
PHYSICAL REVIEW E 104, 054301 (2021)
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One of the interesting phenomena due to the topological heterogeneities in complex networks is the friendship
paradox, stating that your friends have on average more friends than you do. Recently, this paradox has been
generalized for arbitrary nodal attributes, called a generalized friendship paradox (GFP). In this paper, we
analyze the GFP for the networks in which the attributes of neighboring nodes are correlated with each other.
The correlation structure between attributes of neighboring nodes is modeled by the Farlie-Gumbel-Morgenstern
copula, enabling us to derive approximate analytical solutions of the GFP for three kinds of methods summa-
rizing the neighborhood of the focal node, i.e., mean-based, median-based, and fraction-based methods. The
analytical solutions are comparable to simulation results, while some systematic deviations between them might
be attributed to the higher-order correlations between nodal attributes. These results help us get deeper insight
into how various summarization methods as well as the correlation structure of nodal attributes affect the GFP
behavior, hence better understand various related phenomena in complex networks.
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I. INTRODUCTION

In recent years, complex social phenomena have been ex-
tensively studied by means of statistical physics [1,2] due to
the structural similarity between social phenomena and phys-
ical processes in a sense that macroscopic complex patterns
emerge from the interaction between numerous microscopic
constituents. The interaction structure between individuals has
been modeled in terms of social networks, where nodes and
links represent individuals and their pairwise interactions, re-
spectively [3–5]. Empirical analyses of various social network
datasets have revealed that the topological structure of social
networks is heterogeneous [6], typically showing heavy-tailed
degree distributions [7,8], assortative mixing [9], and com-
munity structure [10], etc. Such heterogeneous topological
properties enable various interesting phenomena in social net-
works and social processes taking place on them, such as
diffusion, spreading, and opinion formation [1,2,11,12].

Among various interesting phenomena due to the topo-
logical heterogeneities of social networks we focus on the
friendship paradox (FP) and its generalized version, namely,
the generalized friendship paradox (GFP). The FP states that
your friends have on average more friends than you do [13]. In
terms of network science, the FP is about the node degree, i.e.,
the number of neighbors of the node. However, the GFP can
be applied to the network of nodes having attributes other than
degrees whether such attributes are topological, e.g., between-
ness or eigenvector centralities [14,15], or nontopological,
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e.g., happiness or sentiment [16,17]: The GFP states that your
friends have on average higher attributes than yours [18–20].
Since its introduction, the GFP has been extensively studied
by means of empirical analyses [16–19,21–24] as well as by
analytical and numerical approaches [15,20,25].

Both FP and GFP are based on the comparison of one
node’s attribute to a set of attributes of its neighbors or a single
value summarizing the set. The most common summarization
method has been to take an average of the attributes in the
set, which is however sensitive to a few neighbors with very
high attributes. Therefore, the median was suggested for the
summarization as the median is less sensitive to such neigh-
bors than the average [13,22,26,27]. More recently, another
summarization method using the fraction of neighbors having
higher attributes than the node of interest has been suggested
to systematically compare different summarization methods
[28]. These three summarization methods are called mean-
based, median-based, and fraction-based, respectively. Each
summarization method can be interpreted as a perception
model by which individuals perceive their neighborhood. It
has been shown that different summarization methods lead to
qualitatively different behaviors of FP and opinion formation
[28].

As a natural extension of the previous work on the effect
of summarization methods on the FP, here we study how the
above three summarization methods affect the GFP behavior.
For more rigorous understanding of such effects, we derive
approximate analytical solutions of the probability that the
GFP holds for a node with given degree and nontopological
attribute, for each of three summarization methods. We in-
terpret the GFP holding probability as the peer pressure on
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the individual node. When attributes of neighboring nodes
in a network are uncorrelated with each other, it turns out
to be straightforward to get the analytical solution, e.g., for
the mean-based peer pressure as shown in Ref. [20]. In con-
trast, it has been highly nontrivial to derive the analytical
solution for the case with correlated attributes, mainly due
to the difficulty in modeling the correlation structure between
attributes of neighboring nodes in a closed form. For modeling
the correlated attributes of neighboring nodes, we adopt a
Farlie-Gumbel-Morgenstern copula among others [29,30] to
derive approximate analytical solutions of the mean-based,
fraction-based, and median-based peer pressure, which is for
the first time to the best of our knowledge. The analytical
solutions are then compared to the simulation results.

