [22].

In the case of an Ising ferromagnet with Glauber rates (81)
defined over random regular graphs, where every node has K
neighbors, the DINA works with the exact equation:

dP̂t (σ, u)

dt
= −r(K, u) P̂t (σ, u) + r(K, K − u) P̂t (−σ, K − u)

−
K−1∑
u′=0

(K − u′) r(K, u′) P̂t (σ, u′)[P̂t (u|σ, σ, u′) − P̂t (u − 1|σ, σ, u′)]

−
K−1∑
u′=0

(u′+1) r(K, u′ + 1) P̂t (σ, u′ + 1)[P̂t (u − 1|σ,−σ, u′) − P̂t (u|σ,−σ, u′)], (87)
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FIG. 6. Dynamics of the Viana-Bray spin glass according to kinetic Monte Carlo simulations (points), and the integration of equations
in levels CME-1 (thick lines) and CME-2 (dashed lines). In all cases, an initially fully magnetized system evolves in time in contact with a
heat bath at a given temperature. Calculations were done for Erdos-Renyi graphs of size N = 1000 with mean connectivity c = 3. (a) Time
evolution of system’s magnetization [see Eq. (83)]. (b) Time evolution of the error (84) between local magnetizations predicted by CME-1,
2, and the results of kinetic Monte Carlo simulations. (c) Time evolution of system’s energy density [see Eq. (85)]. (d) Time evolution of the
error (86) written for the expected values of local energy terms.

together with the closure relations [22]:

P̂t (û|σ, σ, û′) ≈ (K − û)P̂t (σ, û)∑
u′ (K − u′) P̂t (σ, u′)

, (88)

P̂t (û|σ,−σ, û′) ≈ (û + 1)P̂t (σ, û + 1)∑
u′ u′ P̂t (σ, u′)

. (89)

Here, r(K, u) ≡ ri(ci = K, ui = u) [see Eq. (81)] and
P̂t (σ, u) is the probability density of having a node with spin σ

and u unsatisfied interactions with its neighbors. The variable
u is an integer between zero and K . This can be written in
terms of the densities Pt (σi, σ∂i ) as

P̂t (σ, u) = lim
N→∞

� 1

N

N∑
i=1

∑
σi

∑
σ∂i

Pt
ξK (N )(σi, σ∂i ) δσ,σi

× δ(
∑

k∈∂i σk ),K−2u �ξK (N ), (90)

where ξK (N ) is the ensemble of random regular graphs with
connectivity K and size N , and δx,y is a Kronecker delta eval-
uated at (x, y). The symbol � · �ξK (N ) represents an average
over this ensemble, with proper probabilistic weights.

We can similarly define the probability density
P̂t (σ, σ ′, û, û′) of having a connected pair (σ, σ ′) with û
and û′ unsatisfied interactions with their other neighbors,
respectively. In this case, û, û′ are integers between zero and
K − 1. The magnitude P̂t (û|σ, σ ′, û′) that we have in (87) is
the conditional probability density:

P̂t (û|σ, σ ′, û′) = P̂t (σ, σ ′, û, û′)∑
û P̂t (σ, σ ′, û, û′)

. (91)

The closure relation used in DINA can be derived starting
from the assumptions of the dynamical replica approach under
a replica symmetry ansatz [22]. This explains why DINA
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FIG. 7. Comparison between the dynamics of the Ising ferromagnet defined at random regular graphs according to kinetic Monte Carlo
simulations (points), the integration of the DINA (thin-dashed lines), and equations in the levels CME-1 (thick lines), CME-2 (dashed lines),
and CME-3 (dashed-dotted lines). In all cases, an initially fully magnetized system with mean connectivity K = 3 evolves in time in contact
with a heat bath at a given temperature. KMC calculations were done for a random regular graph of size N = 10000. (a) The main and the
inserted graphics show the time evolution of system’s magnetization [see Eq. (83)]. The first one compares the different levels of approximation
of our dynamic cavity method with the DINA and displays results for T = 1.75, 1.82, 2.0 (from top to bottom). The latter compares the DINA
with the results of kinetic Monte Carlo simulations and displays results for T = 1.5, 1.75, 1.82, 2.0 (from top to bottom). (b) The main graphic
shows the absolute difference �m between the average magnetizations predicted by the DINA and by different levels of approximation of the
dynamic cavity method. All curves correspond to T = 2.0. The inserted graphic compares the DINA with kinetic Monte Carlo using the same
�m parameter, whose behavior is displayed for T = 1.82, 1.75, 1.5, 2.0 (from top to bottom).

gives very accurate results in models where detailed balance
holds. In this case, it is more likely that the microscopic
probability distribution function is a constant within a sub-
space with a finite number of order parameters. Indeed, we
know that in those models the condition is satisfied at least at
equilibrium.

