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Local topological moves determine global diffusion properties of hyperbolic higher-order networks
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From social interactions to the human brain, higher-order networks are key to describe the underlying network
geometry and topology of many complex systems. While it is well known that network structure strongly affects
its function, the role that network topology and geometry has on the emerging dynamical properties of higher-
order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines
the effective dimension for diffusion processes on a network. Despite its relevance, a theoretical understanding of
which mechanisms lead to a finite spectral dimension, and how this can be controlled, still represents a challenge
and is the object of intense research. Here, we introduce two nonequilibrium models of hyperbolic higher-order
networks and we characterize their network topology and geometry by investigating the intertwined appearance
of small-world behavior, δ-hyperbolicity, and community structure. We show that different topological moves,
determining the nonequilibrium growth of the higher-order hyperbolic network models, induce tuneable values
of the spectral dimension, showing a rich phenomenology which is not displayed in random graph ensembles.
In particular, we observe that, if the topological moves used to construct the higher-order network increase the
area/volume ratio, then the spectral dimension continuously decreases, while the opposite effect is observed if
the topological moves decrease the area/volume ratio. Our work reveals a new link between the geometry of a
network and its diffusion properties, contributing to a better understanding of the complex interplay between
network structure and dynamics.
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I. INTRODUCTION

Higher-order networks are generalized network structures
that capture the many-body interactions of complex systems
[1–6]. In recent years, they have become increasingly popular
to represent different types of data beyond the framework
of pairwise interactions, including the human brain [7–10],
social interacting systems [11–19], financial networks [20,21],
and complex materials [22–24]. Interestingly, several studies
on synchronization, diffusion, epidemic spreading, and evo-
lutionary dynamics have shown that taking into account the
higher-order organization of networks can lead to emergent
behavior remarkably different from that of graphs, where in-
teractions are limited to groups of two nodes only [25–37].
Therefore, establishing the relation between the structure and
the dynamics of higher-order networks is currently a field of
intense research activity [2].

A powerful tool to characterize higher-order network data
is topological data analysis, which provides a general math-
ematical and computational framework to analyze data from
their topological shape [7,38–41]. In a number of cases, these
analyses have been able to extract relevant information from
real networks that cannot be detected by more traditional
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Network Science metrics. Moreover, topology can directly
affect higher-order network dynamics by determining the evo-
lution of topological signals, i.e., dynamical signals defined
not only on nodes but also on links, triangles, and other
higher-order structures [25,42–44]. A natural way to repre-
sent higher-order networks is by simplicial complexes, which
differently from graphs are not only formed by nodes and
links, but also include triangles, tetrahedra and so on. Together
with cell complexes—which allow as building blocks also
other regular polytopes such as hypercubes and orthoplexes—
simplicial complexes describe discrete topological spaces.
Therefore, modeling higher-order networks with simplicial
and cell complexes is often the first step for conducting a
topological investigation of higher-order networks.

Models of dynamically evolving simplicial and cell com-
plexes built by simple local rules can affect the higher-order
network topology by causing the emergence of a nontrivial
meso-scale topological organization. For instance, models of
simplicial complexes implementing triadic closure [45], or
constructed by gluing together simplices through the itera-
tion of simple topological moves [23,24,46,47], were found
to generate higher-order networks with emergent community
structure. Moreover, simplicial complexes and cell com-
plexes have also an intrinsic geometrical nature, and for this
reason represent an ideal setting to investigate the proper-
ties of emergent hyperbolic network geometry in complex
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systems [4,23,24,46,48,49]. In particular, models of emergent
hyperbolic network geometry reveal the fundamental rules
responsible for the wide-spread occurrence of hyperbolicity in
real network datasets and in the structure of knowledge graphs
[50–54].

A characteristic feature of emergent geometries is revealed
by the spectral properties of their network skeleton, i.e.,
the network that is generated from the higher-order system
only retaining the pairwise interactions. In particular, a fun-
damental indication that the higher-order networks have a
characteristic geometrical nature is associated with the emer-
gence of a finite spectral dimension of their graph Laplacian.
Broadly speaking, the spectral dimension dS of the graph
Laplacian of a network indicates the dimension of the network
as perceived by a random walker crawling on the network. As
such, on a regular Euclidean lattice the spectral dimension dS

coincides with the dimension of the lattice d .
Until recently, it was believed that the heterogeneous de-

gree distributions and the Fiedler eigenvalue of the graph
Laplacian were the main structural determinants for dynam-
ical processes in networked systems. These considerations,
however, reveal how the investigation of higher-order net-
works has recently transformed the way in which we look
at the classical problem of the interplay between structure
and dynamics on complex networks [55]. From the study
of higher-order networks, it is now becoming clear that
both network topology and network geometry can affect dy-
namics in unexpected ways that go well beyond previous
beliefs [2]. In particular, the spectral dimension constitutes
a fundamental quantity to capture how geometry affects dy-
namics. For instance, it is known to characterize the return
time of random walkers [56,57], the stability of synchro-
nized states [26,27], universal critical phenomena [58–64],
quantum diffusion [65,66], or the universal properties of dif-
ferent quantum gravity approaches [67–69]. Remarkably, the
value of the spectral dimension varies significantly from net-
work to network. Moreover, in random graphs and expanders
(i.e., sparse graphs with large Cheeger constant, which cannot
be divided in two macroscopic subgraphs without cutting a
large set of links [70,71]) the spectral dimension is not even
defined as the highly nonlocal nature of their connections has
the effect of introducing a spectral gap in the spectrum of the
graph Laplacian.

Most of the models displaying emergent spectral dimen-
sion evolve by the iteration of simple topological moves that
are also responsible for a nontrivial community structure.
Moreover, in the existing models of emergent hyperbolic ge-
ometry that display a finite spectral dimension, including the
model Network Geometry with Flavor [24,26,27,47], the de-
pendence of the spectral dimension on the model parameters
has yet to be clarified. Indeed, how a finite spectral dimension
emerges is still an open problem. Which are the general micro-
scopic mechanisms giving rise to a finite spectral dimension?
What is its relation to hyperbolicity of the associated emergent
geometries?