We remark that the mean-based peer pressure has been
studied in networks with correlated attributes by the empirical
analysis of collaboration networks [19] as well as by model
simulations [20]. Thanks to these works it is known at least
qualitatively how the correlations between attributes of neigh-
boring nodes affect the GFP behavior; the positive correlation
between attributes tends to increase (decrease) the mean-
based peer pressure for high-attribute nodes (low-attribute
nodes), compared to the case with uncorrelated attributes. It
is because high-attribute nodes tend to be connected to nodes
with even higher attributes than their own, while low-attribute
nodes tend to be connected to each other, effectively decreas-
ing their peer pressure that would be higher if it were in the
uncorrelated case. The opposite behavior is observed for the
case with negatively correlated attributes. In our work we
show that our analytical solutions are indeed consistent with
the above empirical and simulational findings not only for
the mean-based peer pressure but also for fraction-based and
median-based peer pressure.

These results can help us get deeper insight into how
various summarization methods as well as the correlation
structure of nodal attributes affect the GFP behavior, hence
better understand various related phenomena in complex net-
works.

II. MEAN-BASED GFP

Let us consider a network with N nodes and a nontopo-
logical attribute distribution P(x) for nodes. We assume the
range of x � 0 for the sake of convenience, while the negative
value of attributes can also be considered. The generalized
friendship paradox (GFP) at the individual level is based on
the comparison of one node’s attribute to a set of attributes
of its neighbors or a single value summarizing the set. We
consider three different summarization methods, which are
mean-based, median-based, and fraction-based, respectively
[28].

A. Analysis

The mean-based GFP holds for a node i if the node has
lower attribute than the average attribute of its neighbors,
precisely if the following condition is satisfied [19,20]:

1

ki

∑
j∈�i

x j > xi, (1)

where �i denotes the set of i’s neighbors and ki ≡ |�i| is the
degree of the node i. The probability of satisfying Eq. (1) is
called the mean-based peer pressure. The mean-based peer
pressure of a focal node with degree k and attribute x can be
written as

hmn(k, x) ≡ Pr

(
1

k

k∑
j=1

x j > x

)
=

〈
θ

(
1

k

k∑
j=1

x j − x

)〉

=
k∏

j=1

(∫ ∞

0
dx j

)
P(x1, . . . , xk|x)θ

(
1

k

k∑
j=1

x j − x

)
,

(2)

where θ (·) is a Heaviside step function, 〈·〉 denotes the ensem-
ble average over {x j}, and P(x1, . . . , xk|x) is the conditional
joint probability distribution function (PDF) of k attributes of
neighbors of the focal node when the attribute of the focal
node is given as x. For the analysis, we assume that x js are
independent of each other but only conditioned by x, which is
called the conditional independence. By this assumption the
conditional joint PDF of k attributes reduces to the product of
k conditional PDFs as follows:

P(x1, . . . , xk|x) =
k∏

j=1

P(x j |x), P(x j |x) = P(x j, x)

P(x)
. (3)

Here the joint PDF P(x, x′) carries information on the pair-
wise correlation between attributes of neighboring nodes.

For modeling P(x, x′), we adopt a Farlie-Gumbel-
Morgenstern (FGM) copula among others [29,30], enabling
us to write

P(x, x′) = P(x)P(x′)[1 + r f (x) f (x′)], (4)

where

f (x) ≡ 2F (x) − 1, F (x) ≡
∫ x

0
P(y)dy. (5)

The FGM copula indicates a function C joining a bivari-
ate cumulative distribution function (CDF), say G(x, y), to
their one-dimensional marginal CDFs, say u(x) and v(y),
such that G(x, y) = C[u(x), v(y)] = uv[1 + r(1 − u)(1 − v)]
[29,30]. Then the bivariate PDF of x and y is derived by
∂2G
∂x∂y = P1(x)P2(y)[1 + r(2u − 1)(2v − 1)], where P1(x) and
P2(y) denote PDFs. In our case, P1 and P2 are identical and
the parameter r ∈ [−1, 1] controls the degree of correlations
between x and x′ in Eq. (4). Thus, r is related to the Pearson
correlation coefficient between x and x′, which is written as

ρx ≡ 〈xx′〉 − 〈x〉2

σ 2
, (6)

where

〈xx′〉 ≡
∫ ∞

0
dx

∫ ∞

0
dx′xx′P(x, x′), (7)

and 〈x〉 and σ 2 are the mean and the variance of P(x), respec-
tively. Using Eq. (4) one gets

ρx = r

σ 2

[∫ ∞

0
dxxP(x) f (x)

]2

≡ Ar. (8)
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The upper bound of A for any P(x) is known as 1/3, implying
that |ρx| � 1/3 [31]. The FGM copula has recently been used
for modeling the bivariate luminosity function of galaxies [32]
and bursty time series with correlated interevent times [33,34].