The inserted plot on the left panel of Fig. 7 shows very
good agreement between the average magnetizations pre-
dicted by the DINA and the KMC simulations for the Ising
ferromagnet defined over random regular graphs. This is
complemented by the inserted plot on the right panel. It is
important to notice that the DINA is not written for single
instances and, therefore, it cannot give local information. This
means that Eq. (84) is not applicable here and we need to
define a new error. The simplest one is the absolute difference
between the average magnetizations, a parameter that we call
�m (in contrast to δm).

In the inserted plot of the right panel of Fig. 7, �m is
of order 10−3 for all times. This speaks very well of the
DINA’s accuracy when predicting the behavior of the average
magnetization, even at finite size systems (in this case N =
10 000).

We already said in Sec. IV A that in the thermodynamic
limit, our dynamical cavity method gives the correct solution
for the equilibrium of the ferromagnet in random graphs,
where it is equivalent to the equilibrium cavity method [13].
Coolen et al. established the convergence of DRT under
replica symmetry to the standard equilibrium replica sym-

metric solution [14]. Therefore, the steady state of the DINA
and our equations must be equivalent under the conditions
described above.

As can be seen, (87) is an average over the graph en-
semble of the differential equation for Pt (σi, σ∂i ), which has
the form (53). Therefore, closure relations (88) and (89) are
equivalent to our closure relation (70) in the sense that both
are approximations for the same kind of conditional proba-
bilities. Actually, they both drop the information about the
number of unsatisfied relations û′. An important difference is
in the fact that the first ones are written for the average case
probability densities, while the latter is written for the single
instance.

However, for our dynamic cavity method, all sites become
equivalent at random regular graphs with homogeneous initial
conditions. In that case, all probability densities defined over
connected sets with the same structure follow the same dif-
ferential equations. We can drop information about the local
structure of the graph. As we show in Appendix C, we can
forget the irrelevant details of, let us say, Pt (σi, σ∂i ). All the
combinations of σi, σ∂i with the same value of σi and the
same number of unsatisfied interactions between this spin
and its neighborhood will have the same probability density
Pt (σ = σi, u = ∑

k∈∂i δσk ,−σi ).
We are easily able to write average case equations (see

Appendix C) for several levels of approximation, as the den-
sity (90) can be directly written as P̂t (σ, u) = (K

u

)
P(σ, u).

Here we present one of the equations we used to get the time
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dependence of the densities at (90)

dP̂t (σ, u)

dt
= −r(K, u) P̂t (σ, u) + r(K, K − u) P̂t (−σ, K − u)(K − u) 〈 r(K, u′) 〉σ,σ P̂t (σ, u) + (u + 1) 〈 r(K, u′) 〉−σ,σ

× P̂t (σ, u + 1) − u 〈 r(K, u′) 〉−σ,σ P̂t (σ, u) + (K − u + 1) 〈 r(K, u′) 〉σ,σ P̂t (σ, û − 1), (92)

where we have assumed that 1 � u � K − 1 and used the
averages 〈 r(K, u′) 〉σ,σ ′ = ∑K−1

u′=0 r(K, u′) p̂t (u′|σ || σ ′). The
equations for u = 0, K are easily obtained from (92) by sup-
pressing its second or third line, respectively.

Equation (92) is analogous to (87) not only because they
both give the time derivative of the same quantities but also
because they have similar structures. The main difference is
that we have made the approximation

P̂t (σ, u) P̂t (u′|σ ′, σ, u) ≈ P̂t (σ, u) p̂t (u′|σ ′, σ )

≈ P̂t (σ, u) p̂t (u′|σ ′ || σ ). (93)

The closure (93) works as a substitution drawn from
our dynamic cavity method for the conditional probabilities
P̂t (u′|σ ′, σ, u). The densities p̂t (û|σ || σ ′) can be obtained
from our cavity treatment (see Appendix C). On the other
hand, closures (88) and (89) of DINA are the substitutions
for P̂t (u′|σ ′, σ, u) that correspond to the assumptions of DRT.

The main panels of Fig. 7 show a comparison between
approximations in the first, second, and third levels of our
dynamic cavity method and the DINA. Each level is defined
by the approximation we use to obtain the cavity probability
densities p̂t (û|σ || σ ′). As the level increases, our method pre-
dicts a time dependence of the magnetization which is closer
to what is obtained from DINA. This means that our cavity
closure on the densities p̂t (û|σ || σ ′) becomes similar to the
DRT-like closures (88) and (89), which work very well in this
case.

C. Susceptible-infectious-susceptible model for epidemics

The propagation of an epidemic is a relevant issue present
in various scenarios. Problems like the dissemination of a
disease within a population [29] or the spreading of a com-
puter virus or rumors over a network [30] are studied by
numerous scientists all over the world. We do not have to
explain the significance that the global COVID-19 pandemic
has brought nowadays to the development of theoretical tools
for understanding epidemic outbreaks [31].

