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Testing for nonlinearity in nonstationary time series: A network-based surrogate data test
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The classical surrogate data tests, which are used to differentiate linear noise processes from nonlinear
processes, are not suitable for nonstationary time series. In this paper, we propose a surrogate data test that can
be applied on both stationary time series as well as nonstationary time series with short-term fluctuations. The
method is based on the idea of constructing a network from the time series, employing a generalized symbolic
dynamics method introduced in this work, and using any one of the several easily computable network parameters
as discriminating statistics. The construction of the network is designed to remove the long-term trends in the data
automatically. The network-based test statistics pick up only the short-term variations, unlike the discriminating
statistics of the traditional methods, which are influenced by nonstationary trends in the data. The method is
tested on several systems generated by linear or nonlinear processes and with deterministic or stochastic trends,
and in all cases it is found to be able to differentiate between linear stochastic processes and nonlinear processes
quite accurately, especially in cases where the common methods would lead to false rejections of the null
hypothesis due to nonstationarity being interpreted as nonlinearity. The method is also found to be robust to
the presence of experimental or dynamical noise of a moderate level in an otherwise nonlinear system.
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I. INTRODUCTION

Nonstationarity is a pervasive and persistent challenge
for modeling and forecasting real-world data ranging from
economic to ecological systems and political time series to
machine learning as most theories are developed based on
the assumption that the phenomenon under investigation is
stationary and fluctuating around a time-independent mean
[1–6]. It has been argued that all systems are nonstationary
at some scale which often corresponds to macrosystems span-
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ning broad spatial and temporal scales [7–10] For example,
ecological processes at large scales vary within spatial or
temporal domains, potentially leading to complications for
cross-scale inference and prediction [7,11–13]. Nevertheless,
natural resources planning and management were carried out
till recently on the assumption that the climate system is sta-
tionary over a period of the Holocene epoch [5]. In the area of
macroeconomic studies, nonstationary models could explain
large deviations such as long-running booms or recessions.
On the statistical front, classical techniques such as canoni-
cal variate analysis or principal component analysis are not
good at monitoring nonstationary processes. On the machine
learning front, this adversity has led to the development of
a modified reinforcement learning mechanism to incorporate
varying temporal components [14].

A stationary process fluctuates around a time-independent
mean value with constant variance. A nonstationary process
oscillates around a deterministic or a stochastic trend. Most
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often, one is interested in the nature of such rapid fluctuations
rather than the time-dependent trend to develop forecasting
models.

Surrogate data analysis is an important step in the inves-
tigation of time series exhibiting random-like fluctuations.
Such fluctuations could result from either a stochastic system
or a nonlinear deterministic system with chaotic behavior.
However, the time series generated by a deterministic chaotic
system and a linear Gaussian process exhibit some common
characteristics, especially in the behavior of the autocorre-
lation function, power spectrum, and Lyapunov exponents,
which makes the task of distinguishing between them difficult.
The surrogate data test, formulated initially by Theiler et al.
[15], is a useful tool in identifying whether the given time
series originated from a linear stochastic process or not.

The surrogate data test follows a hypothesis testing pro-
cedure. The first step is to specify a null hypothesis that the
given data are a random series with some of the data’s ob-
served features. One then generates a set of surrogate data by
transforming the given data in such a way as to preserve any
characteristics enshrined in the null hypothesis but destroy-
ing any possible nonlinear features of the data. This process
makes the surrogates consistent with the assumed null hypoth-
esis. Then one calculates one or more test statistics from the
distribution of surrogates and the original series. If the values
of the test statistics differ significantly, the null hypothesis
is rejected, giving further confirmation that the series under
consideration has a deterministic character.

The classical methods of the surrogate data test are all
designed to work only with stationary series. They cannot, in
general, apply if the original series has nonstationary features
in addition to random fluctuations. The very nonstationary
nature of the data may lead to large differences in the val-
ues of the test statistics for the original and surrogates, but
in the test, this may be wrongly interpreted as being due
to nonlinearity. Nonstationary data with random fluctuations
are common, and it is essential to extend these methods to
encompass such series as well. A few recent studies in this
direction attempted to modify the classical methods to suit the
nonstationary character of the data [16–18]. In this paper, we
propose a network-based surrogate method to test nonlinearity
in the short-term fluctuations even when there are long-term
trends in the data. In this method, the test statistic is computed
from a special type of network constructed from the series and
surrogates which pick up only the short-term variations in the
data. Hence the method can be applied no matter whether the
short-term random-like variations are stationary or around a
long-term trend.