By plugging Eq. (4) into Eq. (3), we obtain

P(x1, . . . , xk|x) =
k∏

j=1

P(x j )
k∏

j=1

[1 + r f (x j ) f (x)]

≈
k∏

j=1

P(x j )

[
1 + r

k∑
j=1

f (x j ) f (x) + O(r2)

]
.

(9)

For the second line, by assuming that |r| 	 1, we have ex-
panded the equation up to the first order of r. We take the
Laplace transform of Eq. (2) using Eq. (9) to get

h̃mn(k, s) ≈ 1

s

[
1 − P̃

( s

k

)k]

+ rk
∫ ∞

0
dx1Q(x1)

k∏
j=2

[∫ ∞

0
dx jP(x j )

]

×
∫ x̄k

0
dxe−sx f (x) + O(r2), (10)

where

Q(x) ≡ P(x) f (x), x̄k ≡ 1

k

k∑
j=1

x j (11)

and P̃(s) is the Laplace transform of P(x). Then the mean-
based peer pressure hmn(k, x) can be obtained by taking the
inverse Laplace transform of Eq. (10) analytically or numer-
ically if necessary. Note that the analytical result in Eq. (10)
has been derived for the arbitrary form of P(x) and any corre-
lation coefficient ρx whose range is limited by the functional
form of P(x) [see Eq. (8)].

For studying the solvable case, we consider an exponential
distribution for x with a positive parameter λ, i.e.,

P(x) = λe−λx, (12)

with the mean 〈x〉 = 1/λ and the variance σ 2 = 1/λ2. As
f (x) = 1 − 2e−λx from Eq. (5), by plugging this f (x) into
Eq. (8), we obtain A = 1/4 in Eq. (8), implying that

ρx = r

4
. (13)

By the definition of Q(x) in Eq. (11), one gets

Q(x) = λe−λx − 2λe−2λx. (14)

Since

P̃(s) = λ

s + λ
, Q̃(s) = −λs

(s + λ)(s + 2λ)
, (15)

one gets from Eq. (10)

h̃mn(k, s) ≈ 1

s

[
1 − P̃

( s

k

)k]
+ rk

[
−1

s
P̃
( s

k

)k−1
Q̃

( s

k

)

+ 2

s + λ
P̃

(
s + λ

k

)k−1

Q̃

(
s + λ

k

)]
+ O(r2).

(16)

Then we take the inverse Laplace transform of Eq. (16) to
finally get hmn(k, x) as follows:

hmn(k, x) ≈ g(k, λkx) + rk(−1)k+1e−2λkx (1 − 2e−λx )

×[g(k,−λkx) − 1] + O(r2), (17)

where

g(a, z) ≡ �(a, z)

�(a)
, �(a, z) =

∫ ∞

z
t a−1e−t dt . (18)

Here �(a) and �(a, z) denote the Gamma function and the
upper incomplete Gamma function, respectively. See Ap-
pendix A for the detailed calculation. By this solution we
can rigorously understand the effects of the correlation be-
tween attributes of neighboring nodes on the mean-based GFP.
We also remark that the first term on the right-hand side of
Eq. (17) is the same as the previous analytical solution for the
case with uncorrelated attributes, namely, Eq. (10) with α = 1
in Ref. [20].

The analytical solution in Eq. (17) is depicted as heat maps
in Figs. 1(a)–1(c) for both uncorrelated and correlated cases,
i.e., for r = −0.16, 0, and 0.16, respectively. The effects due
to the attribute correlation can be effectively characterized by
a transition point x∗

r (k) for given k and r between regimes with
low and high peer pressure, which is defined by the condition

hmn[k, x = x∗
r (k)] = 1

2 . (19)

The curves x∗
r (k) for various values of r are shown as solid

lines in Figs. 1(a)–1(c). In particular, we find that as k in-
creases, x∗

r (k)/〈x〉 approaches a value smaller than, equal to,
or larger than one for r < 0, r = 0, or r > 0, respectively. For
the case with r = 0 we indeed derive the following result from
Eq. (17):

lim
k→∞

g
(
k, k x

〈x〉
) =

⎧⎨
⎩

1 if 0 � x
〈x〉 < 1,

1
2 if x

〈x〉 = 1,

0 if x
〈x〉 > 1,

(20)

see Appendix B for the derivation. These results imply that
in a network in which attributes of neighboring nodes are
positively correlated, some nodes having attributes above the
average tend to have high peer pressure as their neighbors
have even higher attributes than their own attributes. The
opposite behavior is observed for the case with negatively cor-
related attributes. These findings are qualitatively consistent
with the previous numerical results presented in Figs. 2(c) and
2(i) of Ref. [20].

