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In the context of non-Hermitian photonics, we study the physics of transient growth in coupled waveguide
systems that exhibit higher-order exceptional points. We demonstrate the counterintuitive effect of transient
growth despite the decaying spectrum, which is a direct consequence of the underlying modal nonorthogonality.
Eigenvalue analysis fails to capture the power dynamics and thus we have to rely on methods of nonmodal
stability theory, namely singular value decomposition and pseudospectra. The relation between the order of the
exceptional point and transient growth is also examined. Our work provides a general methodology that can be
applied to any non-Hermitian system that contains complex elements with more loss than gain, and exploits the
boundaries of transient amplification in dissipative environments.
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I. INTRODUCTION

Non-normality is a mathematical property of crucial im-
portance and relevance in various fields of physics. Generally
speaking an operator or a matrix M̂ is non-normal [1], i.e.,
it does not commute with its adjoint [M̂, M̂†] �= 0. When
the underlying Hamiltonian is non-normal then the study of
the spectral problem, as well as the evolution dynamics, is
a highly nontrivial issue. Of particular interest is the coun-
terintuitive effect of transient growth despite the underlying
dissipative spectrum. In fact, the physics of transient growth
has attracted a lot of attention and plays central role in the
context of turbulence in fluid mechanics [2–4], non-normal
network theory [5–7], nonmodal stability methods [8,9], and
excess noise in laser physics [10–16].

In a seemingly unrelated direction, the engineering of the
complex refractive index to create new composite systems
with novel functionalities is one of the forefronts of modern
photonics. For more than 30 years several novel photonic
lattice structures have been investigated for the efficient con-
trol and manipulation of light [17]. One fundamental problem
though is the existence of optical losses due to the inherent
absorption of the materials. As a result, engineering of the
imaginary part of the index of refraction is at the technological
frontier of integrated photonics and of great importance for
various fields, especially that of active nanoplasmonics, and
metamaterials. In most systems optical loss has been always
considered an obstacle. However, based on the recently intro-
duced concept of parity-time (PT ) symmetry [18–20] in the
context of optical physics [21–26], such synthetic structures
can utilize loss as an advantage and have been proven to
be important for various nanophotonics applications. As the
paradigm of parity-time symmetric optics [21–26], indicates,
the resolution of this problem is the judicious combination
of gain and loss as an extra degree of freedom for cre-
ating a new generation of loss-free optical metastructures
and systems with novel functionalities, both in micro- and
nanoscale [27–33].

Such complex structures have been experimentally real-
ized with optical waveguides, fiber networks, as well as with
microcavity lasers and represent a class of optical systems
where the deliberate introduction of loss and its spatial dis-
tribution along with gain can achieve new functionalities with
potential applications, as new type of metamaterials [34,35],
active plasmonic devices [36–38], and as optical isolators, and
switches [39–47]. Furthermore, exceptional points are unique
spectral singularities characteristic of non-Hermitian Hamil-
tonians. At these singular points in the parameter space, both
N eigenvalues and the corresponding N eigenstates coalesce
forming a higher-order exceptional point (HEP) of N th order
(EPN) [48–59]. This new area of optical physics, namely
non-Hermitian photonics [60–67] is the physical context of
our work, even though the presented methodology can be
generally applied in any non-normal dissipative system.

Recent experiments [25,26], however, have demonstrated
that in most photonic applications it is challenging to fab-
ricate optical structures in which optical loss and gain are
perfectly balanced. Thus the most general situation of non-
normal dissipative potentials, where the overall loss generally
dominates over the optical gain, needs to be systematically
studied. At this point is where the synergy between non-
Hermitian photonics and non-normal physics is crucial for
the further understanding of optical transient growth and dis-
sipation engineering. This direction is largely unexplored in
the non-normal optics literature [11–14,68–72] and may have
potential applications for transient power amplification and
active plasmonic systems.

In this paper we investigate the physics of transient
growth of optical power in non-Hermitian coupled waveguide
systems that are spectrally lossy, and exhibit higher-order
exceptional points. As a result, these systems are dissipative
in the sense that all eigenvalues correspond to eigenstates that
decay with propagation distance, and thus lie on the left half
of the complex plane. In other words, such systems exhibit
zero modal gain despite the fact that the material gain is
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FIG. 1. Schematic depiction of non-normal photonic waveguide
structures that exhibit dissipative higher-order exceptional points. In
all figures the green, gray red regions represent the lossy, neutral
dielectric, and gainy regions, respectively. The propagation axis is
denoted with z and a white arrow, and the coupling coefficients are
denoted with yellow. The three PT -symmetric waveguides struc-
tures that exhibit EP2, EP3, EP4, are shown in the corresponding
boxes. After a global gauge transformation, these lattices become
dissipative.

nonzero. Based on our notion of eigenvalues one would expect
that the total optical power decays with increasing propaga-
tion distance. But that is not true since the eigenstates are
nonorthogonal and thus transient amplification is physically
allowed. In order to understand the underlying mechanism, we
have to rely on methods on non-normal physics, such as singu-
lar value decomposition, pseudospectra, and matrix resolvents
that go beyond the eigenvalue analysis of the associated
non-normal operator [1–4]. More specifically, these coupled
structures exhibit transient power growth, the magnitude of
which is related to the singular values of the non-normal
propagator whereas the optimal initial condition to its right
singular eigenstates. The nontrivial wave dynamics in such
non-Hermitian optical systems can be estimated in terms of
the pseudospectra (Kreiss matrix theorem) of the evolution
non-normal operator. The interplay between the extreme sen-
sitivity around EPN’s and transient growth is also discussed.
The systematic examination of these highly nontrivial and ba-
sic questions regarding the transient amplification of decaying
waves around dissipative higher-order exceptional points is
the main focus of this paper.