II. EXISTING METHODS

The most commonly used surrogate data algorithms for
testing nonlinearity are the Fourier transform (FT) method,
the amplitude-adjusted Fourier transform (AAFT) method,
and the iterative AAFT (IAAFT) methods. These methods
differ from one another in the null hypothesis they test and
in the construction of the surrogates. In the FT method the
surrogates are created by first taking the Fourier transform
of the given series, then randomizing the phases, and finally
taking the inverse Fourier transform [15]. This process does

not change the power spectrum (periodogram) and hence pre-
serves the autocorrelation if the original series is stationary,
but the phase randomization destroys any nonlinearity in the
data. The resulting surrogates can be considered completely
linear and well suited for the null hypothesis that a linear
Gaussian process generated the data.

The AAFT algorithm [15] is an improvement of the FT
method and corresponds to the null hypothesis that the series
is a stationary Gaussian linear process possibly transformed
by a monotonic nonlinear static function. In this method,
the original values are first scaled to a Gaussian distribution
(Gaussianization) and then transformed by the FT algorithm.
Finally, the data set is de-Gaussianized by scaling back to
the original values. The surrogates produced by this process
have the same amplitude distribution and similar (but not
necessarily exact) spectrum as the original series.

The IAAFT is an iterated version of the previous algorithm
where the steps are repeated several times until the spectrum
is sufficiently similar and the amplitudes are identical to the
original values [19]. The merits and demerits of these methods
have been widely discussed [20,21], and in the literature,
most researchers advocate using IAAFT since it generates
surrogates with autocorrelation functions closer to that of the
original series.

The preceding methods of surrogate test assume that the
original series is stationary, and applying them to nonstation-
ary data may lead to incorrect results. When the data are not
stationary, the nonstationarity itself could lead to significant
differences in the values of discriminating statistics of the data
and the set of surrogates, so one cannot judge whether the
null hypothesis is being rejected due to nonlinearity or non-
stationarity [22]. A few existing methods extend the classical
surrogate data tests to include a possible nonstationarity in
the data. Nakamura and Small [16] proposed the small shuffle
surrogate (SSS) method in which surrogates are obtained by
shuffling the data index on a small scale, thus destroying
local structures but maintaining the overall global behavior.
However, this method tests only against the null hypothesis
that the short-term irregular fluctuations are independent and
identically distributed random variables and cannot indicate
whether the data are linear or nonlinear. Nakamura et al.
[17] introduced the truncated Fourier transform surrogates
(TFTS) method for data with or without long trends, which
test against the null hypothesis that a stationary linear system
generates the short-term irregular fluctuations. Their method
could be applied to data in which the power spectrum has
peaks in the lower frequency domain—corresponding to the
global trend—which could be distinguished from the power
behavior in the higher frequency domain corresponding to the
irregular fluctuations. In this case, the surrogates are generated
by the IAAFT method with phase randomization restricted
to the higher frequency domain only. The right choice of
the cutoff frequency is very crucial for this method to be
successful. Lucio et al. [18] use a modified IAAFT algo-
rithm in which the trend in the series is removed just before
taking the Fourier to transform and put back immediately
after the inverse transform. Thus the surrogates preserve the
nonstationarity in addition to all that the IAAFT is guaran-
teed to preserve. Lucio et al. [18] have also discussed the
advantages of their method compared to the naive approach
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of initially detrending the original series, then generating the
surrogates, and finally adding the trend back to the surro-
gates. This naive approach performs poorly in reproduction
of linear structure, histogram, and local nonstationary simi-
larity. Recently wavelet-transform-based surrogates have been
proposed [23,24], to test series with possible nonstationarity.
These methods use the wavelet transform and resampling of
wavelet coefficients [25] or combine the wavelet transform
technique with IAAFT [23] to produce surrogates that match
the specific null hypothesis. However, these methods are
more computationally intensive than the traditional surrogate
methods.