In this work we address these questions by systematically
investigating the relation between the simple topologi-
cal moves determining the local evolution of higher-order
networks and their meso-scale and global properties. Our
results are based on the analyses of two distinct classes of

models—the short-range triadic closure (STC) model and the
Network Geometry with Flavor (NGF) model—that general-
ize previous models enforcing triadic closure [45] and dis-
playing emergent hyperbolic geometry [46], respectively. We
illustrate how different local topological moves can lead to im-
portant differences in the large-scale structural and dynamical
properties of the higher-order networks. Specifically, we show
how different topological moves can be used to increase or de-
crease the value of the spectral dimension and the modularity
of hyperbolic higher-order networks. Interestingly, we directly
link the emergence of a smaller spectral dimension to topolog-
ical moves that enforce a larger ratio between the area and the
volume of the considered emergent hyperbolic geometries.

The paper is structured as follows. In Sec. II we define
the two classes of models: the STC and the NGF model. In
Sec. III we discuss the topological properties of these models,
including a detailed discussion of the role of the topological
moves on the evolution and emergence of nontrivial com-
munity structure in both models. In Sec. IV we characterize
the emergent hyperbolic geometry of the STC and the NGF
model. In Sec. V we show how the emergent spectral dimen-
sion of both models is modulated by the choice of topological
moves adopted for the evolution of the higher-order network
models and the implications for diffusion dynamics. Finally,
in Sec. VI we provide some concluding remarks.

II. HIGHER-ORDER NETWORK MODELS AND THEIR
UNDERLYING NETWORK SKELETON

A. Mathematical definition of cell complexes
and network skeleton

Higher-order networks allow us to represent networked
systems which are not limited to only pairwise interactions.
A common way to describe such structures is to introduce
new higher-order building blocks known as simplices. A d-
dimensional simplex is formed by d + 1 nodes, each one
interacting with all the other ones. Thus, a d-dimensional
simplex is a node when d = 0, a link when d = 1, a triangle
when d = 2, a tetrahedron when d = 3, and so on. The faces
of a d-simplex are the simplices formed by a proper subset
of its nodes. The underlying network skeleton of a d-simplex,
i.e., the network retaining only the pairwise interactions be-
tween the nodes, is a (d + 1)-clique. Simplicial complexes —
a collection of simplices which respect a particular inclusion
rule of their lower order faces — provide a representation of
higher-order networks. The facets of a simplicial complex are
the simplices that are not faces of any other simplices of the
simplicial complex. The dimension of a simplicial complex is
the maximum dimension of its facets. The skeleton of a sim-
plicial complex is the network constructed from the simplicial
complex retaining only the information about its nodes and
links.

In a number of real-world scenarios, however, higher-order
networks may be constructed by building blocks which are
more loosely connected than simplices. For instance, a pro-
tein interaction network is formed by a set of proteins that
might have a complex interaction pattern involving more
than two agents, but might not be binding to each other in
all-to-all small subgraphs. These generalized building blocks
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are know as cells. Mathematically, a d-dimensional cell is
a d-dimensional convex polytope, i.e., a topological space
homeomorphic to a d-dimensional open ball. Therefore, 0-
dimensional cells are nodes and 1-dimensional cells are links,
and thus do not differ from 0-dimensional and 1-dimensional
simplices. However, differences originate in higher dimen-
sions. For instance, 2-dimensional cells include m-polygons
such as triangles (2-dimensional simplices), but also squares,
pentagons, etc. Similarly, 3-dimensional cells include the Pla-
tonic solids, such as tethrahedra (3-dimensional simplices),
cubes, octahedra, dodecahedra, and icosahedra. Interestingly,
whereas in dimension d = 4 there are more regular polytopes
than in dimension d = 3 (being 6), for any dimension d > 4
there are only three types of regular (convex) polytopes: the
simplex, the hypercube and the orthoplex.

Similarly to simplicial complexes, cells may be aggregated
into a cell complex. In particular, a cell complex K̂ has the
following two properties:

(a) it is formed by a set of cells that is closure-finite,
meaning that every cell is covered by a finite union of open
cells;

(b) given two cells of the cell complex α ∈ K̂ and α′ ∈ K̂,
then either their intersection belongs to the cell complex, i.e.,
α ∩ α′ ∈ K̂ or their intersection is a null set, i.e., α ∩ α′ = ∅.

The dimension d of a cell-complex is the maximum dimen-
sion of its cells. Therefore, a d-dimensional Euclidean square
lattice can be seen as a cell-complex of dimension d as it
is formed by unit cells which are hypercubes of dimension
d . Similar to simplicial complexes, the skeleton of a cell-
complex is the network generated from the cell complex only
retaining the pairwise interactions between its nodes.

B. The building blocks of the proposed higher-order models

In the following we consider two nonequilibrium models
of higher-order networks. Each model is characterized by the
nonequilibrium dynamics describing the higher-order network
growth. At each time step one or more nodes are added
and connected to the rest of the network through a specific
higher-order interaction, representing the building blocks of
our networked structures, and taken to be either d-dimensional
simplices or d-dimensional orthoplexes. The d-dimensional
simplexes have been defined in the previous section as formed
by d + 1 nodes, each one interacting with all the other ones.
The d-dimensional orthoplex is a regular polytope with 2d
nodes and 2d faces formed by (d − 1)- dimensional simplices.
For instance, in d = 2 the orthoplex is a square having 4 nodes
and 4 links, for d = 3 the orthoplex is a bipyramid with a
square basis having 6 nodes and 8 triangular faces. In general,
the network skeleton of a collection of a d-dimensional ortho-
plex is more sparse than the one of d-dimensional simplices,
which is a fully connected clique.