There are a vast variety of models for epidemic processes.
Since the seminal work by Kermack and McKendric [32]
about the susceptible-infectious-recovered (SIR) model, we
are used to seeing compartment models whose main idea is
to divide the population into several groups. Each one of
those groups is assumed to be homogeneous, in the sense
that all individuals interact with rules that depend on which
group they belong to. However, this does not necessarily mean
that all of members of a compartment are equivalent. The
dynamics, for example, can be defined over a specific contact
network. Here, we will concentrate on the SIS model defined
over random regular graphs.

The standard SIS uses two compartments (states) xi = 0 ≡
susceptible, or xi = 1 ≡ infectious and is the simplest model

for recurrent transmissible diseases. The epidemic is thus a
continuous-time stochastic process with only two admitted
transitions. An infectious node transmits the disease to each
one of its neighbors with rate β and recovers with rate μ, as
represented in Fig. 8. The ratio λ = β/μ, known as spreading
rate, is commonly used as the control parameter of the model.

Such stochastic process can be described by a master equa-
tion like (27), where the relevant quantities are probability
densities over discrete variables: Pt (�x). This allows us to apply
our dynamic cavity method here, and, as said before, we only
have to adapt the rates:

ri(xi, x∂i ) = β δxi,0

∑
k∈∂i

xk + μδxi,1. (94)

The probability per time unit that xi changes its value,
ri(xi, x∂i ), is equal to μ when node i is infectious (xi = 1), and
is equal to β times the number of infected neighbors of i when
the node is occupied by a susceptible individual (xi = 0). This
corresponds with our description of the model.

The dynamics of SIS on random networks has motivated
abundant literature. One of the most successful theoretical
approaches in this scenario is known as quenched mean-field
(QMF) theory [33,34], which allows calculating the epidemics
threshold by complementing the master equation with some
suitable factorization. The most accurate version of QMF is
pair quenched mean field (PQMF), or pair-based mean-field.
This approximation considers pair correlations and has been
intensively investigated lately [35,36] with very good results.

The PQMF equations read

dρi

dt
= −μρi + β

∑
j∈∂i

(ρ j − ψi j ) (95)

and

dψi j

dt
= −2(μ + β )ψi j + β(ρi + ρ j ) + β

ρ j − ψi j

1 − ρi

×
∑

k∈∂i\ j

(ρk − ψik ) + β
ρi − ψi j

1 − ρ j

∑
k∈∂ j\i

(ρk − ψ jk ),

(96)

FIG. 8. Allowed transitions in SIS compartment model on
networks.
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FIG. 9. Dynamics of the SIS model for epidemics according to kinetic Monte Carlo simulations (points), the integration of PQMF (dashed
lines), and equations in the first (CME-1, thick lines) and second (CME-2, thin lines) levels of our dynamic cavity method. Calculations were
done for β = 0.4 and μ = 0.25, 0.4, 0.5, 0.6 (that in the figure correspond to λ = 1.6, 1.0, 0.8, 0.67). In all cases, the infection started in one
node of a random regular graph of size N = 1000 with connectivity K = 3.(a), (b) Time evolution of system’s average ρ(t ) = 1

N

∑
i ρi(t ).

(c), (d) Time evolution of the local error [computed analogously to (84)] between these semianalytical methods and kinetic Monte Carlo
simulations.

where ρi(t ) = ∑
xi

xi Pt (xi ) and ψi j (t ) = ∑
xi

∑
x j

xix jPt

(xi, x j ).
An extensive comparison with equations in the first level

of approximation of our dynamic cavity method [see (63)
and (64)] has been already carried out in Ref. [37]. As shown
there, PQMF gives more accurate predictions for the sys-
tem’s observables. Left panels of Fig. 9 illustrate this for the
particular case of an epidemic outbreak that begins with a
single infectious individual in a random regular graph of size
N = 1000 and connectivity K = 3. Although the steady state
seems to be similarly predicted, PQMF performs indisputably
better at the transient regime than the equations in CME-1.
The corresponding maximum local errors, depicted in the
bottom-left panel, are approximately four times bigger for the
latter than for PQMF.

The right panels of Fig. 9 compare kinetic Monte Carlo
simulations with PQMF results and the numeric integration of

our dynamic cavity equations at the second level of approx-
imation. Equations (66)–(70) give a very good description
of the simulated epidemic outbreak. The bottom-right panel
shows that its maximum local errors are of the same order as
PQMFs, and for λ � 1.0 is clear that our cavity method gives
even preciser predictions for the steady-state probability den-
sities. This is also observable in the top-right panel of the fig-
ure, which illustrates the time dependence of the average of ρi

over all sites. There we can also see that PQMF does not cap-
ture the transient regime appreciably better than our approach.

Thus, the second level of our dynamic cavity method out-
performs PQMF at least in describing the propagation of
epidemics through a random regular graph. Nevertheless, we
expect the same to happen in other families of random net-
works, like Erdos-Renyi graphs. As PQMF is currently the
state-of-the-art among mean-field approximations for the SIS
dynamics [35,36], this is a very relevant result.