II. DISSIPATIVE PHOTONIC STRUCTURES

Even though our methodology is quite general and can
be applied in any non-normal dynamical system, we are
interested on the physically relevant structures of coupled
waveguide channels that can be experimentally implemented
[59]. Let us consider the propagation of optical waves in
spatially complex photonic structures [17] with a preferred
axis for propagation (z) characterized by a complex in-
dex of refraction modulation profile, such as the structures
that are graphically depicted in Fig. 1. Under the paraxial
approximation, the dynamics of the slowing-varying field am-
plitude can be captured by the paraxial equation of diffraction
(Schrödinger-like equation), which can be further discretized
in the framework of coupled mode theory (tight binding ap-
proximation). Thus the normalized paraxial coupled mode
equations that govern the wave dynamics are [17]:

i
∂ψn

∂z
+ κ (ψn+1 + ψn−1) + εnψn = 0, (1)

where n is the index number (n = 1, . . . , N), z is the prop-
agation distance, ψn and εn are the complex peak amplitude
of the envelope of the electric field and the field propagation
constant of the nth channel (which here plays the role of the
on-site energy or potential strength) and κ is the coupling
constant between nearest neighbors. The non-Hermiticity of
our problem stems from the fact that the potential is complex,
meaning that: εn = Re(εn) + iIm(εn) where positive values
of Im(εn) > 0 correspond to physical material loss (wave
dissipation), whereas negative values correspond to physical
material gain (wave amplification). We note here that the
material gain or loss of the system is directly related to the
sign of the imaginary part of the potential strength.

We can express the above system of N-coupled ordinary
differential equations in a compact dynamical system form as:

∂|ψ〉
∂z

= M̂|ψ〉, (2)

where M̂ is the evolution matrix of the system, and |ψ〉 =
[ψ1, ψ2, . . . , ψN ]T is the amplitude vector. Here M̂ a non-
Hermitian matrix of dimensions N × N , which is generally
non-normal [1], since the εn is complex.

For the spectral properties of our model, we will consider
modal solutions of the form: |ψ〉 = |un〉eλnz, where λn is a
generally complex eigenvalue and the |un〉 the corresponding
right eigenstate of the right non-Hermitian eigenvalue prob-
lem is M̂|un〉 = λn|un〉. In particular, λn = γn + iβn thus is
in generally complex, where positive values of γn > 0 cor-
respond to growing mode (right half complex plane), whereas
negative values γn < 0 correspond to a decayed mode (left
half of the complex plane). It is important to notice here that
the modal gain or loss of each eigenstate is directly related
to the imaginary part of the corresponding eigenvalue. More
specifically, if γn > 0 (γn < 0), then the nth eigenstate has
modal gain (loss).

Now by applying a global gauge transformation [25] on the
corresponding PT -symmetric coupled structures that exhibit
EPNs [71], we can construct systems that exhibit dissipative
EPN’s. By the term “dissipative,” we mean that all spectrum
resides on the left half of the complex plane (γn < 0,∀n). This
physically means that we add a uniform loss l to all waveg-
uides and as a result we get the following three evolution
matrices:

M̂2 = i

[−ig + il κ

κ ig + il

]
, (3)

M̂3 = i

⎡
⎣−i2g + il

√
2κ 0√

2κ il
√

2κ

0
√

2κ i2g + il

⎤
⎦, (4)

M̂4 = i

⎡
⎢⎢⎣

−i3g + il
√

3κ 0 0√
3κ −ig + il 2κ 0
0 2κ ig + il

√
3κ

0 0
√

3κ i3g + il

⎤
⎥⎥⎦, (5)

which exhibit higher-order exceptional points of order two
(EP2), three (EP3), and four (EP4), respectively. Here g is
the gain-loss amplitude of the system and l denotes the over-
all loss. Unless is stated otherwise we assume κ = 1 for
all the subsequent results. For the case of zero overall loss,
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FIG. 2. (a), (b), (c) Eigenvalue spectrum for l = 1 plotted as a
function of g for the three matrices M̂2, M̂3, M̂4, respectively. More
specifically, the real (imaginary) part of the complex eigenvalue
bifurcation curves are presented with blue (red) color solid lines,
respectively. In all three figures the x axis is g, and the yellow dots
show the value of g for which we have a HEP in every case. The
vertical dashed black line segments show the crossing to the right
half complex plane. (d) Eigenvalue trajectories of the three matrices
in the complex plane as g varies. The dashed-green arrows indicate
graphically the path that the complex eigenvalues follow in the com-
plex plane. The light gray shaded area denotes the right half of the
complex plane that corresponds to amplifying eigenstates, whereas
the left half plane corresponds to decayed eigenmodes.

namely l = 0, all the corresponding three Hamiltonians are
PT -symmetric and exhibit HEP, power oscillations, and am-
plification [71]. What we are interested to investigate in this
work is what happens to the power dynamics under a global
gauge transformation.