Since both d-simplices and d-orthoplexes admit as
(d − 1)-faces exclusively (d − 1)-dimensional simplices, or-
thoplexes, and simplices can be easily glued to each other
and combined as coexisting building blocks of a higher-
order network (also called cell complex). For instance, in our
higher-order network models defined in dimension d = 2, we
will combine triangles and squares glued along their links
in higher-order discrete architectures. However, d-simplices

and d-orthoplexes can be glued to each other according to
different topological moves. To reveal the macroscopic con-
sequences of the choice of different local moves, here we
consider two specific models: the short-range triadic closure
(STC) model, and a new variation of the network geometry
with flavour (NGF) model proposed in Refs. [47,49].

C. Short-range triadic closure (STC) model

The short-range triadic closure (STC) model is a higher-
order network model that generalizes triadic closure models
considering not only the introduction of triangles but also of
squares. The model is defined as follows. Initially (at t = 1),
the network is formed by an (m + 1)-clique with all its tri-
angles filled. At each time step t > 1, a new node r is added
to the network and connected to the rest of the higher-order
network by m links and by m − 1 higher-order interactions.
The first link of the new node is connected to a randomly
selected node i. The remaining m − 1 links are chosen in
such a way to close triangles with the first link (r, i) with
probability q, and to close squares with probability 1 − q.
If the first event occurs, then the new link is connected to a
random neighbor j of node i, forming the triangle (r, i, j).
On the contrary, if the second event occurs, then the new
link is connected to a random second neighbor j′ of node i,
a fourth node k is selected among the common neighbors of
i and j′, and the square (r, i, k, j′) is formed. If q = 1, then
the higher-order network grows exclusively by the addition
of triangles, whereas for q = 0 it grows by the addition of
squares. Therefore, the STC model generates cell complexes
that are (d = 2)-dimensional. The process and the underlying
network skeleton are illustrated in Fig. 1 for m = 2.

A long-range version of the model, without the limitation
to connecting only to first or second neighbors, was exten-
sively studied in Ref. [45]. It was shown to have a heavy-tailed
degree distribution, short paths, a strong community struc-
ture and high clustering (for q > 0). The STC dynamics is
only driven by an effective sublinear preferential attachment,
i.e., new links are effectively attached to a generic node i
with a probability proportional to kθ

i with θ < 1; however, as
m increases the exponent θ approaches one, leading to broader
degree distribution.

D. The network geometry with flavor (NGF) model

The second model that we consider is a variation of the
Network Geometry with Flavor (NGF) model proposed for
cell complexes in Refs. [46,49]. In its original formulation, the
NGF cell complexes evolved by the subsequent addition of a
single type of regular polytope (i.e., all the polytopes of the
cell complexes are the same). Here we generalize this model-
ing framework by allowing the cell complex to be formed by
different types of d-dimensional polytopes. In particular, the
present version of the NGF model generates d-dimensional
higher-order networks by subsequently gluing together
d-dimensional simplices, or d-dimensional orthoplexes, along
their (d − 1)-faces. Each (d − 1)-face α of the higher-
order network is characterized by its incidence number nα ,
indicating the number of d-dimensional polytopes incident to
the face, minus 1.
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FIG. 1. Illustrative sketch of the different topological moves used to grow higher-order networks (top panels) for the STC (with m = 2)
and NGF (with d = 2) models, and their corresponding network skeletons (bottom panels). In the case of the STC model, at each time an
existing node i is randomly selected. Then, with probability q a first neighbor of node i, let us say node j, is randomly chosen, and a new node
r is linked to both i and j, thus forming a triangle. By contrast, with probability 1 − q a second neighbor j′ of node i is selected and the new
node r is linked to both i and j ′, closing a square. The fourth node k conforming the square is randomly selected among the shared neighbors
of i and j ′. For the NGF model, at each time-step an existing link l is randomly selected according to Eq. (1) and either a square (with probably
p) or a triangle (with probability 1 − p) is added to the cell complex.

The higher-order network is constructed as follows. Ini-
tially (at t = 1), the NGF is formed by a single d-dimensional
orthoplex. At every subsequent time step t > 1, a new d-
dimensional polytope is glued to a (d − 1)-face α. The new
polytope is a d-dimensional orthoplex with probability p and
a d-dimensional simplex with probability 1 − p. The face α to
which the new polytope is attached is chosen with probability

�α = 1 + snα∑
α′ (1 + snα′ )

, (1)

where s ∈ {−1, 0, 1} is a parameter of the NGF model called
flavor. For p = 0, if we neglect the initial condition, the NGF
is formed exclusively by d-dimensional simplices and reduces
to the model treated in Ref. [49]. For p = 1, the NGF is
formed exclusively by d-dimensional orthoplexes, and this
limit has been studied in detail in Ref. [47].

In general, NGFs comprise of d-dimensional cell com-
plexes. In the following, we will often refer to their network
skeleton as the underlying NGF network. NGF networks dis-
play interesting combinatorial properties that have been well
characterized in the case p = 0 [49] and p = 1 [47]: the
degree distribution is scale-free for a wide range of values
of s and d , and the resulting networks are small-world and
have an infinite Hausdorff dimension. Despite the small-world
property, NGFs have a finite spectral dimension together with
a strong hierarchical-modular community structure [27,47]. In
this work we fix the value of the flavor of the NGF model
to s = 0, leading to power-law networks as the result of an
effective preferential attachment mechanism for any dimen-
sion d � 2. A schematic illustration of this model is also
represented in Fig. 1 for d = 2.

III. TOPOLOGICAL PROPERTIES OF THE STC
AND THE NGF MODELS

The skeleton of the STC and NGF cell complexes — made
up by considering only the nodes and links — makes up the
STC and NGF networks, whose properties can be evaluated

through standard Network Science metrics. According to such
type of analyses, the two models can be considered remark-
ably similar. They both lead to networks with high clustering,
heterogeneous degree distributions, short paths and a strong
community structure. For instance, we note the case of m = 2
(STC model) and d = 2 (NGF model). For q = 1 and p = 0,
the two networks are made up by gluing triangles together.
Then, as q decreases (STC) or p increases (NGF), triangles
are substituted by squares. Thus, to compare the two models in
the following, we define the complementary control parameter
p = 1 − q for the STC model, so that increasing p leads in
both models to a decrease in the number of triangles (or, more
generally, simplices) and an increase in the number of squares
(or orthoplexes) conforming the high-order network.