054303-20



FROM RANDOM POINT PROCESSES TO HIERARCHICAL … PHYSICAL REVIEW E 104, 054303 (2021)

V. CONCLUSIONS

We derived, using the TRPP, a hierarchical scheme of
CMEs directly applicable to the continuous-time dynamics
of systems with discrete variables. We carefully described
the approximations made at each level of the scheme and
explained their significance, pointing to the system’s cor-
relation length as the parameter defining the accuracy of
the approximation. Our scheme clarifies some of the con-
tents and approximations made in recent literature about
CMEs [5–7,13].

We performed numerical tests at different levels of the
approximation in spin and epidemic models. For spin mod-
els, the accuracy of the technique is comparable with the
ones obtained with well-known successful methods like dy-
namic independent neighbor approximation and DRT, and
improves as we increase the level of approximation. Studying
the SIS model for epidemics, we show that our equations give
better predictions for the stationary state of the epidemics
than the widely used PQMF approximation, and, depending
on the parameters, can also perform better in the transient
regime.
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APPENDIX A: SIMPLE DERIVATION OF THE EQUATION
FOR LOCAL PROBABILITY DENSITIES

Equation (53) can be obtained through procedures much
simpler than the one used in Sec. III B.

Let S be a subset of the set of nodes of the system
{1, . . . , N}. The notation σS stands for the configuration of the
variables in S. Assume an arbitrary single spin-flip dynamics,
with the rate of flipping of the ith variable depending on σi

and on σ∂i, which defines ∂i, i.e.,

dPt (�σ )

dt
=

N∑
i=1

[−ri(σi, σ∂i )P
t (�σ ) + ri(−σi, σ∂i )P

t (Fi(�σ ))].

(A1)

Consider now the marginal distribution of the variables
in S,

Pt (σS ) =
∑
σS̄

Pt (σS, σS̄ ), (A2)

with S̄ the variables not in S.
When we do this marginalization on the right-hand side of

the full master equations, three cases occur:
(1) If i /∈ S, the two terms compensate by flipping σi in the

mute index of summation σS̄ .
(2) If i ∈ S and ∂i ⊂ S, the marginalization goes through

ri and only acts on Pt , which gives the marginal distribution.
(3) If i ∈ S and ∂i ∩ S̄ ≡ ni �= ∅, one only marginalizes

over the variables in S̄ \ ni, where ni has been defined as the
set of neighbors of i which are not in S.

This leads immediately to

dPt (σS )

dt
=

∑
i∈S:ni=∅

[−ri(σi, σ∂i )P
t (σS ) + ri(−σi, σ∂i )P

t (Fi(σS ))]

+
∑

i∈S:ni �=∅

∑
σni

[−ri(σi, σ∂i )P
t
(
σS, σni

)+ ri(−σi, σ∂i )P
t
(
Fi(σS ), σni

)]
. (A3)

This is exact for any single spin-flip dynamics, not neces-
sarily on treelike graphs, and for any subset of variables S,
and gives back (53) with S = O ∪ I, the variables in I being
those with ni = ∅.

APPENDIX B: CONNECTING CAVITY MESSAGES
WITH INSTANTANEOUS MAGNITUDES

For completeness, let us reproduce the derivation of
Eq. (46) that appears in Ref. [5].

If we marginalize (30) on X∂i\{i, j} and combine the result
with (32), we get a cavity message passing equation:

μt
i→(i j)(Xi|Xj ) =

∑
{Xk},k∈∂i\ j

�t
i (Xi|X∂i )

∏
k∈∂i\ j

μt
k→(ki)(Xk|Xi ),

(B1)

where Xi(t ) is the history of spin i to time t . To simplify
the notation, we will sometimes write μt

i→(i j) for the cavity
conditional message.

We have learned that probability densities in the random
point processes formulation can be written as [see Eq. (33)]

μt
i→(i j)(Xi|Xj ) =

si∏
li=1

λi→(i j)
(
Xi, Xj, tli

)

− exp

{∫ t

t0

λi→(i j)(Xi, Xj, τ )dτ

}
. (B2)

Changing indexes accordingly, we can use the same
parametrization for the other cavity messages in the update
equation.

The interaction term �t
i (Xi|X∂i ) can be interpreted as the

probability density of Xi conditioned on the histories of spins
in ∂i:

�t
i (Xi|X∂i ) =

si∏
li=1

ri(σi(tli ), σ∂i(tli ))

× exp

{
−
∫ t

t0

ri(σi(τ ), σ∂i(τ ))dτ

}
. (B3)
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Here, ri is the real jumping rate of i. Under a Markov
assumption this is an instantaneous quantity, meaning that at
time τ it depends only on the values of σi(τ ), σ∂i(τ ).

The trace on the right hand side of (B1) can be written in
more detail. Let F be the argument of the sum:

[t0,t]∑
{Xk},k∈∂i\ j

F (Xi, X∂i, t )

=
∑

{sk},k∈∂i\ j

[
d∏

k=1

∫ t

t0

dtk
1

∫ t

t k
1

dtk
2 . . .