III. OUR NETWORK-BASED METHOD

When applied to nonstationary data, the traditional surro-
gate tests fail to distinguish nonlinearity from nonstationarity
as the IAAFT algorithm almost always alters the long-term
trends. So when these methods are extended to include pos-
sible nonstationary trends in the data, additional care must be
taken to maintain the long-term trends in the surrogates to en-
sure that the nonstationarity does not influence the difference
in the values of the discriminating statistics. In the proposed
method, the time series and the surrogates are transformed
into appropriate networks, and one of the many network char-
acteristics is used as the discriminating statistic. The network
construction automatically removes long-term trends in both
the given time series and its surrogates while preserving the
short-term variations, and consequently the test statistic picks
up only the short-term variations. This eliminates the need
for additional steps to maintain long-term trends while con-
structing surrogates. This means that we can use the IAAFT
algorithm without any modification to create surrogates even
if there is a long-term trend in the original data, since the test
statistic captures only the short-term oscillations, no matter
whether the surrogate algorithm alters the trend or not. We
require only that when there is a frequency overlap of the trend
and the fluctuation, one of the amplitudes of either the trend
or the fluctuations dominate.

Thus we can use the same null hypothesis as in the IAAFT
method without any assumption of stationarity, namely, that
the given time series is generated by a linear Gaussian stochas-
tic process, possibly altered by a static nonlinear measurement
function. We now describe the method of generating the net-
work from a given time series used in this work.

A. Network from time series

An area of recent origin in time series analysis is the use
of complex networks to represent time series and employing
the statistical properties of the network to quantify the under-
lying dynamics of the time series. Many such representations
are possible depending on how the nodes and edges of the
network are defined and constructed from the time series. An
earlier study in this direction was due to Zhang and Small
[26] and Zhang et al. [27], who generated complex networks
from pseudoperiodic time series by representing each cycle
as a node and connecting them by an edge if the phase space
distance or correlation coefficient between them is less than
a threshold value. Yang and Yang [28] and Gao and Jin [29]

used the correlation matrices of time series to construct the
network. Other methods include using individual observations
as nodes and applying a visibility condition for connecting
nodes [30], using phase space vectors and their neighborhood
relations for defining networks [31], or using the recurrence
matrix of time series for defining adjacency in networks [32]

We use a generalized version of the method of Freitas
et al. [33] to construct the network from a time series using
symbolic dynamics. The first step in this method is to replace
every data point in the time series by a 0 or 1 depending upon
if it is less or greater than the median of time series values,
as depicted in Fig. 1(a). From the binary series thus obtained,
M bits are selected at a time, by a window of length M bits,
and converted into a decimal number. The window now slides
from the beginning to the end of the binary series shifting
by one position at a time, thus generating a sequence of
decimal numbers. The distinct decimal numbers of the series
are considered as the nodes of a network. The edge between
two nodes is decided by the adjacency of the corresponding
decimal number in the series, with multiple occurrences of
the same adjacency pair constituting only one edge. Loops
constituted by the occurrence of the same number twice in
adjacent positions are also permitted. Henceforth we refer
to this network as the SDN network. With M = 10, Freitas
et al. [33] have demonstrated that the structural properties of
the SDN network can capture the dynamical properties of a
chaotic time series.

B. Generalized SDN

We recently demonstrated that a generalization of the SDN
by increasing the number of partitions of the range of series
can remarkably improve the efficiency of the network in cap-
turing the dynamics of the series [34]. In a two-bit encoding,
we partition the range of the time series into four segments
demarcated by the three quartiles Q1, Q2, Q3 as depicted in
Fig. 1(b). A time-series value lying below Q1 will be repre-
sented by 00 and a value greater than or equal to Q1 and less
than Q2 by 01 and so on. The symbolic series will be twice
the length of the original series. As in single-bit encoding,
we use a sliding window of M bits, moving by two positions
(same as the encoding size) at a time, converting the binary
series into a decimal series and constructing the corresponding
network. We can extend this procedure to n-bit encoding by
dividing the range of the time series into 2n partitions, and
the corresponding network shall be denoted by GSDN. Our
previous analysis showed that a network with six-bit encoding
could capture the bifurcation diagram of the logistic map with
remarkable accuracy [34].