Despite the aforementioned similarities from the network
science perspective, the two models are constructed by adopt-
ing different topological moves, as we go on to show in the
following subsections.

A. Topological moves for the STC and NGF model

The most striking difference between the STC and the NGF
cell complexes is that, while the STC cell complex is d = 2
dimensional for every value of m, the NGF cell complex has
varying dimension d � 2 given by the dimensionality of its
building blocks. Besides, even if we limit our considerations
only to STC and NGF cell complexes in dimension d = 2, the
two models differ by the dynamical rules used for their gen-
eration. These rules, determining the way in which simplices
and orthoplexes are added to the cell complex, are called in
topology topological moves.

Both models share a remarkable feature, which is that the
topological moves leading the evolution of the cell complexes
do not change the topological invariants of the cell com-
plexes. In fact, simplices and orthoplexes are added to the
cell complex in such a way that neither the Betti numbers
(with the only nonzero Betti number being β0 = 1) nor the
Euler characteristic of the cell complex χ change [72,73]. This
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TABLE I. Changes in the number of nodes �V , number of links
�E , and number of 2-dimensional cells �F , and corresponding
change in the Euler characteristic �χ for each topological move
determining the evolution of the STC and NGF high-order networks
of dimension 2.

Model Process +�V −�E +�F �χ

STC m = 2 Triangle 1 −2 1 0
Square 1 −2 1 0

m > 2 1st link 1 −2 1 0
following links 0 −1 1

NGF d = 2 Simplex 1 −2 1 0
Orthoplex 2 −3 1 0

latter property can be easily checked for both the STC and the
NGF models in d = 2 using the well known definition of the
Euler characteristic as alternating sum of the number sk of
k-dimensional cells of the cell complex, with 0 � k � d
[72,73] (leading, for d = 2, to the famous expression χ =
V − E + F where V , E , and F are, respectively, the number
of nodes, links and 2-dimensional cells of the cell complex).
For the STC model with m = 2, a single 2-dimensional cell is
added at each time, which can be either a triangle glued to an
existing link, or a square glued to two existing links. In both
cases, the cell complex increases by one node, �V = 1, two
links, �E = 2, and one two dimensional cell, �F = 1, so the
Euler characteristic changes by

�χ = �V − �E + �F = 1 − 2 + 1 = 0. (2)

For the STC model with m > 2, at each time, m − 1 cells of
dimension d = 2 are added to the cell complex. The first cell
is glued to a link as for the case m = 2, leading to �χ = 0.
The subsequent cells share a link with the first cell (the one
between the new node and the randomly chosen node) and
add a new link, �E = 1, and a 2-dimensional cell, �F = 1,
to the cell complex, where the 2-dimensional cell can be either
a triangle or a square. Therefore, none of the subsequently
added cells change the Euler characteristic of the cell complex
either, i.e.,

�χ = �V − �E + �F = 0 − 1 + 1 = 0. (3)

In the case of the NGF model, for d = 2 at each time we
add a single 2-dimensional cell glued to a single link. If the
added cell is a triangle, then this adds a single node, �V = 1,
two links, �E = 2, and one triangle, �F = 1, leading to

�χ = �V − �E + �F = 1 − 2 + 1 = 0. (4)

If, on the contrary, the added 2-dimensional cell is a square,
then it adds two new nodes, �V = 2, three links, �E = 3,
and one square, �F = 1, leading to

�χ = �V − �E + �F = 2 − 3 + 1 = 0. (5)

By similar direct inspection it can be easily shown that also for
dimensions d > 2 the topological moves that define the NGF
evolution do not change the Euler characteristic. The changes
of �V,�E ,�F , and �χ for all the discussed topological
moves are summarized in Table I.

FIG. 2. Modularity Q of the STC (a) and NGF (b) networks for
different values of m (m = 2, 3, 4 from top to bottom) and d [d =
2, 3, 4 from top to bottom (at p = 0)]. Results are for N = 103.
Shaded areas indicate margin errors and are given by the standard
deviation; results are averaged over 100 network realizations.

B. Emergent community structure

Triadic closure was recently proposed as a general, unify-
ing mechanism to generate a community structure [45]. Such a
process is frequently observed in social networks, where open
triads are often closed over time, and the density of triangles
is remarkably high [74–76]. Models of network growth based
on simple triadic closure have been shown [45] to naturally
lead to the emergence of community structure, provided that
the network is sufficiently sparse.

Interestingly, the nonequilibrium mechanisms leading to
the emergence of a community structure are at work both in
the STC and NGF models via the local topological moves.
Consequently, both models lead to network skeletons with a
strong community structure, as indicated by the high values
of the modularity coefficient Q (see Fig. 2). However, as
p increases the models display radically different behaviors:
for STC networks Q decays almost linearly with p = 1 − q,
whereas for NGF networks with d = 3 and 4, it grows. In the
STC model, as longer-range connections become more promi-
nent, interconnections between regions also grow, decreasing
the modularity. By contrast, orthoplexes in the NGF model are
less interconnected with the rest of the network, as they only
share one face with it, but have more faces than simplices,
leading to an increase in the modularity. In this perspective,
the NGF model with d = 2 stands out as its behavior is more
complex: the modularity is relatively high for all p, following
an inverse U-shape. In any case, the value of the modularity of
the NGF model remains always significantly high, in contrast
to the STC model.