B. Numerical simulation

The analytical solution of hmn(k, x) in Eq. (17) is com-
pared with simulation results, for which a simulation model is
devised: We first generate 10 uncorrelated random networks
of size N = 5 × 104 following the configuration model [35],
in which the degrees of nodes are drawn from an exponen-
tial distribution with the average of 50. Note that since we
have assumed for the analysis the conditional independence
between attributes of neighbors of a focal node [Eq. (3)],
topological properties of the network, such as degrees of
neighbors, degree distribution, and degree assortativity, do not
affect the results as long as the network has an approximately
tree structure [36].
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FIG. 1. Mean-based GFP: (a–c) Heat maps of the analytical solution of hmn(k, x) in Eq. (17) in the cases with negatively correlated
attributes (r = −0.16) (a), uncorrelated attributes (r = 0) (b), and positively correlated attributes (r = 0.16) (c). (d–f) Heat maps of the
simulation results of hmn(k, x) for ρx = −0.04 (d), 0 (e), and 0.04 (f). For each value of ρx , 2 × 103 random configurations of attributes
per network were generated using P(x) with λ = 1 in Eq. (12) for 10 networks of size N = 5 × 104 with an exponential degree distribution
with the average of 50. In panels (a–f) solid lines denote x∗

r (k)/〈x〉, where the transition point x∗
r (k) is defined in Eq. (19), and horizontal dotted

lines for x/〈x〉 = 1 are included for guiding eyes. (g–i) Comparison of hmn(k, x) for k = 1, 10, and 100 between the analytical solution (solid
lines) and simulation results (symbols) in the cases with (r, ρx ) = (−0.16, −0.04) (g), (0, 0) (h), and (0.16, 0.04) (i). Error bars for confidence
intervals for simulation results at significance level α = 0.05 are smaller than symbols.

Then each node i in the generated network is assigned by
an attribute xi that is randomly drawn from an exponential
distribution P(x) in Eq. (12). For quantifying the correlation
between attributes of neighboring nodes, we adopt the Pearson
correlation coefficient, precisely,

ρ̂x ≡ L
∑

i j xix j − [ ∑
i j

1
2 (xi + x j )

]2

L
∑

i j
1
2

(
x2

i + x2
j

) − [ ∑
i j

1
2 (xi + x j )

]2 , (21)

where the summations are over all links i j and L is the number
of links in the network [37]. To introduce the correlation
between attributes of neighboring nodes, we uniformly ran-
domly choose a link, say i j, and swap xi and x j only when the
swap makes ρ̂x closer to the target value ρx. This swapping
is repeated until ρ̂x gets close enough to ρx, i.e., until the
following condition is satisfied:

|ρ̂x − ρx| < ε, (22)

with ε = 10−5. The correlation structure between attributes
of neighboring nodes implemented by the above swapping
procedure turns out to be consistent with the analytical form
given by the FGM copula in Eq. (4). Precisely, we focus on
a conditional probability distribution P(x|x′), in which x and
x′ are attributes of neighboring nodes. The analytical form of

P(x|x′) is obtained from Eq. (4) using Eq. (12), i.e.,

P(x|x′) = λe−λx[1 + r(1 − 2e−λx )(1 − 2e−λx′
)]. (23)

The analytical expectations with r = ±0.16 are indeed com-
parable to P(x|x′) calculated from the simulation using ρx =
±0.04, as shown in Fig. 2. It is because the correlation be-
tween x and x′ is controlled only by r in the FGM copula
and only by ρx in the simulation model, indicating that the
attributes of nodes are fully random in any other respect than
the correlation imposed by r for the analysis and ρx for the
simulation.