C. Generalized SDN for nonstationary series

The generalization described in the previous subsection
can be effectively applied to stationary series. However, for
nonstationary series, the network will be affected by both
the trend as well as the fluctuations around it. We propose a
further generalization of the above two-bit encoding method
for such a series by replacing the median line Q2 with the trend
curve. The lines Q1 and Q3 are replaced by the translations of
the trend curve by a perpendicular distance d/2 on either side
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FIG. 1. Diagram showing (a) one-bit encoding for stationary
time series, (b) two-bit encoding for stationary time series, and
(c) two-bit encoding for nonstationary time series. The time series
points are represented by the circles, and lines and curves demarcate
the partition of the range.

of it where d is the maximum of perpendicular distances of the
points of the nonstationary time series from the trend curve,
creating four bands as depicted in Fig. 1(c). Each time series
point is then represented by 00, 01, 10, or 11 as it lies in the
lowest or the next higher band and so on. This method may
be extended to n-bit encoding to generate the binary series
similarly. From the binary series, the generation of the decimal
series using the sliding window and subsequent construction

of the network proceeds as in the previous method. In our
analysis, we found that six-bit encoding with M = 10 gives
the most accurate results. While the variation of M does not
affect the results significantly, the number of bits by which we
move the window each time is significant, and the network
captures the underlying dynamics best when the width of the
shift is equal to n in n-bit encoding [34]. We refer to the
network constructed this way by GSDNNS.

D. The discriminating statistics

The discriminating power of the test statistics for detecting
nonlinearity has also been the focus of investigation for many
researchers [20,21,35,36]. The time-series-induced network
provides a host of alternative test statistics by virtue of its
structural properties [37]. The following are the network met-
rics which we have used as test statistics in this work.

The graph density (GD) is the ratio of the number of edges
to the maximum possible number of edges in the network. For
a network with N nodes and E edges, this is given by

GD = E

N (N − 1)/2
. (1)

The transitivity T of a graph is a measure of the relative
number of triangles in the graph, compared to the maximum
possible number of triangles:

T = 3 × observed number of triangles in the network

maximum possible number of triangles in the network
.

(2)
A path between two nodes in a network is the sequence

of connected edges joining the given nodes. The number of
edges in a path is its length. Among the paths between two
nodes, the one with the smallest length is called the shortest
path. The diameter of a network is the length of the longest
of all shortest paths in a network. We have also considered
the average path length and the mean, median, and standard
deviation of the network’s degree distribution as test statistics
in this analysis.

E. Surrogate generation and calculation of test statistics

The systematic procedure for generating the surrogates and
calculating the test statistics is as follows.

For a given time series {st } for t = 1, 2, 3, . . . , n we first
remove the end mismatch, by subtracting the end-to-end line:

gt = s1 + sn − s1

n − 1
(t − 1). (3)

The resulting time series xt = st − gt is then used to generate
a set of surrogates using the IAAFT algorithm. The surro-
gates will generally have a different trend than the original
series, but this will not cause any serious problem if there is
no frequency overlap of the trend and fluctuations or if the
amplitude of either the trend or the fluctuations dominates.
Removing the end mismatch is crucial in avoiding frequency
spillover between stationary oscillations and the altered trend
of a surrogate [38].