IV. EMERGENT GEOMETRICAL NETWORK
PROPERTIES

A. Infinite Hausdorff dimension

In this section we discuss the emergent geometrical prop-
erties of the STC and the NGF networks. An important
geometrical notion that applies to network models with vari-
able number of nodes, including regular lattices, is that of
the Hausdorff dimension. The Hausforff dimension describes
how the mean distance of the network 	 scales with the total
number of nodes (or network size) N , as N goes to infinity. 	

is defined as

	 = 1

N (N − 1)

∑
i

∑
j �=i

di j, (6)
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FIG. 3. We represent the mean minimum path 	 for the STC
(panel (a)) and NGF (panel (b)) networks as a function of the net-
work size N for p = 0.5. 	 grows logarithmically with N , which is
indicative of the small-world property. Panels (c) and (d) show 	

for different values of m and d , respectively for the STC and NGF
models, for networks with N = 103 nodes. Results in all panels have
been averaged over a set of 100 network realizations, and the shaded
areas indicate the error margins as given by the standard deviation.

where di j is the length of the minimum path between nodes i
and j. For regular lattices, the mean distance on the network
scales as a power of the network size for N � 1,

	 ∼ N1/dH , (7)

where dH is the Hausdorff dimension. In most random graphs,
like Erdös-Rényi ones, 	 scales logarithmically with the size
N , i.e., 	 ∼ log N , meaning that distances on the network are
short, and it is possible to go from one node to any other
passing through a small number of intermediate nodes. This
is the so-called small-world property, which corresponds to
an infinite Hausdorff dimension,

dH = ∞. (8)

Both the STC and NGF models are small-world and have
an infinite Hausdorff dimension, as shown in Figs. 3(a) and
3(b). However, for a fixed value of N , the characteristic dis-
tance 	 = 	(N ) behaves remarkably differently in the STC
and NGF models as a function, respectively, of q and p as
it is shown in Figs. 3(c) and 3(d). In fact, in the STC model,
as p = 1 − q increases and we add more squares, distances in
the network decrease as longer distance links become more
common. This is evidenced by the decrease in the characteris-
tic distance 	 with p = 1 − q [see Fig. 3(c)]. On the contrary,
distances on the NGFs networks increase as more orthoplexes
are added (with increasing p), for any dimension d [see Fig.
3(d)]. To better interpret this finding, we note that orthoplexes
have more faces than simplices, and they are only glued to
the existing network through one of them, de facto increasing
distances on the network.

FIG. 4. Schematic representation of δ-hyperbolicity.
(a) Schematic representation of a δ-thin triangle formed by
three nodes of the network and the shortest paths between the nodes.
(b) Hyperbolic tree with δ = 0. To calculate the δ-hyperbolicity,
we select a triad of nodes (red bold dots) and calculate the shortest
paths among them. For a tree, these intersect (at least) in one node
(blue empty node), and so the distance is always δ = 0. (c) NGF
network (d = 2, p = 0) with δ = 1. For the NGF network, the three
paths do not intersect in general, but they are at a maximum distance
δ = 1. Note that in this case all the paths intersect in one triangle
(shown in blue/dark) and so the NGF networks can be seen as trees
of polytopes.

B. δ-hyperbolicity of the STC and the NGF models

Hyperbolicity is an important geometrical aspect of real-
world networks, and it is know to affect the efficiency of
search [78], the efficacy of embedding algorithms [53,54], and
the behavior of dynamical processes such as percolation [79].

An important principle to test the hyperbolicity of real
networks was proposed by Gromov [50], who formulated the
concept of δ-hyperbolicity of networks [23,24,51,52]. The
δ-hyperbolicity measures how far a network is from a hy-
perbolic tree by comparing the structure of shortest paths
of triads of nodes on the network. On a tree these paths
always share at least one vertex, i.e., they are at distance
δ = 0 and the tree is δ = 0 hyperbolic [77]. However, more
in general the paths need not touch and the distance among
them may be finite. This defines the fatness of the triad.
Hyperbolic spaces are characterized by having thin triangles
(small δ 
 N). These concepts are illustrated in Fig. 4. Inter-
estingly, in a number of real networks δ remains always small,
and in particular much smaller than the network diameter,
indicating the hyperbolic geometry of the network.

Here, to characterize the δ-hyperbolicity of the STC and
the NGF model we adopt the so-called four-point crite-
rion [51]. We consider any quadruple of distinct nodes
(i1, i2, i3, i4) of the networks, and we choose their permutation
(u1, u2, u3, u4) = iπ (1), iπ (2), iπ (3), iπ (4) ) such that the follow-
ing inequalities hold,

Su1,u2,u3,u4 � Mu1,u2,u3,u4 ,

Mu1,u2,u3,u4 � Lu1,u2,u3,u4 , (9)

where du,v, is the distance between the node pair (u, v), as
defined above, and Su1,u2,u3,u4 , Mu1,i2,u3,u4 and Lu1,i2,u3,u4 are
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FIG. 5. The δ-hyperbolicity of the STC and the NGF models is
revealed by plotting the average δav for the STC model (panel a) and
for the NGF model (panel b) and the worst value δw [panel (c) for the
STC networks with m = 2, 3, 4 from bottom to top (at 1 − q = 0),
and panel (d) for the NGF networks with d = 2, 3, 4 from bottom to
top (at p = 1)]. In panel (c) the curve for m = 3 overlays with the one
for m = 4, whereas in panel (d) all the curves (d = 2, 3, 4) overlay.

defined as

Su1,u2,u3,u4 = du1,u2 + du3,u4 ,

Mu1,u2,u3,u4 = du1,u3 + du2,u4 ,

Lu1,u2,u3,u4 = du1,u4 + du2,u3 . (10)

For any quadruple of nodes (i1, i2, i3, i4), once we have found
their permutation (u1, u2, u3, u4) satisfying Eq. (9) we define

δ+
i1,i2,i3,i4

= 1
2 [Lu1,u2,u3,u4 − Mu1,u2,u3,u4 ]. (11)

To evaluate the δ-hyperbolicity of the network, we consider
two metrics: the δw or worst (largest) value of δ+, and the
average value of δ+, δav, which are defined as

δw = max
(i1,i2,i3,i4 )

δ+
i1,i2,i3,i4

,

δav =
[(

N
4

)]−1 ∑
i1,i2,i3,i4

δ+
i1,i2,i3,i4

. (12)