Once the network with (un)correlated attributes is ready,
we calculate the mean-based peer pressure for each node i by
using

hi,mn ≡ θ

(
1

ki

∑
j∈�i

x j − xi

)
, (24)

to obtain the average of hi,mn for nodes with the same k and x,
i.e., hmn(k, x). For a given ρx, we generate 2 × 103 random
configurations of attributes per network. Since ρx = r/4 in
Eq. (13), we obtain the simulation results for ρx = −0.04, 0,
and 0.04 to compare them with the analytical counterparts for
r = −0.16, 0, and 0.16, respectively. We find that the simu-
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FIG. 2. Comparison of the conditional distributions of P(x|x′)
for various values of x′, in which x and x′ are attributes of neigh-
boring nodes, between the simulation results (symbols) and the
analytical from in Eq. (23) (solid lines) in the cases with (r, ρx ) =
(−0.16,−0.04) (a) and (0.16, 0.04) (b). The simulation results are
obtained using the same set of random configurations of attributes
on networks used in Fig. 1.

lation results of hmn(k, x) and of the transition point x∗
r (k) in

Figs. 1(d)–1(f) are comparable with the analytical solution in
Figs. 1(a)–1(c). This is supported by the comparison between
the simulation results and analytical solution of hmn(k, x)
as a function of x for several values of k in each case of
(r, ρx ) = (−0.16,−0.04), (0,0), and (0.16,0.04), as shown in
Figs. 1(g)–1(i).

Since the analytical solution of hmn(k, x) in Eq. (17) was
obtained up to the first-order term of r by assuming that
|r| 	 1, the effects of higher-order terms of r on the results
can be studied by looking at the difference between the results
in the correlated case and those in the uncorrelated case. Such
a difference in the simulation can be measured in terms of the
following quantity:

�hmn(k, x) ≡ sgn(ρx )
[
hρx

mn(k, x) − h0
mn(k, x)

]
, (25)

where sgn(·) denotes the sign of the argument, and hρx
mn(k, x)

is the simulation result of the mean-based peer pressure for
a given ρx. Its counterpart in the analytical solution corre-
sponds to the first-order term of r on the right-hand side of
Eq. (17) that is multiplied by sgn(r). Due to the term sgn(r),
the simulation results of �hmn(k, x) in Eq. (25) for both
ρx = ±0.04 will be compared to the analytical counterpart
for r = 0.16. For the simulation, we generate 5 × 104 random

configurations of attributes per network. It is shown in Fig. 3
that the difference �hmn(k, x) is only qualitatively predicted
by the first-order term of r in Eq. (17). This is probably due
to the nonnegligible higher-order terms of r, the calculation of
which seems to be highly nontrivial. In addition, the deviation
of the analytical solution from the simulation results might be
partly due to the correlation between attributes of neighbors of
the node. We have assumed the conditional independence be-
tween attributes of neighbors of the focal node i, i.e., {x j} j∈�i ,
enabling us to simplify the joint PDF of those x js, as done
in Eq. (3). However, the correlation between xi and x j can
naturally lead to the correlation between x js.

III. FRACTION-BASED GFP

Next we consider the fraction-based GFP in terms of the
fraction of neighbors having higher attributes than the focal
node [28]. Here we define the fraction-based peer pressure
as the ensemble average of the fraction of neighbors having
higher attributes than the focal node with degree k and at-
tribute x as follows:

hfr (k, x) ≡
〈

1

k

k∑
j=1

θ (x j − x)

〉

=
k∏

j=1

(∫ ∞

0
dx j

)
P(x1, . . . , xk|x)

1

k

k∑
j=1

θ (x j − x).

(26)

By the assumption of conditional independence in Eq. (3) the
fraction-based peer pressure in Eq. (26) reduces to a simpler
form as

hfr (k, x) =
∫ ∞

0
dx1P(x1|x)θ (x1 − x). (27)

It is remarkable that hfr (k, x) is independent of k and that from
Eq. (2),

hfr (k, x) = hmn(1, x). (28)

Using Eq. (4) one obtains

hfr (k, x) =
∫ ∞

x
dx1P(x1) + r f (x)

∫ ∞

x
dx1Q(x1). (29)

-0.05
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0,
x)

x/<x>

FIG. 3. Mean-based GFP: Differences in the peer pressure between the correlated cases (ρx = −0.04 and 0.04) and the uncorrelated case
(ρx = 0), i.e., �hmn(k, x) in Eq. (25), for k = 1 (a), 10 (b), and 100 (c). For each value of ρx , 5 × 104 random configurations of attributes per
network were generated for 10 networks used in Fig. 1. In each panel, simulation results are denoted by symbols, while the analytical result,
i.e., the first-order term of r on the right-hand side of Eq. (17) with r = 0.16, is denoted by a solid line.
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FIG. 4. Fraction-based GFP: (a–c) Comparison of the analytical solution of hfr (k, x) in Eq. (30) (solid lines) to simulation results (symbols)
for k = 1, 10, and 100 in the cases with (r, ρx ) = (−0.16, −0.04) (a), (0, 0) (b), and (0.16, 0.04) (c). The simulation results are obtained using
the same set of random configurations of attributes on networks used in Fig. 1. (d–f) Differences in the peer pressure between the correlated
cases (ρx = −0.04 and 0.04) and the uncorrelated case (ρx = 0), i.e., �hfr (k, x), for k = 1 (d), 10 (e), and 100 (f). Here �hfr (k, x) is defined
similarly to �hmn(k, x) in Eq. (25). The simulation results are obtained using the same set of random configurations of attributes on networks
used in Fig. 3. Simulation results are denoted by symbols, while the analytical result, i.e., the first-order term of r on the right-hand side of
Eq. (30) with r = 0.16, is denoted by a solid line. In all panels, standard errors are smaller than symbols.