We next generate the GSDNNS networks of both the
original time series xt and their surrogates, and for this we
approximate the trend curve [cf. the red curve in Fig. 1(c)] by
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FIG. 2. (a) Stationary autoregressive process process AR(1) and the trend t3 + sin(t ) added series. The ACF, PCF, and ADF tests show
that the curve with trend added is nonstationary. (b) The GSDNNS network of the trend-added series. The different colors show the various
clusters. Both series produce identical networks. (c) Schematic diagram of surrogates and their networks. We have conducted the surrogate
data test for both series by generating 40 surrogates for both an AR(1) process and its trend-added series. (d) The significance of difference
S computed for the AR(1) process and its trend-added series using various network parameters. The values of S for most of the structural
properties of the network are almost identical. The values S of both series are less than two, showing no significant difference between the
original series and their surrogates for the AR(1) process and its trend-added series. The notations used in the x-axis labels are N, number of
nodes; GD, graph density; APL, average path length; Tran, transitivity; MD, mean distance; Mdg, mean degree; and Medg, median degree.

a sequence of line segments. We partition the time series xt

into a number of segments, and for each time series segment,
the trend is approximated by fitting a straight line. The binary
series is constructed for each segment based on the trend line
and is concatenated to form the binary series of the whole
series xt . The generation of decimal series from the binary
series and the construction of the network then proceeds as
described earlier. The same procedure is also applied to each
of the surrogates to generate networks using the same seg-
ment length in the piecewise approximation of the trend. The

decimal series picks up the oscillations with respect to the
trend line, and hence the effect of the trend is removed in the
decimal series and in the network. The segment length should
be chosen to be smaller than the timescale of the trend and
larger than the timescales of the stationary oscillations. Such
a choice would always be possible if there is a significant
difference between the timescales of trend and oscillations.

Once the GSDNNS networks for both the time series and
the surrogates are constructed, we can use any of the several
network metrics mentioned earlier as a test statistic. For any

054217-5



M. C. MALLIKA et al. PHYSICAL REVIEW E 104, 054217 (2021)

Time
0 2000 4000 6000 8000 10000

−5
0

5
10

15
20

Stationary
Nonstationary

(a) (b)

N GD APL Tran MD Mdg Medg

Stationary
Nonstationary

Network Parameters

Sig
nif

ica
nc

e o
f D

iffe
ren

ce
1

2
5

10
20

50
10

0
20

0

FIG. 3. (a) The stationary and the trend t3 + sin(t ) added nonstationary time series of the logistic map. (b) The significance of difference
S computed with 40 surrogates of both time series. A value of S greater than 2 indicates that the null hypothesis can be rejected.

choice of the discriminating statistic μ, a measure of the
significance of difference for accepting or rejecting the null
hypothesis is given by

S = μori − μsurr

σsurr
,

where μsurr and σsurr are the mean and standard deviation of μ

calculated from the networks of the surrogates, respectively,
and μori is the value of μ as computed from the network of
the original data. If the value of S is larger than 2, then the
null hypothesis may be rejected at a 5% level of significance.

IV. RESULTS AND DISCUSSION

The network-based method for the surrogate test was ap-
plied to several kinds of time series data with different types
of trends and short-term oscillations.

First, we considered a stationary AR(1) series of 10 000
data points generated by the AR model

xt = xt−1/2 + at ,

where at is a Gaussian series. The resulting series is linear,
Gaussian, and stationary since the unique root two lies outside
the unit circle. We then added a trend f (t ) = t3 + sin(t ) to
this time series to produce a nonstationary time series. The au-
tocorrelation function (ACF), partial autocorrelation function
(PACF), and ugmented Dickey-Fuller (ADF) tests confirmed
that the AR(1) process added with a trend is nonstationary
and the AR(1) process is stationary. We then subtracted the
line connecting the endpoints of the series to remove any
end mismatch using Eq. (3) as discussed in the previous
section. From the resulting series, 40 surrogates were gen-
erated using the IAAFT method. The GSDNNS networks
were then constructed for both the original and the surrogate
series, using segments of 50 data points for the piecewise

linear approximation of the trend line and applying a six-bit
encoding to generate the binary series as described in the
previous section. The process of constructing the binary series
based on segmental trend curve eliminates the possibility of
manifesting the impact of the global nonstationarity on the
constructed GSDNNS network. Several network parameters
were computed from the networks of both the original nonsta-
tionary series as well as the surrogates, and the significance
of difference S was calculated in each case. For comparison,
the procedure was repeated for the stationary AR(1) series
(without the trend), computing the significance of difference S
for all the network parameters as in the nonstationary series. A
schematic diagram of these procedures, including the results
of the computations for both the stationary and nonstationary
cases, is shown in Fig. 2. Figure 2(b) shows the GSDNNS
network of the nonstationary series with the various colors
representing the different clusters in the network. It is clear
from Fig. 2(d) that the significance of difference S is smaller
than two for all the network metrics computed for both the
stationary and nonstationary series, showing that the null hy-
pothesis can be accepted. This confirms that the fluctuations
are generated from a linear process and that the presence of
the long-term trend does not affect the test results.