Both the STC and the NGF networks are δ-hyperbolic, as
shown in Fig. 5. In particular, the NGF has a constant value
of δw = 1, which implies that the short-paths are either at
distance 0 or 1, i.e., they always share at least one polytope.
Thus, NGFs can be interpreted as “trees of polytopes” as
exemplified in Fig. 4(c). For STC networks, on the contrary,
δw can be greater than one. To determine the δ-hyperbolic
structure of STC networks, we follow Ref. [77], where it was
proposed to characterize the δ-hyperbolicity of finite networks
by comparing it to the network diameter D, as a function of the
number of edges in the network E . This is depicted in Figs. 6
and 7, respectively, for the average value δav and for the worst
value δw. The results indicate that, in the large network limit,
both δav/(D/2) and δw/(D/2) decrease with the network size,
illustrating the δ-hyperbolicity of these higher-order network

FIG. 6. The normalized quantity δav/(D/2), where D indicates
the network diameter, is plotted versus the number of links E of
the network. Panels (a, c, e) correspond to STC networks with
m = 2, 3, 4, respectively, and q as indicated by the legend (q =
1.0, 0.5, 0.0 from bottom to top, in each panel). Panels (b, d, f)
correspond to NGF networks with d = 2, 3, 4, respectively, and p
as indicated by the legend (p = 0.0, 0.1, 1.0 from top to bottom, in
each panel). Each data-point indicates the average over 20 network
realizations, with the shaded error bars indicating the standard devi-
ation. For each network, δav is estimated by randomly sampling over
107 node quadruplets [77].

FIG. 7. The normalized quantity δw/(D/2), where D indicates
the network diameter, is plotted versus the number of links E of the
network, for STC (a, c, e) and NGF (b, d, f) networks with m, d =
2, 3, 4 from top to bottom and q and p as indicated by the legends
[q = 1.0, 0.5, 0.0 from bottom to top, and p = 0.0, 0.1, 1.0 from
top to bottom, in each panel, respectively for the STC and NGF
models] [77]. Curves for STC networks with q < 1 (particularly for
m = 3 and 4) display a nontrivial transient behavior due to (i) the
small network sizes and (ii) the initial condition for the network
consisting in one simplex without any second-neighbors, which leads
to transient fluctuations on the effective value of q, noticeable for the
small network sizes considered here. After this transient, δw/(D/2)
decreases again in all cases.
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models. We note that an exact calculation of δav and δw is
highly computationally demanding (since all network quadru-
plets need to be examined) which prohibits the examination
of very large network sizes. Thus, results in Fig. 6 for δav are
obtained by subsampling the space possible quadruplets [77],
whereas results in Fig. 7 for δw (the maximum value which
cannot be accurately estimated by subsampling) correspond
to small network sizes which can be fully explored.

Moreover, for both models we found that δav 
 δw, indi-
cating that in general the distance between the shortest paths
is much smaller than the maximum given by δw. These re-
sults confirm that both the STC and NGF (with flavor s = 0)
models define emergent hyperbolic network geometries, even
tough these are not discrete manifolds [since in general the
incidence number of the (d − 1)-dimensional faces (d = 2
always for the STC model] can be greater than 1, in which
case different d-dimensional cells associated with a face inter-
sect]. Note that, while the STC remains δ-hyperbolic for any
value of the parameter q, the model in Ref. [45] allowing each
new node to connect with nonzero probability to two or more
nodes chosen randomly in the network is not δ-hyperbolic.

C. Area and volume of STC and NGF models

The ratio between the area A and the volume V of the
cell-complexes generated by the STC and NGF models is also
a very notable geometrical property of the considered models
which is a further indication of their hyperbolicity. For refer-
ence, it is useful to refer to known results valid for Euclidean
and hyperbolic manifolds (even tough the considered STC and
NGF models do not define manifolds). For Euclidean balls of
radius R, the area A and the volume V are given by [80]

A = �d Rd−1, V = �d

d
Rd , (13)

where

�d = 2πd/2

�(d/2)
. (14)

Therefore, the area and volume of a ball with unitary radius,
A = �d and V = �d/d , depend nontrivially on the dimension
of the ball d . In particular, they have a nonmonotonic behav-
ior, with the volume having a maximum for d
 � 5.25 and the
area having a maximum for d† � 7.25 (see Fig. 8). Therefore,
for high dimension d both the area and the volume of the unit
ball decrease with d . More in general, the area-volume ratio
of a ball of radius R is given by

A

V
= d

R
. (15)

Therefore, the ratio A/V vanishes to zero in the limit of a ball
of large radius, i.e., A/V → 0 for R → ∞.

A different behavior is observed for hyperbolic manifolds.
For Hd hyperbolic manifolds in dimension d [81], a ball of
radius R in Hd has area and volume given by

A = �d sinhd−1(R),

V = �d

∫ R

0
sinhd−1(x)dx, (16)
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FIG. 8. The area A = �d of a unit ball in d dimension is plotted
versus d and is shown to display a nonmonotonous behavior with a
maximum for d† � 7.25.

with �d given always by Eq. (14). Thus, the scaling with R
changes and in this case the area-volume ratio remains finite
in the R → ∞ limit, i.e.,

lim
R→∞

A

V
= d − 1. (17)

Let us now explore the area-to-volume ratio in the STC and
the NGF models. We define the area A of a d-dimensional cell
complex which is pure, (i.e., whose facets are all polytopes of
dimension d) as given by the number of (d − 1)-dimensional
faces α that are incident to a single polytope (or equivalently
with incidence number nα = 0). Similarly, we define the vol-
ume V of a d-dimensional cell complex which is pure, as the
total number its (d − 1)-dimensional faces.

Since the STC model is a d = 2 dimensional cell complex
for every value of m, its area A is given by the number of links
which are incident either to a single triangle or to a single
square. The volume V of the STC is given by the total number
of links. For the NGF model in dimension d , the area A is
the number of (d − 1)-simplices of the cell complex that are
incident to a single d-dimensional cell (either a d-dimensional
orthoplex or a d-dimensional simplex). The volume V of the
NGF is given by the total number of (d − 1)-simplices.