∫ t

t k
sk −1

dtk
sk

]
F (Xi, X∂i, t ).

(B4)

In all equations, sk will be the number of jumps of the history
of spin k.

If we write (B1) for every pair (i, j) in the network, we get
a system of coupled equations. Having these functions, we
could describe all the dynamics of the system. However, (B1)
is a very involved expression and we need to transform it to a
more tractable one. With that objective, we will differentiate
both sides of (B1).

Differentiation in this context should be handled carefully
since increasing t means we are changing the sample space
itself. Therefore, it is safer to use the definition of differentia-
tion for both sides of Eq. (B1). We will compute the limit:

lim
�t→0

μt+�t
i→(i j)(Xi|Xj ) − μt

i→(i j)(Xi|Xj )

�t
. (B5)

A very important question arises at this point. What is
the relation of (Xi(t + �t ), Xj (t + �t )) and (Xi(t ), Xj (t ))?
Or, in other words, what happens in the interval (t, t + �t )?
The answer is important because expressions for μt+�t

i→(i j) are
different whether we consider there can be jumps in the small
�t interval or not. The first thing that makes sense to impose
is that histories must agree up to time t . In (t, t + �t ) we can
have several combinations.

An implicit assumption throughout all this theory is that
on an infinitesimal interval only two things can happen to a
spin: it can stay on its current state or make one and only one
jump to the opposite orientation. Two or more jumps are not
allowed. Considering this, we have four cases to analyze:

(1) There are si, s j jumps in (t0, t ) and neither i nor j
jumps in (t, t + �t ). This occurs with a probability (1 −
λi�t )(1 − λ j�t ).

(2) There are si, s j jumps in (t0, t ) and i XOR j jumps in
(t, t + �t ). This occurs with a probability (1 − λi�t )(λ j�t )
or (1 − λ j�t )(λi�t ). These are two cases in one.

(3) There are si, s j jumps in (t0, t ) and both i and j jumps
in (t, t + �t ). This has a probability of λ jλi�t2.

When �t goes to zero, from the previous analysis we con-
clude that the derivative should be computed, with probability
1, using the first option, where histories for i and j have no
jumps in the interval of length �t .

To differentiate the left hand side of (B1) we can use the
parametrization (B2):

μt+�t
i→(i j) =

si∏
li=1

λi→(i j)(tli ) exp

{
−
∫ t+�t

t0

λi→(i j)(τ )dτ

}
,

μt+�t
i→(i j) = [1 − λi→(i j)(t )�t]

si∏
li=1

λi→(i j)
(
tli
)

exp

{
−
∫ t

t0

λi→(i j)(τ )dτ

}
+ o(�t ),

μt+�t
i→(i j) = [1 − λi→(i j)(t )�t] μt

i→(i j) + o(�t ). (B6)

Then, with probability 1, the time derivative of the left-
hand side of equation (B1) is equal to −λi→(i j)(t ) μt

i→(i j).
To calculate the derivative of the right-hand side of (B1),

we should compute

lim
�t→0

∑[t0,t+�t]
{Xk},k∈∂i\ j F (Xi, X∂i, t + �t ) − μt

i→(i j)

�t
. (B7)

Let us focus on the first term of the numerator in the pre-
vious expression. It can be expanded to the first order in �t .
It is important to remember that �t appears in the integration
limits as well as in the integrand F . In addition, we should
keep in mind that all jumps for Xi and Xj must occur before
t . This restriction, however, does not apply to the histories Xk

for k in ∂i \ j.
The expansion of (B7) can be explained as follows. First,

let us remember that F is the joint probability of Xi and {Xk}
with k ∈ ∂i \ j, conditioned on Xj . All histories in the term of

interest are in the interval [t0, t + �t]. The expression

[t0,t+�t]∑
{Xk},k∈∂i\ j

F (Xi, X∂i, t + �t ) (B8)

is the marginalization of the mentioned joint probability dis-
tribution. The previous sum, to order �t , has two main
contributions. One comes from summing over {Xk} with all
Xk having no jumps in [t, t + �t]:

A =
[t0,t]∑

{Xk},k∈∂i\ j

F (Xi, X∂i, t )

{
1 −

[∑
k

λk→(ki)(t ) + ri(t )

]
�t

}
.

(B9)

The other considers all the possibilities of having one of
the Xk with a jump in the interval of length �t :

B =
∑

k

[t0,t]∑
{Xk},k∈∂i\ j

F (Xi, X∂i, t )λk→(ki)(t )�t . (B10)
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CS-3

FIG. 10. The cavity probability density pt (û2, σ2, ũ1, σ1 || σ0) is
defined over a connected set in CS-3. This figure illustrates meaning
of each one of the variables û2, σ2, ũ1, σ1, and σ0.

Then,

[t0,t+�t]∑
{Xk},k∈∂i\ j

F (Xi, X∂i, t + �t ) = A + B + o(�t ). (B11)

Putting all together, we see that B cancels out with the λ

part of A, and the remaining term of order 1 is μi→(i j)(Xi(t )|
Xj (t )), which cancels when inserted in the limit expression.