Let us first examine the eigenvalue spectrum of the prob-
lem as a function of gain-loss amplitude g for fixed overall loss
l = 1. Our results are shown in Fig. 2. In Fig. 2(d) a graphical
depiction of the eigenvalue trajectories in the complex plane is
shown. In all three cases, the eigenvalues coalesce at the same
point of the complex plane [the (−1, 0) point] for gHEP = 1,
and then bifurcate into the real axis, as the green arrows
indicate. More specifically, the complex eigenvalue curves
versus the gain-loss parameter g are presented in Fig. 2, for
both the real (blue lines) and imaginary parts (red lines) of the
corresponding eigenvalues. In particular, we can clearly see in
Figs. 2(a)– 2(c) the existence of the HEPs (yellow dots) where
all eigenvalues and eigenvectors coalesce. For some critical
value of gc one of the eigenvalues will cross the right half
complex plane (gain plane) and thus we expect asymptotically
an exponential amplification. For g > gc the system displays
a transition to a globally amplifying behavior, i.e., in the
asymptotic z → ∞ limit, the power increases exponentially.
This is found to be consistent with an eigenvalue of the system

crossing over to the gain plane. The vertical dashed black
line segments denote the values (gc ≈ 1.4, 1.11, 1.05) of g for
which such a transition occurs. The question is what happens
below these values. Based on our notion of eigenvalues, and
since they all have negative real part (which physically means
that modal gain is zero and thus all eigenstates decay with
z), we expect that the total optical power will decay with
increasing propagation distance. As we will see in the next
paragraphs, this expectation is true only asymptotically for
large values of z. Because of the underlying nonorthogonal-
ity, transient power growth is possible, for particular optimal
initial conditions.

Such questions are directly related to the growing field of
active plasmonics, and in particular to the optical switching in
coupled PT -symmetric plasmonic systems [36]. Unlike these
previous studies, our work applies the most general approach
to understand and quantify the power growth in any dissipa-
tive system that has an amount of gain, but still is overall
lossy. In view of the above, we believe that the answers to
our questions will have important implications to the efficient
design of active plasmonic devices.

III. AMPLIFICATION, DISSIPATION,
AND TRANSIENT GROWTH

A unique characteristic of any non-Hermitian system with
spatially inhomogeneous distribution of gain and loss is that,
in principle, amplification and/or dissipation is possible on
the same device because of the nonconservation of optical
power. This effect is called power oscillations in the context
of PT -symmetric optics [22,24]. Since gain and loss compose
the photonic structure, the eigenmodes are nonorthogonal and
as a consequence we have bounded oscillations of the power
(integrated intensity) with respect to the propagation distance
z. More specifically, below an exceptional point, the power
oscillates with propagation distance z (unbroken symmetry
regime), whereas above the exceptional point (broken sym-
metry regime) it grows exponentially.

The situation is more complex in the case of dissipative
exceptional points. In particular, instead of the two regimes,
that of power oscillations and exponential amplification (for
example in a PT -symmetric lattice), here we identify three
different regimes depending on the value of g, namely:
dissipation, amplification, and transient growth. The power
dynamics and its dependance with z is of particular physical
interest and is the center of our work. One possible way to
characterize fully any non-Hermitian system is by using meth-
ods of nonmodal stability theory of fluid mechanics [73,74],
and in particular, pseudospectra and singular value decom-
position. This approach can provide us the optimal initial
conditions for the maximum amplification ratio for a specific
value of the propagation distance.

Before we establish the mathematical framework to ana-
lyze such complex behavior, it is crucial to define the main
(measurable observable) quantity of interest in our study,
which is the optical power P, that is defined as:

P(z) ≡
N∑

n=1

|ψn(z)|2 = ||ψ ||2, (6)
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where ‖ψ‖2 = 〈ψ |ψ〉 is the usual Euclidean norm of the ket
|ψ〉. It is easy to show that in the Hermitian limit the power
is a conserved quantity of the lattice, because the eigenmodes
are orthogonal. In our case, due to the complex values of the
potential strength per site, the eigenstates are nonorthogonal
and as a direct outcome the power is not a conserved quantity
anymore but a function of the propagation distance z. We can
gain some physical insight regarding the power dynamics by
directly calculate the derivative of the power with respect to
the propagation distance. We can derive the following general
expression:

dP

dz
= −2

N∑
n=1

Im(εn)|ψn(z)|2. (7)

If all elements of our lattice are lossy, meaning that Im(εn) >

0,∀n then dP
dz < 0,∀z and as a result we have decay of the

wave for any initial condition. In this case we are in the dis-
sipation regime [72], meaning that we have nonzero material
loss and modal loss, and also zero material gain-modal gain.
In other words, the first element (1,1) of the three evolution
matrices corresponds to the maximum material gain and thus
its sign marks the transition from the dissipation regime to
the transient growth. This crossover happens for g = l = 1,
g = l/2 = 0.5, and g = l/3 = 0.33, respectively.