FIG. 9. We illustrate the convergence of A/V during network
growth for the STC (a) and NGF (b) models, for different values of
m [m = 2, 4, 3 from top to bottom (for large N)] and d [d = 2, 3, 4
from bottom to top], and for q = p = 0.5. In all panels, results are
averaged over 100 network realizations, and the shaded areas indicate
the error margins as given by the standard deviation.
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We are now in place to study the dependence with the
network size of the ratio A/V for the STC and NGF models.
As it can be seen from Fig. 9, the ratio A/V reaches a constant
value in the large network limit, confirming the hyperbolic
nature of the models. As shown in Figs. 13(c) and 13(d), the
limiting value of the ratio A/V depends on the value of q (for
the STC model) and p (for the NGF model), even tough the
dimension d of the cell complex is independent of q and p.
Therefore, the ratio A/V does not give an indication of the
dimension d . In the next section we will show how the value of
A/V can be related instead to a different notion of dimension,
the spectral dimension of the network.

V. SPECTRAL DIMENSION AND DIFFUSION DYNAMICS

Much information on the structure of a network is given by
the properties of its associated Laplacian matrix [56,82]. For
many complex networks, the Fiedler (second smallest) eigen-
value remains finite in the thermodynamic limit (the smallest
eigenvalue is zero by definition), and in such case the network
is said to display a spectral gap. On the contrary, if the spectral
gap closes as the system size grows, then the network is said
to have a finite spectral dimension when the scaling of the
cumulative density of eigenvalues of the Laplacian follows a
power law [56,83,84].

Here we consider the normalized Laplacian L with
elements

Li j = δi j − ai j

k j
, (18)

where ai j is the adjacency matrix of the network and δi j is
the Kronecker’s delta. L has real nonnegative eigenvalues 0 =
λ1 � λ2 � ... � λN . The spectral density ρ(λ) indicating the

density of eigenvalues is defined as

ρ(λ) = 1

N

N∑
i=1

δ(λ, λi ), (19)

where δ(x, y) indicates the delta function. If the second small-
est eigenvalue λ2 goes to zero in the large network limit, i.e.,
λ2 → 0 for N → ∞, and the density of eigenvalues ρ(λ) for
λ 
 1 scales as

ρ(λ) � CλdS/2−1, (20)

with C indicating a constant, we say that the network has
spectral dimension dS . The spectral dimension dS also char-
acterizes the scaling of the spectral gap (given by λ2) with the
network size as

λ2(N ) � C′N−2/dS . (21)

The spectral dimension can be interpreted as the dimension
of the network as perceived by a random walker (RW) diffus-
ing on it, and it is a notable feature of networks with a distinct
geometrical nature. For Euclidean lattices in dimension d , the
spectral dimension coincides with the Hausdorff dimension,
i.e., dS = dH = d . However, in general networks the spectral
dimension can strongly differ from the Hausdorff dimension
[85,86].

As we go on to show, both the STC model and the NGF
model display a finite spectral dimension dS � 2 for most
of their parameter values, which coexists with their infinite
Hausdorff dimension dH = ∞. This spectral dimension can
be tuned by changing the control parameters q and p, re-
spectively, in the STC and in the NGF model. In particular,
the spectral dimension of STC networks increases for larger

FIG. 10. The cumulative density ρc(λ) of eigenvalues λ, is shown for the STC [panels (a), (b), and (c), respectively, for m = 2, 3, 4] and
the NGF models [panels (d), (e), and (f), respectively, for d = 2, 3, 4]. We have used networks with N = 103 and parameters p and q shown
in the legends (q = 1.00 0.50, 0.00 from left to right (panels a-c); p = 0.01, 0.10, 1.00 from right to left (panels d-f)]. The data has been
averaged over 100 network realizations. The error margins as indicated by the standard deviation are shown with shaded areas (although in
most cases the error area overlaps with the data-points).
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FIG. 11. The spectral gap λ2 of STC networks is plotted versus the number of nodes N for m = 2 (panel a), m = 3 (panel b) and m = 4
(panel c) and for different values of q as indicated in the legend. Results correspond to N = 103 and have been averaged over 20 network
realizations. The shaded regions indicate the error as given by the standard deviation.

values of p = 1 − q, while dS decreases for NGF networks
with larger values of p.

To provide evidence for this effect, in Fig. 10 we show the
cumulative spectral density ρc(λ) for STC and NGF networks
for a choice of the values q and p, respectively. In presence of
a finite spectral dimension dS , ρc(λ) should scale as a power
law for λ 
 1, i.e.,

ρc(λ) � C′′λdS/2, (22)

where C′′ is a constant. For NGF networks dS is well-defined
∀ (d, p) pairs [47], as confirmed by the power-law scaling
of ρc(λ) in Figs. 10(d)–10(f). In particular, dS decreases [i.e.,
the slope of ρc(λ) is less pronounced] in a nonlinear manner
as p is increases (see below). Notably, NGF networks also
present some degenerate eigenvalues in the high portion of
the spectrum, due to the underlying network symmetries.

For the STC model, the scaling of ρc(λ), Figs. 10(a)–
10(c), indicates that the spectral dimension increases as q
decreases (see below). Notably, it also shows that the spectral
gap increases with d and with decreasing q. Thus, we have
measured λ2(N, d, q), as shown in Fig. 11. We have found
that a power-law decay of λ2, λ2 ∼ N−γ , γ > 0, is compat-
ible with the observed data for all (m, q), indicating that the
spectral gap closes in the infinite network limit, and that the
spectral dimension is well defined. To further validate these
results, in Fig. 12 we have compared the two estimations of
the spectral dimension: d [1]

S as given by the scaling of ρc(λ),
and d [2]

S as given by the scaling of λ2(N ), by measuring the
difference �dS (m, q) = d [1]

S (m, q) − d [2]
S (m, q). As shown in

the figure, both procedures yield very similar results as long
as dS � 6. For larger dS values the error in the estimation of
dS grows, due to the finite network size, and the two measures
may differ, but their difference remains within error bars.