The final outcome of this differentiation process is

λi→(i j)[Xi, Xj, t] μt
i→(i j)(Xi|Xj )

=
[t0,t]∑

{Xk},k∈∂i\ j

ri[σi(t ), σ j (t ), σ∂i\ j (t )]F (Xi, X∂i, t ). (B12)

We can now marginalize the right-hand side of the above
equation over all the histories of the spins k ∈ ∂i \ j by keep-
ing the configuration of these spins at the last time t fixed. The
result reads

λi→(i j)(Xi, Xj, t ) μt
i→(i j)(Xi|Xj )

=
∑
σ∂i\ j

ri(σi(t ), σ j (t ), σ∂i\ j ) pt (σ∂i\ j, Xi || Xj ), (B13)

where we introduced the function p as the marginalization of
the function F over all the spin histories of the neighbors of
i except j, with the configuration at the final time fixed. Note
that the notation σ∂i\ j (t ) is equivalent to {σk (t )}k ∈ ∂i \ j and
that in p above appears again explicitly the conditional nature
of the probability distribution F .

Equation (B13) represents the differential dynamic
message-passing update equation obtained by differentiat-
ing (B1) in time. It connects the derivative of the dynamic
message μt

i→(i j), and so the jumping rate λi→(i j)(t ) of spin i
in the cavity used to parametrize the message in (B2), with
the transition rate of the same spin ri(σi(t ), σ j (t ), σ∂i\ j (t )) at
time t .

APPENDIX C: AVERAGE DYNAMIC CAVITY EQUATIONS
IN RANDOM REGULAR GRAPHS

Whenever we have initial conditions independent of the
site and homogeneous node connectivity, the equations of our
dynamic cavity method acquire a spatial symmetry that will
allow us to reduce them to a few average case equations. Let
us show this through an example.

We will start with Eq. (66):

d pt (σ∂i\ j, σi || σ j )

dt
= −ri(σi, σ∂i ) pt (σ∂i\ j, σi || σ j ) + ri(−σi, σ∂i ) pt (σ∂i\ j,−σi || σ j ) −

∑
l∈∂i\ j

∑
σ∂l\i

{rl (σl , σ∂l )

× pt (σ∂l\i|σl || σi ) pt (σ∂i\ j, σi || σ j ) − rl (−σl , σ∂l ) pt (σ∂l\i| − σl || σi ) pt (Fl [σ∂i\ j], σi || σ j )}. (C1)

In a random regular graph with connectivity K , a spatial symmetry results from choosing an initial condition for
pt (σ∂i\ j, σi || σ j ) which does not depend on i and j. In that case, the equation governing the time evolution of pt (σ∂i\ j, σi || σ j )
will not depend on the values of i, j for any time. We can write a single equation for all sites:

d pt (û, σ || σ ′)
dt

= −r(K, û + δσ,−σ ′ ) pt (û, σ || σ ′) + r(K, K − û − δσ,−σ ′ ) pt (K − û,−σ || σ ′)

− (K − 1 − û)
K−1∑
u′=0

(
K − 1

u′

)
r(K, u′) {pt (u′|σ ||σ ) pt (û, σ || σ ′) − pt (u′| − σ ||σ ) pt (û + 1, σ || σ ′)}

− û
K−1∑
u′=0

(
K − 1

u′

)
r(K, u′) {pt (u′| − σ ||σ ) pt (û, σ || σ ′) − pt (u′|σ ||σ ) pt (û − 1, σ || σ ′)}. (C2)

In (C2), regardless of the site where they are defined, the probability densities depend only on two connected spin variables,
σ and σ ′, and on the number û = 0, . . . , K − 1 of unsatisfied interactions that σ has with its neighbors other than σ ′. The sum in
the fourth and fifth lines takes into account that û unsatisfied interactions, all of which contribute equally to the derivative. The
same happens with the second and third lines and the contribution of the remaining (K − 1 − û) satisfied interactions.

So far, we have not defined new probability densities, we just redenoted pt (σ∂i\ j, σi || σ j ) into pt (û, σ || σ ′) after realizing
that the values of sites i and j where irrelevant due to spatial symmetry, and that it was not important to keep track of all
the combinations of σ∂i\ j , we needed only to record the number of unsatisfied û interactions between σ∂i\ j and σi. Now, we
will introduce the total densities p̂t (û, σ || σ ′) = (K−1

û

)
pt (û, σ || σ ′), noticing that these are analogous to the average probability
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densities in (90). Actually, exactly as before, we have

p̂t (û, σ || σ ′) = lim
N→∞

� 1

NK

N∑
i=1

∑
j∈∂i

∑
σi

∑
σ j

∑
σ∂i\ j

pt
ξK (N )(σ∂i\ j, σi || σ j ) δσ,σiδσ ′,σ j δ(

∑
k∈∂i\ j σk ),K−1−2û �ξK (N ), (C3)

where ξK (N ) is the ensemble of random regular graphs with connectivity K and size N . The symbol � · �ξK (N ) represents an
average over this ensemble, with proper probabilistic weights.