To test the method against a nonlinear time series with a
nonstationary trend, we generated 10 000 data points from
the logistic map in the chaotic regime. The surrogates and
networks were generated as before, and the values of S for the
various network parameters were computed. The series was
then made nonstationary by adding the same trend function
f (t ) as before, and the computations were repeated. The re-
sults are shown in Fig. 3. The value of S in all cases was found
to be greater than 2, leading to rejection of the null hypothesis,
thus indicating that the series is not a linear stochastic process.
In both the above cases, the trend considered was determinis-
tic. In order to check our technique for the case of stochastic
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values of S being less than 2 indicate that the null hypothesis cannot be rejected. (c) The auto correlation function of the series. (d) Partial
autocorrelation of the series. The augmented Dickey-Fuller test rendered P value 0.4472 indicating nonstationarity of the series.

trends, we consider a nonstationary ARIMA process and a
random walk. The ARIMA(1,1,2) is a linear nonstationary
process. We generated 10 000 points of the process from

(1 − 0.5)(1 − B)xt = (1 + 0.8B + 0.3B2)at . (4)

The process is nonstationary because of its AR unit root
and was so confirmed by the ACF, PACF, and ADF tests
[cf. Figs. 4(c) and 4(d)]. We carried out the network-based
surrogate data test as described earlier with 20 data points for
the trend approximation, and the results are shown in Eq. (4).
The significance of the difference lies well below the critical
value, showing the linearity cannot be rejected at the 95%
confidence level.

The results of applying the method on a nonstationary
random walk generated by an AR(1) process with a unit root

xt = xt−1 + at , (5)

where at is Gaussian process are plotted in Fig. 5 along with
the series generated. The computed value of the significance
of the difference is seen to be less than 2 for all the network
parameters, indicating at the 95% confidence level that the
signal is generated by a linear process. In this case, as pointed
out by Lucio et al. [18], the traditional methods such as AAFT
or IAAFT and the TFTS algorithm of Nakamura et al. [17]
would have led to a rejection of the null hypothesis, leading
to the incorrect conclusion that the process is not linear. Thus
the present method, like the method of Lucio et al. [18], may
be applied when the underlying process has a unit root.

We generated 10 000 iterates of the Henon map corre-
sponding to chaotic parameter values for another example of a
deterministic stationary nonlinear process. The x-component
of the iterates was used for the test. As shown in Fig. 6,
the network-based method indicates that the significance of

the difference is large enough to reject the null, suggesting
that the original series is not linear. Together with the results
on the logistic series, we find that the test can be used to
confirm nonlinearity whether the given series is stationary or
not.

A further application of the method concerns a nonlinear
nonstationary stochastic series for which we consider the
model

xt = xt−1 + at at−1, (6)

where at ∼ N (0, 1). The product term at at−1 contributes the
nonlinearity of the model. The ADF test gives the P value
0.7735, indicating the nonstationarity of the data. The results
of the analyses are given in Fig. 7. As expected, significant
differences are observed between the original and surrogates,
demonstrating that the test is successful in capturing the non-
linearity.

It may be noted that the proposed method uses the IAAFT
algorithm without any modification for the construction of
surrogates, except for the correction of the end mismatch of
the time series before applying the algorithm. Hence it is ap-
parent that what makes the surrogate analysis of nonstationary
data possible in the present method is the construction of the
decimalized network and using the network metrics as test
statistics. This is confirmed by a comparison of the results
obtained by crossing the surrogate technique and test statistics
of the current method with those of Nakamura et al. [17] for
typical nonstationary linear and nonlinear processes as shown
in Figs. 8(a) and 8(b). Nakamura et al. [17] use the truncated
Fourier transform (TFT) technique for generating surrogates
and average mutual information for the test statistic. As is
clear from these figures, in the presence of nonstationarity,
the network-based test statistics succeeds in distinguishing
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FIG. 5. (a) A random walk series. (b) Significance of difference S computed with 40 surrogates of the time series for the various network
parameters. The values of S are less than 2, suggesting that the null hypothesis cannot be rejected.

nonlinear processes from linear stochastic processes when
combined with the TFT surrogates as well, while average mu-
tual information as a test statistic fares poorly when combined
with plain IAAFT surrogates even after rectifying the end
mismatch of the given time series.