In the case with the exponential distribution of attributes in
Eq. (12), we have

hfr (k, x) = e−λx + r(e−λx − 3e−2λx + 2e−3λx ). (30)

Note that this solution is exact without any assumption on the
range of r.

The analytical solution of hfr (k, x) in Eq. (30) is depicted
as solid lines in Figs. 4(a)–4(c) for both uncorrelated and
correlated cases. As expected from the equivalence between
the fraction-based GFP and the mean-based GFP for k = 1 in
Eq. (28), we conclude that the positive correlation between
attributes of neighboring nodes enhances (suppresses) the
fraction-based peer pressure of nodes having higher (lower)
attributes. The opposite behavior is found for the negatively
correlated attributes.

For the comparison of the analytical solution to the sim-
ulation results, we use the same networks with correlated
attributes generated for the mean-based GFP to measure the
fraction-based peer pressure for each node i by using

hi,fr ≡ 1

ki

∑
j∈�i

θ (x j − xi ). (31)

Then we calculate the average of hi,fr for nodes with the same
k and x to get hfr (k, x). The simulation results of hfr (k, x)
for various values of ρx and k are presented as symbols in
Figs. 4(a)–4(c), which are comparable with the analytical
solution. We also find in Figs. 4(d)–4(f) that the difference
�hfr (k, x), defined similarly to �hmn(k, x) in Eq. (25), is
qualitatively predicted by the first-order term of r in Eq. (30).

In particular, when k is large, e.g., k = 100, the simulation
results and the analytical solution are not only qualitatively
but also quantitatively similar to each other. Yet the deviation
between them might be attributed to the assumption on the
conditional independence between attributes of neighbors of
the focal node, as discussed in the previous section.

IV. MEDIAN-BASED GFP

As mentioned in Sec. I, the median has been used instead
of the average for summarizing the attributes of neighbors of
the focal node [13,26] because the median is less sensitive
to the neighbors whose attributes are very high, in particular
when the attribute distribution P(x) is skewed to the right. We
define the median-based peer pressure as the probability that
the focal node has lower attribute than the median attribute of
its neighbors:

hmd(k, x) ≡
〈
θ

(
1

k

k∑
j=1

θ (x j − x) − 1

2

)〉
. (32)

Note that hmd(1, x) = hfr (k, x) = hmn(1, x). As the above
equation in Eq. (32) is not trivial to analyze, by the assump-
tion of conditional independence between x js, we rewrite the
median-based peer pressure in terms of the binomial distribu-
tion:

hmd(k, x) =
k∑

j=�(k+1)/2

(
k

j

)
pj

x(1 − px )k− j, (33)
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FIG. 5. Median-based GFP: (a–c) Heat maps of the analytical solution of hmd(k, x) in Eq. (35) for r = −0.16 (a), 0 (b), and 0.16 (c). (d–f)
Heat maps of the simulation results of hmd(k, x) for ρx = −0.04 (d), 0 (e), and 0.04 (f). The simulation results are obtained using the same
set of random configurations of attributes on networks used in Fig. 1. In panels (a–f) solid lines denote x∗

r (k)/〈x〉, where the transition point
x∗

r (k) is defined similarly to the mean-based case in Eq. (19), and horizontal dotted lines for x/〈x〉 = ln 2 ≈ 0.69 are included for guiding eyes.
(g–i) Comparison of hmd(k, x) for k = 1, 10, and 100 between the analytical solution (solid lines) and simulation results (symbols) in the cases
with (r, ρx ) = (−0.16, −0.04) (g), (0, 0) (h), and (0.16, 0.04) (i). Error bars for confidence intervals for simulation results at significance level
α = 0.05 are smaller than symbols.

where px is the probability that a neighbor of the focal node
has an attribute bigger than that of the focal node, hence

px ≡ Pr(x j > x) = hfr (k, x). (34)