In summary, we have found that the spectral dimension of
STC and NGF networks behaves in opposite ways with p:
it grows (in an approximately linear manner for dS < 6) for
STC networks, whereas it decreases (in a nonlinear manner)
for NGF networks [see Figs. 13(a) and 13(b)]. This result
shows that, by changing the local topological moves by which
the higher-order network skeleton evolves, it is possible to
tune the corresponding value of the spectral dimension. In

particular, our results show that, in the considered hyperbolic
higher-order network models, a smaller dS corresponds to
a larger ratio A/V between the area and the volume of the
cell complex [see Figs. 13(c) and 13(d)]. Therefore, the ratio
A/V of the STC and NGF models is not indicative of their
topological dimension, but rather it correlates with the spec-
tral dimension dS . This indicates that the different choice of
topological moves used to generate the higher-order networks
can at the same time change the area/volume ratio of the
hyperbolic STC and NGF models and tune the value of their
spectral dimension.

To illustrate how a different network structure and ge-
ometry affect the dynamical properties of the networks, we
have explicitly considered the diffusion dynamics of random
walkers on the STC and NGF networks. Given a set of random
walkers diffusing on a network, the return-time probability
P0(t ) is defined as the probability that a walker is back at its

FIG. 12. Analysis of the estimation of the spectral dimension dS

for the STC model. We compare the dS fits obtained from ρc(λ), d [1]
S ,

as in Fig. 13, and from λ2(N ), d [2]
S , by measuring �dS = d [1]

S − d [2]
S .

Data corresponds to STC networks with m = 2 (red, bottom curve), 3
(green, middle curve), and 4 (blue, top curve). As it can be shown, as
1 − q → 1, �dS grows for m = 4 and, to a lesser extend, for m = 3.
However, the difference is compatible with 0.
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FIG. 13. We show the spectral dimension dS as a function of p
for STC [m = 2, 3, 4, from bottom to top panel (a), p = 1 − q] and
NGF [s = 0, d = 2, 3, 4, from bottom to top panel (b)] networks.
The values were measured from the ρc(λ) curves as illustrated in
Fig. 10 using aggregated data from 400 networks. The error bars
indicate the confidence intervals. The determination of dS gets less
reliable for increasing values of dS , as the cutoff for the power-law fit
becomes more pronounced. Panels (c) and (d) show the area-volume
ratio A/V, respectively, for the STC and NGF models, for m and d as
indicated in the legends [m = 2, 3, 4 from top to bottom (panel c);
d = 2, 3, 4 from bottom to top (panel d)].

initial position at time t . This is directly linked to the spectral
density by the equation [87]

P0(t ) =
∫ ∞

0
dλe−λtρ(λ). (23)

As a consequence, for networks with a finite spectral di-
mension, the return-time probability distribution decays as a
power law for t � 1, t < tcut, where t < tcut is the cutoff time

FIG. 14. Return-time probability P0(t ) of the random walk for
STC networks with m = 4 and q = 1.0, 0.5, 0.0 from right to left
(a) and NGFs with d = 4, s = 0 and p = 0.0, 0.1, 1.0 from left
to right (b), and N = 103. Results are measured over 50 realizations
of the networks, and 20 realizations of the RW dynamics for each
network. Initially, NRW = 103 walkers are placed on the network at
randomly selected nodes ni, i = 1, . . . , NRW. At each time step, each
walker jumps with uniform probability to one of the neighbors of
ni, independently of the other walkers’ positions. This process is
iterated for TRW = 104 steps, and the return-time probability P0(t )
that a walker returns to its starting point after t steps is measured.

due to finite-size effects, with power-law exponent determined
by the spectral dimension, i.e.,

P0(t ) ∝ t−dS/2. (24)

This relation reveals the role of the spectral dimension as
a key spectral property, explicitly linking the structural and
dynamical properties of a network.

By performing explicit simulations of the random walk
dynamics, we have measured the return-time probability P0(t )
for STC and NGF networks (see Fig. 14). These results con-
firm that the spectral dimension of the STC and the NGF
models can be tuned by varying the parameter q (for the STC
model) and p (for the NGF) model.

VI. CONCLUSIONS

Higher-order networks allow us to properly encode and in-
vestigate complex systems where interactions are not limited
to two nodes at a time. In particular, their characterization
beyond traditional metrics from statistical mechanics and net-
work science reveals new features of the complex interplay
between network structure and dynamics.

In this work we proposed a general nonequilibrium frame-
work which makes it possible to obtain tunable emergent
hyperbolic network geometries, and provide new insights on
how topology and geometry affect diffusion dynamics. We in-
troduced two models, namely, the STC and NGF higher-order
models, which are generated by iteration of simple, local,
topological moves. We investigated how variations in these
local rules are reflected in the geometrical properties of the
higher-order networks. In particular, despite leaving the topo-
logical invariants of the higher-order network unchanged, we
showed that local moves have the ability to modify the emerg-
ing geometrical and diffusion properties; see Sec. III. We
measured the diffusion properties of the considered models
in terms of their spectral dimension, a remarkable geomet-
rical property of their network skeleton that determines the
return-time probability distribution of a random walk crawling
on it. We found that the spectral dimension can be tuned
continuously on the considered models by modulating the
ratio between the area and the volume of the higher-order
models, explicitly governed by the choice of the topological
moves. In particular, as the area-volume ratio decreases, the
spectral dimension of the model increases. The considered
models of emergent network geometries are also found to
show other nontrivial features of real-world systems, includ-
ing the small-world property, δ-hyperbolicity, and significant
community structure. We believe that our work reveals a new
link between the geometry of a network and the properties of
diffusion processes taking place on top of it, contributing at
a fundamental level to a better understanding of the complex
interplay between network structure and dynamics.
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