On the other hand, if one of the eigenvalues λn is gainy
then we expect amplification. This marks the amplification
regime, where we have nonzero modal gain, γn > 0, for some
n. Now the most interesting regime that is the focus of our
work, is the case where all eigenvalues correspond to loss
but there is still material gain. Then we physically expect
the possibility of transient growth of the wave for particular
initial conditions before the asymptotic decay. In this transient
growth regime we have nonzero material loss-modal loss,
and zero modal gain γn < 0,∀n but nonzero material gain,
Im(εn) < 0 for some n. More specifically, the change of sign
of the first element of all three M̂ matrices above some value
of g indicates the possibility of transient growth.

In order to describe quantitatively the power dynamics we
define the power amplification ratio G at a particular propaga-
tion distance z, which is defined as:

G(z) = G(z, g, l, ψ0) ≡ P(z)

P(0)
= ‖ψ (z)‖2

‖ψ (0)‖2
, (8)

where |ψ0〉 ≡ |ψ (z = 0)〉 are given the initial conditions at
z = 0. Obviously, the G(z) depends strongly on the initial
conditions, on the gain-loss g and loss l parameter. Thus
physically relevant quantities are the maximum power ampli-
fication ratio (output over input power) Gmax, its maximum
value Gmax

max with respect to all z′s and the maximum value of
the last one with respect to all g’s. These quantities are defined
as follows:

Gmax(z, g, l ) ≡ max
||ψ (0)||

G(z) (9)

Gmax
max(g, l ) ≡ max

z
Gmax(z) (10)

mGmax
max(l ) ≡ max

g
Gmax

max. (11)

Notice that the for a given value of z there is a particular
value of Gmax that is achieved by a particular initial condition.
The maximum is over all possible normalized initial condi-

tions (||ψ (0)|| = 1). Therefore for different z′s the maximal
growth is due to different set of initial conditions. Thus all
the three quantities are global properties that characterize
the system over all possible initial conditions. The physical
question that we are interested to answer is: how much is
Gmax in coupled optical waveguides that exhibit higher-order
exceptional points and under what conditions their enhanced
sensitivity contributes to transient growth. Our ultimate goal
is to provide a computational framework of quantifying the
transient growth in situations that the material gain is much
less than the material loss, but still transient amplification
is possible. The approach we are going to follow has two
related paths. Initially, we are going to solve our optimization
problem [which is defined by the above Eq. (9)] exactly by
numerically evaluating the norm of the exponential matrix and
its singular values. Secondly, we will estimate such maximal
power growth by applying the novel geometrical concept of
pseudospectrum.

IV. TRANSIENT GROWTH: EXPONENTIAL
MATRIX APPROACH

Since our problem is linear and the M̂ matrix is z indepen-
dent, the dynamical equation of motion can be directly solved,
in terms of the exponential matrix of the problem:

|ψ (z)〉 = ezM̂ |ψ0〉. (12)

At this point is useful for the subsequent analysis to define
the following matrix Ĝ for a given value of the propagation
distance z as:

Ĝ(z) ≡ ezM̂ . (13)

Based on the fact that the norm of a matrix is generally de-
fined as ‖Ĝ‖ ≡ max||ψ (0)|| ‖Ĝψ‖/‖ψ‖, we can determine the
maximal amplification ratio Gmax from the following relation:

Gmax(z) = max
||ψ (0)||�=0

‖ψ (z)‖2

‖ψ (0)‖2
= ‖ezM̂‖2 = ||Ĝ(z)||2, (14)

where the right-hand side is the square of the matrix norm of
the propagator of the system Ĝ = ezM̂ . At this point we have to
note the conceptual difference of the growth ratios described
by Eqs. (8) and (14). In the first case G is the ratio of the output
over input power for a specific initial condition. On the other
hand, Eq. (14) describes the maximum amplification ratio for
all possible initial conditions at z = 0. Our results regard-
ing the maximal growth Gmax(z) are shown in Fig. 3. More
specifically, in Figs. 3(a)–3(c) we illustrate Gmax(z) versus z
for the three M̂2, M̂3, M̂4 matrices, respectively, for 15 differ-
ent values of the gain-loss parameter g. The blue solid lines
correspond to the transient growth regime for different values
of g, the green dot-dashed lines the dissipation regime and
the red dashed lines to the amplification regime. Based on the
quantities Gmax and Gmax

max we can distinguish the three different
regimes, namely: dissipation when Gmax