A similar approach has been taken for the FP when the
degrees of neighboring nodes are correlated [38]. In the case
with large k, the median-based peer pressure in Eq. (33) can
be approximated as

hmd(k, x) ≈ 1 − �

[
(1 − 2px )

√
k

2
√

px(1 − px )

]
, (35)

where �(z) is the cumulative distribution function of the
normal distribution:

�(z) = 1√
2π

∫ z

−∞
e−t2/2dt . (36)

For the exponentially distributed attributes, i.e., as in
Eq. (12), one can numerically calculate hmd(k, x) with px =
hfr (k, x) using Eq. (30). The analytical solution of hmd(k, x)
in Eq. (35) is depicted as heat maps in Figs. 5(a)–5(c) for both
uncorrelated and correlated cases, i.e., r = −0.16, 0, and 0.16,
respectively. We observe that hmd(k, x = 〈x〉 ln 2) = 1/2, ir-
respective of both k and r, which can be easily shown by
the fact that px = 1/2 when x = 〈x〉 ln 2 from Eq. (30). That
is, the transition point between regimes with low and high

peer pressure, similarly defined as Eq. (19), is obtained as
x∗

r (k) = 〈x〉 ln 2, which turns out to be constant of r and k [see
also Figs. 5(a)–5(c)]. The transition of hmd(k, x) at x∗

r (k) be-
comes more gradual as the correlation increases. This implies
that the positive correlation between attributes of neighboring
nodes enhances (suppresses) the median-based peer pressure
of nodes having higher (lower) attributes.

We remark that for a given r, x∗
r (k) is constant of k for

the median-based GFP, whereas it varies with k for the mean-
based GFP. It is because very large attributes of a node’s
neighbors significantly affect the average of neighbors’ at-
tributes but they may barely affect their median.

To obtain the simulation results, we use the same networks
with correlated attributes generated for the mean-based GFP.
We measure the median-based peer pressure for each node i
by using

hi,md ≡ θ (xi,md − xi ), (37)

where xi,md is defined as the median of the set of attributes
of i’s neighbors, i.e., {x j} j∈�i . If the node i has an even
number of neighbors, then xi,md is given as the average of two
middle attributes. Then we calculate the average of hi,md for
nodes with the same k and x to get hmd(k, x). The simulation
results of hmd(k, x) for ρx = −0.04, 0, and 0.04 are shown
in Figs. 5(d)–5(f), respectively. We find that the simulation
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FIG. 6. Median-based GFP: Differences in the peer pressure between the correlated cases (ρx = −0.04 and 0.04) and the uncorrelated case
(ρx = 0), i.e., �hmd(k, x), for k = 1 (a), 10 (b), and 100 (c). Here �hmd(k, x) is defined similarly to �hmn(k, x) in Eq. (25). The simulation
results are obtained using the same set of random configurations of attributes on networks used in Fig. 3. Simulation results are denoted by
symbols, while the analytical results derived from the right-hand side of Eq. (35) with r = ∓0.16 are denoted by solid lines and dashed lines,
respectively.

results for nonnegatively correlated attributes are comparable
with the analytical solution in Eq. (35), whereas those for
negatively correlated attributes deviate from the analytical
solution, which is also confirmed in Figs. 5(g)–5(i). The effect
of correlations between attributes of neighboring nodes is also
shown in terms of �hmd(k, x), which is defined similarly to
�hmn(k, x) in Eq. (25). These differences are compared to
the analytical counterparts that are derived from Eq. (35) in
Fig. 6 to find that the simulation results are only qualitatively
explained by the analytical solution. The deviations between
them are probably due to the assumption on the conditional
independence as well as the assumption for the large k.

V. CONCLUSION

The generalized friendship paradox (GFP) states that your
neighbors have on average higher attributes than you do
[19,20]. In other words, individuals tend to compare their
own attributes to the average of attributes of their neighbors.
However, the average is not the only summarization method
of their neighborhood: The median of attributes of neighbors
[13] as well as the fraction of neighbors having higher at-
tributes than that of the individual [28] have been used, but
mostly for the friendship paradox. Yet little has been known
about how such different summarization methods affect the
GFP behavior for a network with correlated attributes.