The differential equation for this average probability densities is

d p̂t (û, σ || σ ′)
dt

= −r(K, û + δσ,−σ ′ ) p̂t (û, σ || σ ′) + r(K, K − û − δσ,−σ ′ ) p̂t (K − û,−σ || σ ′)

− (K − 1 − û) 〈 r(K, u′) 〉σ,σ p̂t (û, σ || σ ′) + (û + 1) 〈 r(K, u′) 〉−σ,σ p̂t (û + 1, σ || σ ′)

− û 〈 r(K, u′) 〉−σ,σ p̂t (û, σ || σ ′) + (K − û) 〈 r(K, u′) 〉σ,σ p̂t (û − 1, σ || σ ′), (C4)

where we have written the averages 〈 r(K, u′) 〉σ,σ ′ = ∑K−1
u′=0 r(K, u′) p̂t (u′|σ || σ ′). The conditional cavity probability densities

in (C4) are

p̂t (û|σ || σ ′) = p̂t (û, σ || σ ′)∑
u′ p̂t (u′, σ || σ ′)

. (C5)

Equations (C4) and (C5) form a closed system that can be numerically integrated. This must be complemented with

dP̂t (σ, u)

dt
= −r(K, u) P̂t (σ, u) + r(K, K − u) P̂t (−σ, K − u)

− (K − u) 〈 r(K, u′) 〉σ,σ P̂t (σ, u) + (u + 1) 〈 r(K, u′) 〉−σ,σ P̂t (σ, u + 1)

− u 〈 r(K, u′) 〉−σ,σ P̂t (σ, u) + (K − u + 1) 〈 r(K, u′) 〉σ,σ P̂t (σ, û − 1), (C6)

which can be derived similarly.
To finish writing the equations of the levels of approximation shown Fig. 7 in the main text, we still need to address the first

and third levels: CME-1 and CME-3. In the first case, we start with Eqs. (63) and (64)

d pt (σi || σ j )

dt
= −

∑
σ∂i\ j

⎧⎨
⎩ri(σi, σ∂i )

⎡
⎣ ∏

k∈∂i\ j

pt (σk || σi )

⎤
⎦pt (σi || σ j ) − ri(−σi, σ∂i )

⎡
⎣ ∏

k∈∂i\ j

pt (σk || − σi )

⎤
⎦pt (−σi || σ j )

⎫⎬
⎭, (C7)

dPt (σi )

dt
= −

∑
σ∂i

{
ri(σi, σ∂i )

[∏
k∈∂i

pt (σk ||σi )

]
Pt (σi ) − ri(−σi, σ∂i )

[∏
k∈∂i

pt (σk || − σi )

]
Pt (−σi )

}
. (C8)

It is easy to see that the average case versions of this equations at random regular graphs with homogeneous initial conditions
are

d p̂t (σ || σ ′)
dt

= −
K−1∑
u′=0

{r(K, u′ + δσ,−σ ′ )[ p̂(−σ |σ )]u′
[ p̂(σ |σ )]K−1−u′

p̂t (σ || σ ′) − r(K, u′ + δσ,σ ′ )

× [ p̂(σ | − σ )]u′
[ p̂(−σ | − σ )]K−1−u′

p̂t (−σ || σ ′)}, (C9)

dP̂t (σ )

dt
= −

K∑
u′=0

{
r(K, u′) [ p̂(−σ |σ )]u′

[ p̂(σ |σ )]K−u′
P̂t (σ ) − r(K, u′) [ p̂(σ | − σ )]u′

[ p̂(−σ | − σ )]K−u′
P̂t (−σ )

}
. (C10)

Equations (C9) and (C10) also form a closed system and its numerical integration is shown in Fig. 7 of the main text. The
equations in the third level of approximation, CME-3, whose results appear also in that figure, require some extra work.

Our probability densities are now pt (û2, σ2, ũ1, σ1 || σ0), which are defined over the connected sets illustrated in the bottom-
left panel of Fig. 4. The spins σ0, σ1, and σ2 are marked in Fig. 10. The integer û2, which goes from zero to K − 1, represents the
number of unsatisfied interactions between σ2 and its neighbors, without counting σ1. Finally, the integer ũ1, which goes from
zero to K − 2, is the number of unsatisfied interactions between σ1 and its neighbors, without counting σ0 and σ2.