max = 1, transient growth
when Gmax

max > 1, and amplification when Gmax
max = ∞. In the

regimes of dissipation and transient growth is also true that
limz→∞ Gmax(z) = 0. But still the optimal initial conditions
that lead to the maximal transient growth are so far unknown
and we will use a different approach to determine them. The
relation between the singular spectrum of the propagator and
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FIG. 3. (a), (b), (c) Gmax(z) versus z (same axes) for the three matrices, respectively, for 15 different values of g from 0 up to 1.419, 1.119,
1.058, respectively. In all three figures, the red dashed lines correspond to amplification, the blue solid lines to transient amplification, and
the green dot-dashed lines the dissipation. The insets show the amplitude of the first column elements of Vi1-matrix of the optimal initial
conditions (right singular vectors of the propagator, given by Eq. (20) when n0 = 1, due to the sorting of the singular values) that lead close
to the maximum value of the Gmax

max for all g′s. (d), (e), (f) Plot of Gmax
max for l = 1 versus g, for the three M̂ matrices (same axes). In (e)

logarithmic scale was used for the depiction of the result. The schematic shaded colored areas correspond to a different regime, namely green:
dissipation; green/red: transient growth; and red: amplification. Their exact boundaries in (d), (e), (f) are determined by the values: 1, 0.5, 0.33
(dissipation-growth boundary) and 1.4134, 1.1171, 1.0531 (growth-amplification boundary), respectively.

these optimal conditions is going to be examined in the next
section.

V. TRANSIENT GROWTH: SINGULAR VALUE
DECOMPOSITION APPROACH

So far we have not analyzed the optimal initial conditions
that lead to the maximum transient growth at a given value
of z. We show below that the initial conditions for maximum
amplification are complicated and most remarkably are not
localized only at the gain regions, as one may intuitively
expect. Here we follow a rigorous and numerically exact
method based on the singular value decomposition (SVD) of
the non-Hermitian propagator Ĝ(z) in order to determine these
optimal initial conditions for a given structure. This means
that we can decompose the matrix Ĝ(z) as Ĝ(z) = Û 	̂V̂ †. The
columns of Û are called left singular vectors, the columns of V̂
are called right singular vectors, and the diagonal elements of
	̂ are called singular values {sn}. The two related eigenvalue

problems are

Ĝ|νn〉 = sn|vn〉, Ĝ†|vn〉 = sn|νn〉, (15)

where {|νn〉}, {|vn〉} are the orthonormal sets of the right
and left singular eigenstates, respectively. We note that the
singular values sn are real and non-negative even for a non-
Hermitian matrix. Also we can directly show that the squares
s2

n are the eigenvalues of the Hermitian matrix Ĝ†Ĝ, since it is
true that:

Ĝ†Ĝ|νn〉 = snĜ†|vn〉 = s2
n|νn〉. (16)

Intuitively speaking, one would expect that if the input
waveform is coupled to the gain regions only, it probably will
lead to the maximum power growth. This is, however, not true
as we show below.
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Since it is by definition true that ||Ĝ||2 =
max||ψ0||�=0

‖Ĝψ0‖2

‖ψ0‖2 , we have the following:

||Ĝ||2 = max
||ψ0||

〈Ĝψ0|Ĝψ0〉
‖ψ0‖2

= max
||ψ0||

〈ψ0|Ĝ†Ĝψ0〉
‖ψ0‖2

. (17)

It is easy to see that if |ψ0〉 = |νn〉 then ||Ĝ||2 = maxn{s2
n},

which practically means that the eigenvector corresponding to
the largest eigenvalue of the Hermitian operator Ĝ†Ĝ, which is
exactly the right-singular vector of Ĝ with the largest sn, max-
imizes the amplification ratio. In other words, the conclusion
can be written as for a particular value of z:

n0 ≡ {
n0 ∈ N : max

n

{
s2

n

} = s2
n0

}
(18)

Gmax(z) = ||Ĝ(z)||2 = s2
n0

(19)

|ψ0〉 = ∣∣νn0

〉
. (20)

The above conclusion can be rigorously derived by expanding
the arbitrary ket to the right singular eigenstates that form an
orthonormal basis. In other words, we have:

|ψ0〉 =
N∑

n=1

cn|νn〉 (21)

Ĝ†Ĝ|ψ0〉 =
N∑

n=1

s2
ncn|νn〉, (22)

where cn are the corresponding projection coefficients. Based
on the orthonormality conditions 〈νm|νn〉 = δn,m we have the
following for the ‖ψ0‖2 = 〈ψ0|ψ0〉:

〈ψ0|ψ0〉 =
N∑

n,m=1

c∗
mcn〈νm|νn〉 =

N∑
n=1

|cn|2. (23)

Similarly we have for the 〈ψ0|Ĝ†Ĝψ0〉 the following:

〈ψ0|Ĝ†Ĝψ0〉 =
N∑

n,m=1

s2
nc∗

mcn〈νm|νn〉 =
N∑

n=1

|cn|2s2
n. (24)

By combining the two last relations we get the general expres-
sion for the amplification ratio G(z):

G(z) =
∑N

n=1 |cn|2s2
n∑N

n=1 |cn|2
, (25)

which lead us to the following inequality for the maximum
power growth:

N∑
n=1

|cn|2s2
n � s2

n0

N∑
n=1

|cn|2 (26)

which completes our derivation.
Our results regarding Gmax

max are presented in Fig. 3. In par-
ticular, in Figs. 3(d)–3(f) we plot Gmax

max versus g for l = 1, of
all three M̂ matrices, respectively. The three different regimes
dissipation, transient growth, and amplification, are shown by
the three different colored shaded areas green, red/green, and
red, respectively. The boundaries of these three areas are in
agreement with the previous figures. More specifically, for
the values of g = 1, 0.5, 0.33 we have the transition from

dissipation (Gmax
max = 1) to transient growth regime (Gmax

max > 1),
for the three matrices, respectively. Notice that these values
coincide exactly with the values of g for which the matrix
elements M̂i(1, 1) change sign. Similarly the critical values
of gc for which we have the transition from transient growth
to amplification are g = gc ≈ 1.41, 1.117, 1.053 for the three
matrices, respectively, which are exactly the same as the
values of g corresponding to the black dashed vertical lines
shown in Figs. 2(a)–2(c). Regarding the optimal initial con-
ditions that lead to the maximum transient growth Gmax

max for
the particular z that the maximum occurs, we plot in the insets
of Figs. 3(a)–3(c) the magnitude of the corresponding right
singular eigenstates for the three propagators, respectively.
Notice that there is a significant overlap of the initial field
with all channels following a nontrivial amplitude and phase
(not shown) profile, which is in contrast to our intuition for
maximum overlap with the gain regions only.

VI. TRANSIENT GROWTH:
PSEUDOSPECTRUM APPROACH

The previous approach based on exponential matrices and
singular value decomposition provided a numerically exact
solution to our optimization problem of maximization of
the transient growth. A complementary approach based on
pseudospectra of a non-normal matrix, though, is still useful
since it is a semianalytical way to estimate Gmax

max and obtain
various relevant bounds. The theory of pseudospectra [1] is
well established and widely used in various fields of physics,
such as in nonmodal stability problems of fluid mechanics
related to turbulence [2], nonlinear dynamics [8], and complex
networks [6].

In particular, the ε pseudospectrum σε(M̂ ) of a non-
Hermitian matrix M̂ is a generalization of its spectrum,
denoted here with σ (M̂ ), that provides valuable information
about the transient growth and the sensitivity of the spectrum
against perturbations. There are three equivalent definitions
of the pseudospectrum that we are going to use here [1]. The
first one defines the ε pseudospectrum as the union of all the
spectra in the complex plane of the perturbed matrix, when
the original matrix M̂ is subjected to all possible complex
perturbations of a magnitude of the order of ε. Mathematically
we have:

σε(M̂ ) ≡
Nr⋃

m=1,||Êm||<ε

σ (M̂ + Êm), (27)

where Nr is the number of realizations of the full non-
Hermitian random matrix Ê , and the parameter ε characterizes
the strength of the random perturbations. The union of all
these spectra of the Nr perturbed matrices is the pseudospec-
trum. An alternative definition in terms of the matrix resolvent
of M̂ is the following:

σε(M̂ ) ≡ {z ∈ C : ||(zÎ − M̂ )−1|| > ε−1}, (28)

where Î is the identity matrix and the R(z) ≡ (zÎ − M̂ )−1 is
the resolvent of the matrix M̂, and z is any complex number
z = x + iy ∈ C (not to be confused with the z-propagation
distance symbol). Instead of only looking at the singularities
of the matrix resolvent (which correspond to the eigenvalues
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FIG. 4. (a), (b), (c) Pseudospectra σ0.1(M̂ ) of the three matrices
M̂2, M̂3, M̂4, respectively, for different values of the parameter g in
the complex plane. In all three figures the red dots correspond to the
eigenvalues of the matrices. Different pseudospectra correspond to
different colors and values of g and they have been calculated based
on the first definition (union of the spectra of the perturbed matrices).
(d) Pseudospectra on the complex plane of the three matrices exactly
at the HEPs (g = 1, l = 1). In particular with red, blue, black clouds
are shown the σ0.1(M̂2), σ0.1(M̂3), σ0.1(M̂4) pseudospectra, respec-
tively. The corresponding solid curves of the same color are the level
curves for ε = 0.1 based on the second definition (matrix resolvent
level curves).

of M̂), we are interested in the level curves of the matrix resol-
vent, which leads us to pseudospectrum. The third definition
is based on singular values of the matrix zÎ − M̂, namely:

σε(M̂ ) ≡ {z ∈ C : min[s(zÎ − M̂ )] < ε}. (29)

Practically speaking, the pseudospectrum σε(M̂ ) is a pattern
in the complex plane that shows how sensitive the eigenvalue
spectrum σ (M̂ ) is to random perturbations. Additionally, it
provides valuable information regarding the transient growth
dynamics [1]. For hermitian operators the spectrum and the
pseudospectrum are almost identical. But for non-Hermitian
operators the two patterns can differ significantly, depending
on the degree of the nonorthogonality of the corresponding
eigenmodes.