For the systematic comparison of different summarization
methods, namely, mean-based, fraction-based, and median-
based methods, we have derived the approximate analytical
solutions of the probability that the GFP holds for an in-
dividual node with given degree and attribute, enabling us
to understand the GFP more rigorously. For modeling the
correlation between attributes of neighboring nodes, we have
adopted a Farlie-Gumbel-Morgenstern (FGM) copula among
others to successfully obtain the analytical solutions for the
correlated cases; in the case of the mean-based method, the
analytical solution is obtained only for weakly correlated
attributes. These solutions are numerically confirmed and sup-
port some of the previous simulation results [20], while we
also find some systematic deviations at a finer scale between
the analytical solutions and the simulation results. Such devi-
ations might be partly due to the higher-order correlations as
well as due to the correlation between attributes of neighbors

of a focal node that has been ignored by the conditional inde-
pendence between attributes of neighbors of the focal node for
the sake of analytic tractability. These limits might be able to
be overcome by considering the higher-order terms of the cor-
relation parameter and the higher-order correlations between
neighbors of the focal node. One can also investigate the
case with other functional forms of the attribute distribution
than the exponential distribution, such as heavy-tailed ones
[19,39], using other kinds of copulas [29] to represent more
realistic correlation structure between attributes of neighbor-
ing nodes in complex networks. Finally, our copula-based
approach may be useful in studying other related interesting
phenomena in complex networks such as transsortivity [40].
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APPENDIX A: INVERSE LAPLACE TRANSFORM
OF EQ. (16)

We use the following result for the Laplace transform:

L{[g(k, ax) − 1]e−bx}(s) = − 1

s + b

( a

s + a + b

)k
. (A1)

Using Eq. (15) the first term in the order of r on the right-hand
side of Eq. (16) is explicitly written as

−1

s
P̃
( s

k

)k−1
Q̃

( s

k

)
= 1

s + 2λk

(
λk

s + λk

)k

. (A2)

The inverse Laplace transform of Eq. (A2) is obtained using
Eq. (A1) by setting a = −λk and b = 2λk:

(−1)k+1[g(k,−λkx) − 1]e−2λkx. (A3)
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The second term in the order of r on the right-hand side of
Eq. (16) is explicitly written as

2

s + λ
P̃

(
s + λ

k

)k−1

Q̃

(
s + λ

k

)

= −2

s + λ + 2λk

(
λk

s + λ + λk

)k

. (A4)

The inverse Laplace transform of Eq. (A4) is obtained using
Eq. (A1) by setting a = −λk and b = λ + 2λk:

2(−1)k[g(k,−λkx) − 1]e−(λ+2λk)x. (A5)

Combining Eqs. (A3) and (A5) we finally get the first-order
term of r on the right-hand side of Eq. (17).

APPENDIX B: DERIVATION OF EQ. (20)

Here we derive the results of g(k, λkx) in the limit of k →
∞, i.e., Eq. (20). For the sake of simplicity, a new variable is
defined as u ≡ λx = x/〈x〉, hence

g(k, λkx) = �(k, uk)

�(k)
= 1 − γ (k, uk)

�(k)
, (B1)

where γ (·, ·) is the lower incomplete Gamma function. By
Eq. (5.11.3) in Ref. [41] the asymptotic expansion of �(k) for
k → ∞ up to the leading term is obtained as

�(k) � e−kkk−1/2
√

2π. (B2)

We first consider the case with u = 1, i.e., x = 〈x〉. The
asymptotic expansion of �(k, k) for k → ∞ up to the leading
term is written as (Eq. (8.11.12) in Ref. [41])

�(k, k) � e−kkk−1/2

√
π

2
, (B3)

leading to

lim
k→∞

g(k, k) = lim
k→∞

�(k, k)

�(k)
= 1

2
. (B4)

Next, when u > 1 (x > 〈x〉), from Eq. (8.11.7) in Ref. [41] we
get the asymptotic expansion of �(k, uk) as follows:

�(k, uk) � e−uk (uk)k

k(u − 1)
, (B5)

leading to

lim
k→∞

g(k, uk) = lim
k→∞

ek(ln u−u+1)k−1/2

√
2π (u − 1)

= 0, (B6)

where we have used the fact that ln u − u + 1 < 0 for u > 1.
Finally, when 0 � u < 1 (0 � x < 〈x〉), from Eq. (8.11.6) in
Ref. [41] we get the asymptotic expansion of γ (k, uk) as
follows:

γ (k, uk) � e−uk (uk)k

k(1 − u)
, (B7)

leading to

lim
k→∞

g(k, uk) = lim
k→∞

[
1 − ek(ln u−u+1)k−1/2

√
2π (1 − u)

]
= 1, (B8)

where we have used the fact that ln u − u + 1 < 0 for 0 � u <

1. Summarizing these results, we get Eq. (20).
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