A. Effect of noise

Another advantage of the network-based surrogate test pro-
posed in this work is its tolerance to the presence of noise up
to a moderate level in nonlinear deterministic systems. The
method can detect dominant nonlinearity in a given time series
even if modest levels of noise corrupt it, be it experimental or
dynamical.

To explore how the presence of experimental noise in an
otherwise deterministic process would affect the performance
of the surrogate test, we considered the Lorenz system

dx/dt = σ (y − x),

dy/dt = −y + x(r − z),

dz/dt = +xy − bz (7)

and set the parameters at σ = 10, b = 8/3, and r = 40 for
which the system is chaotic. The system was then numerically
integrated, and the output was sampled at intervals of δt = 0.4

time units. The series formed by 10 000 points of the x-
component xt of the output was taken as a typical chaotic time
series produced by a purely nonlinear deterministic system.
By adding white noise to this series we get a model of a
deterministic series affected by noise,

yt = xt + αN (0, 1), (8)

where N (0, 1) is a Gaussian noise process having zero mean
and unit variance and α is a parameter representing the noise
level. The results for the significance of difference at various
noise levels with transitivity as test statistic are plotted in
Fig. 9(a). At zero noise level, the test captures the nonlinear-
ity as expected, and it continues to report nonlinearity for a
considerable range of noise levels, indicating the robustness
of the method to the presence of experimental noise.

To study the effect of dynamical noise, we again consid-
ered the Lorenz system with the same set of parametric values
as before and added a noise term αN (0, 1) to the right side
of each equation in (8). The system was then numerically
integrated for different values of α in the range 0 < α < 1.0,
and 10 000 points of the x-component of the output, for each
value of α, were selected for the analysis. The results for
the significance of difference, with average path length as
the test statistic, are plotted in Fig. 9(b) for various values
of the noise level. It is seen that the method rejects linear-
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FIG. 6. (a) Stationary Henon map series. (b) Significance of difference S computed with 40 surrogates of the time series. The values of S

are greater than 2, indicating rejection of the null hypothesis.
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FIG. 7. (a) A realization of the nonlinear nonstationary stochastic process given by Eq. (6). (b) Significance of difference S computed with
40 surrogates of the time series. The values of S are higher than 2, indicating that the null hypothesis can be rejected.

ity in favor of the underlying nonlinearity for a reasonably
large range of the noise level, indicating that the method is
also robust to the presence of dynamical noise of a moderate
degree.

The successful applications of the network-based method
of surrogate tests suggest that the technique can be used to
detect linearity or points to the nonlinearity of a given series,
whether it is stationary or nonstationary with a deterministic
or stochastic trend.

V. CONCLUSIONS

In this paper, we introduce a generalized symbolic dynam-
ics approach for constructing a network from a nonstationary
time series for effectively capturing the dynamics of os-
cillations around a long-term trend. As an application of
such networks, we demonstrate that surrogate data tests with
discriminating statistics based on the structural properties of
such networks can correctly detect nonlinearity present in
a nonstationary time series, while most of the conventional
methods would confuse nonstationarity with nonlinearity. The

efficacy of the proposed computational procedure has been
tested on various linear, nonlinear, stationary, and nonsta-
tionary processes. The nonstationary processes include those
with deterministic and stochastic trends. The advantage of
the procedure is that it can be automated independent of
the nature of the trend or stationarity. While the search for the
suitable test statistic is a focus area for many researchers, the
network induced by the time series features several structural
properties which can serve as possible test statistics. The
method’s robustness has also been tested by considering time
series corrupted by both measurement noise and dynamical
noise.
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