Before everything else it is important to calculate the pseu-
dospectra for the three matrices of interest, namely σ0.1(M̂2),
σ0.1(M̂3), σ0.1(M̂4), based on the first definition. Our results
are illustrated in Fig. 4. More specifically, the trajectories of
the pseudospectra on the complex plane for different values of
g (different colored clouds correspond to the value of g with
the corresponding color), are shown for the three matrices
in Figs. 4(a)–4(c), respectively. The red dots that represent
the eigenvalues are also shown for reference. In Fig. 4(d) we
present the 0.1 pseudospectra (red for M̂2, blue for M̂3, and
black for M̂4) exactly at the EP2, EP3, EP4 exceptional points
for g = 1. The corresponding solid curves (red, blue, black)

are the 0.1 pseudospectra based on the second definition of
pseudospectra on matrix resolvent. The extend of the pseu-
dospectra clouds show their sensitivity against perturbations
and as is expected is maximum at EPN’s [Fig. 4(d)] [57,59].

Since we are interested on power growth dynamics, a use-
ful related quantity is the pseudospectral abscissa αε(M̂ ) of M̂
that is defined as [1]:

αε(M̂ ) ≡ max{Re(z) : z ∈ σε(M̂ )}, (30)

which is the maximum real part of any point belonging on
the ε pseudospectrum. Now the extend of the pseudospectrum
cloud into the right half of the complex plane (gray-shaded
area in Fig. 4) relative to ε is a criterion for the existence
of transient growth. The geometrical characteristics of the
pseudospectrum cloud are directly related to the power growth
dynamics of the governing coupled mode equations. As such,
we are interested to find order of magnitude estimates for the
Gmax

max in order to characterize our systems. In particular, an up-
per and lower bound of Gmax

max can be estimated by applying the
Kreiss matrix theorem of functional analysis of non-normal
operators [1–4]. Let us first define a related constant that is
directly related to the pseudospectral abscissa αε(M̂ ). The
Kreiss constant K of the matrix M̂ is defined as:

K(M̂ ) ≡ sup
ε>0

αε (M̂ )

ε
(31)

or equivalently based on the matrix resolvent, with respect to
the right half of the complex plane:

K(M̂ ) ≡ sup
Rez>0

{Rez||(zÎ − M̂ )−1||}. (32)

Now the Kreiss matrix theorem for any complex matrix N ×
N can be stated as [1,3,4]:

K(M̂ ) � sup
z�0

‖ezM̂‖ � eNK(M̂ ), (33)

where e is the Euler’s number. Such a theorem provides a
lower and an upper bound on the value of Gmax

max.
Let us now apply the Kreiss matrix theorem to our problem

and estimate mGmax
max. First of all, we note that the special

case K(M̂ ) = 1, implies that we have no transient growth
(Gmax

max = 1) and similar discussion about the mathematical cri-
teria for the existence of transient growth can be found in the
context of the Hille-Yoshida theorem [73,74]. For example,
when g = gHEP = 1 [see Fig. 4(d)] one can examine when the
extreme sensitivity around an EPN is enough to contribute to
the transient growth for any value of N . For N = 2, 3, 4 one
can calculate the corresponding pseudospectral abscissa and
show that transient growth is impossible for N = 2, but exists
for N = 3 and N = 4.

The second case of interest is when g ≈ gc, and is going to
be systematically examined in what follows. The pseudospec-
tra based on the third definition (singular values) are calcu-
lated in Fig. 5 for the maximum value of g that corresponds
to transient growth, namely, when g ≈ gc. In particular, the
pseudospectra σε(M̂ ) of the three matrices M̂2, M̂3, M̂4, re-
spectively, are shown in Figs. 5(a)–5(c). The white solid
level curves correspond to different values of ε. The magni-
fied areas of the complex plane [marked with orange dashed
square in Figs. 5(a)–5(c)] presented in Figs. 5(d)–5(f) help
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FIG. 5. (a), (b), (c) Pseudospectra σε (M̂ ) of the three matrices M̂2, M̂3, M̂4, respectively, for different values of ε, calculated based on the
third definition of pseudospectra. The level curves (white solid lines) correspond to different values of ε. The values of the parameter g here
are 1.4, 1.11, 1.05, respectively. In all three figures the red dots correspond to the eigenvalues of the matrices and the vertical dashed-yellow
line the imaginary axis of the complex plane. (d), (e), (f) Magnification of the (a), (b), (c) figures around the dashed-orange square area of the
complex plane. All figures here are plotted in the complex plane.

us to numerically evaluate the pseudospectral abscissa. The
Kreiss constant based on both definitions for our problem is:
K(M̂2(g = 1.4)) ≈ 1.249 (1.209), K(M̂3(g = 1.11)) ≈ 3.411
(3.55), K(M̂4(g = 1.05)) ≈ 17.88 (17.82), where the second
number in the parentheses is the result based on the first
definition. The agreement between the two definitions is very
good and is limited only by the grid resolution. Based on
the Kreiss matrix theorem we have the bounds: 1.249 �√

Gmax
max � 6.79, 3.411 �

√
Gmax

max � 27.82, 17.88 �
√

Gmax
max �

194.5, where the exact values of Gmax
max are 1.358, 4.433, and

26.238, respectively (with the first two values to be close to
mGmax

max). The agreement between the exact (singular value
decomposition) and the approximate approach (pseudospec-
trum) is pretty good and thus the Kreiss constant can be used
to estimate the order of magnitude of Gmax

max, and of mGmax
max. In a

similar way the maximal growth can be estimated for different
values of the parameter g.