As we learned with (58), the exact equations for this densities are

d pt (û2, σ2, ũ1, σ1 || σ0)

dt
= −r(K, ũ1 + δσ0,−σ1 + δσ2,−σ1 ) pt (û2, σ2, ũ1, σ1 || σ0)

+ r(K, K − ũ1 − δσ0,−σ1 − δσ2,−σ1 ) pt (û2, σ2, K − 2 − ũ1,−σ1 || σ0)

− r(K, û2 + δσ1,−σ2 ) pt (û2, σ2, ũ1, σ1 || σ0)+r(K, K − û2−δσ1,−σ2 ) pt (K − 1 − û2,−σ2, ũ1, σ1 || σ0)
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− (K − 2 − ũ1)
K−1∑
u′

1=0

(
K − 1

u′
1

)
r(K, u′

1) {pt (u′
1|û2, σ2, ũ1, σ1 ||σ0) pt (û2, σ2, ũ1, σ1 || σ0)

− pt (u′
1|û2, σ2, ũ1 + 1, σ1 ||σ0) pt (û2, σ2, ũ1 + 1, σ1 || σ0)}

− ũ1

K−1∑
u′

1=0

(
K − 1

u′
1

)
r(K, u′

1) {pt (u′
1|û2, σ2, ũ1, σ1 ||σ0) pt (û2, σ2, ũ1, σ1 || σ0)

− pt (u′
1|û2, σ2, ũ1 − 1, σ1 ||σ0) pt (û2, σ2, ũ1 − 1, σ1 || σ0)}

− (K − 1 − û2)
K−1∑
u′

2=0

(
K − 1

u′
2

)
r(K, u′

2) {pt (u′
2|û2, σ2, ũ1, σ1 ||σ0) pt (û2, σ2, ũ1, σ1 || σ0)

− pt (u′
2|û2 + 1, σ2, ũ1, σ1 ||σ0) pt (û2 + 1, σ2, ũ1, σ1 || σ0)}

− û2

K−1∑
u′

2=0

(
K − 1

u′
2

)
r(K, u′

2) {pt (u′
2|û2, σ2, ũ1, σ1 ||σ0) pt (û2, σ2, ũ1, σ1 || σ0)

− pt (u′
2|û2 − 1, σ2, ũ1, σ1 ||σ0) pt (û2 − 1, σ2, ũ1, σ1 || σ0)}. (C11)

Unlike what we have seen before, our variables are not defined over regular connected sets rCS-3 (see Fig. 10). We need a
slightly different closure, or more specifically, two new closures. These are necessary because the time derivative of densities in
CS-3 that appears in (C11) involves probability densities defined over connected sets in CS-4.

The first approximation targets the conditional cavity probability densities that appear in lines 5–8 of (C11) and reduces them
to densities of the form pt (û2, σ2, ũ1, σ1 || σ0):

pt
SAT(u′

1|û2, σ2, ũ1, σ1 ||σ0) ≈ pt (u′
1, σ1, ū1, σ1 ||σ0)∑

u′ pt (u′, σ1, ū1, σ1 ||σ0)
, (C12)

pt
UNSAT(u′

1|û2, σ2, ũ1, σ1 ||σ0) ≈ pt (u′
1,−σ1, ū1, σ1 ||σ0)∑

u′ pt (u′,−σ1, ū1, σ1 ||σ0)
. (C13)

The left panel of Fig. 11 illustrates Eqs. (C12) and (C13). There, the integer u′
1 = 0, . . . , K − 1 represents the number of

unsatisfied interactions related to a specific neighbor of σ1 which can either have the same value of σ1 [Eq. (C12)] or the
opposite value −σ1 [Eq. (C13)]. On the other hand, ū1 = 0, . . . , K − 2 is the number of unsatisfied interactions between σ1 and
its neighbors other than σ0 and the one mentioned in the previous sentence (this means that ũ1 includes the interaction with
σ2). Notice that we have dropped the dependency on the number of unsatisfied relations û2 because the spins involved in that
interactions (except σ2) are at a distance d = 4 > 3 from the ones involved in u′

1.

Drop

these

(a)

Drop

these

(b)

FIG. 11. Illustration of the approximations (C12)–(C15) applied to conditional cavity probability densities. These are necessary because
the time derivative (C11) involves probability densities defined over connected sets in CS-4. In each panel, the nodes not colored in gray belong
to such connected sets, and we have to drop the dependency on some of them to give closure to (C11).
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The second approximation targets the conditional cavity probability densities that appear in lines from 9–12 of (C11):

pt
SAT(u′

2|û2, σ2, ũ1, σ1 ||σ0) ≈ pt (u′
2, σ2, ū2, σ2 ||σ1)∑

u′ pt (u′, σ2, ū2, σ2 ||σ1)
, (C14)

pt
UNSAT(u′

1|û2, σ2, ũ1, σ1 ||σ0) ≈ pt (u′
2,−σ2, ū2, σ2 ||σ1)∑

u′ pt (u′,−σ2, ū2, σ2 ||σ1)
. (C15)

The right panel of Fig. 11 illustrates the meaning of this equations. We will not give more details because they are very similar
to what we said about (C14) and (C15).

From this point, it is easy to derive equations for the averages p̂t (û2, σ2, ũ1, σ1 || σ0), which together with the averages of
closure relations (C12)–(C15) form a system that we can numerically integrate to obtain the results in Fig. 7.
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