VII. EFFECT OF LOSS ON TRANSIENT GROWTH

In this last section we are going to systematically examine
the effect of the overall loss on the values of the maximum

transient growth. So far we have considered l = 1 and we are
interested to examine what happens to mGmax

max for different
values of the loss parameter l . Before we continue, let us
introduce the most general expression of a matrix M̂N that
exhibits a HEP of order N , which is given by the following
tridiagonal N × N matrix [71]:

M̂N = i

⎡
⎢⎢⎢⎣

ig0 + il κ0 0 . . . 0
κ0 ig1 + il κ1 . . . 0
. . . . . . . . . . . .

0 . . . κN−1 igN−2 + il κN−2

0 . . . 0 κN−2 igN−1 + il

⎤
⎥⎥⎥⎦,

(34)
where gñ ≡ g(2ñ-N + 1), the coupling coefficients are κñ ≡
κ
√

(ñ + 1)(N − ñ − 1), and the integer index takes values
ñ = 0, 1, 2, . . . , N − 1. As before we assume κ = 1 and we
know that the EPN occurs for gHEP = 1 at the (−l, 0) point
of the complex plane.

Regarding now the effect of the overall loss parameter we
have calculated the maximal growth based on the singular
value decomposition method. Our results are illustrated in
Fig. 6, where we have plotted the mGmax

max versus l for different
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FIG. 6. Dependance of the mGmax
max on the loss parameter l , for

different order of the HEP. In particular, the maximal value of the
transient growth over all values of g for various values of the overall
loss parameter l , is plotted in logarithmic scale for N = 2, 3, 4, 5, 6
with magenta-green-black-red-blue lines, for each matrix that exhibit
an EPN, respectively.

values of N = 2, 3, 4, 5, 6. In all cases, the limit of l → 0
corresponds to very high values of transient growth. This
is expected since for the case l = 0 we have the analytical
power-law expression Gmax

max = ( 1+g
1−g )N−1 [71]. On the other

hand, as we increase the loss parameter, the values of Gmax
max

decrease but still transient growth is possible. In fact, it is
possible to achieve amplification even if the material loss is
much higher than the material gain.

Such an effect strongly depends on the order of the HEP.
For example when N = 6 and l = 6, the maximum material
loss is the last diagonal element of the M̂N matrix namely
M̂N (N, N ) = −gN−1 − l = −g(N − 1) − l < 0 whereas the
maximum material gain is the first one M̂N (1, 1) = −g0 −
l = g(N − 1) − l . The maximal transient growth mGmax

max(g =
1.56) ≈ 13 even though |M̂6(6,6)|

M̂6(1,1)
≈ 7.6, whereas the corre-

sponding growth for N = 2 and l = 6 is almost one. This
physically means that by increasing the order of the HEP we
can have significant transient amplification of the optimal ini-
tial conditions in a physical waveguide system, where material

loss largely dominates over material gain. This is particularly
important for various photonic applications, where usually the
access to gain materials is difficult and expensive, whereas
the materials used are inherently lossy (active plasmonics, for
example).

VIII. CONCLUSIONS

In summary, we have presented a general methodology for
studying the physics of transient growth [73–76] in any finite-
dimensional dynamical system that involves a non-normal
evolution matrix with dissipative HEP. The physical context
of our results is that of non-Hermitian photonics, where ma-
terial gain (laser systems) and loss are physically accessible
and relevant. The particular non-Hermitian system of inter-
est is that of coupled optical waveguides that contain gain
and loss and exhibit higher-order exceptional points (dissi-
pative EPN’s). The whole complex spectrum of the coupled
structure is shifted into the left-half part of the complex
plane, by applying a global gauge transformation. Physically
this is equivalent to adding a uniform loss to all channels.
We identify three distinct regimes depending on the value
of the gain-loss amplitude g: dissipation, transient growth,
and amplification. Due to the fact that the eigenstates are
nonorthogonal, it is physically possible to have power tran-
sient amplification even though all eigenvalues correspond to
decay. This means that in order to understand the underlying
physics of transient growth we cannot rely on our notion
of eigenvalues, but we have to employ different approaches.
More specifically, we follow three different but related paths:
norm of the exponential matrix (exact), singular value decom-
position (exact), and pseudospectra (geometric-approximate).
We systematically study the maximal transient growth for any
value of the involved parameters and determine the corre-
sponding optimal initial conditions. Based on the increased
non-normality degree that depends on the order of the EPN,
we can achieve significant transient amplification in structures
that are characterized by high material loss and low mate-
rial gain. This is particularly important for various integrated
photonics applications that involve inherently lossy materials
where power amplification is crucial.
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