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We study the dynamics of a simple adaptive system in the presence of noise and periodic damping. The system
is composed by two paths connecting a source and a sink, and the dynamics is governed by equations that usually
describe food search of the paradigmatic Physarum polycephalum. In this work we assume that the two paths
undergo damping whose relative strength is periodically modulated in time, and we analyze the dynamics in
the presence of stochastic forces simulating Gaussian noise. We identify different responses depending on the
modulation frequency and on the noise amplitude. At frequencies smaller than the mean dissipation rate, the
system tends to switch to the path which minimizes dissipation. Synchronous switching occurs at an optimal
noise amplitude which depends on the modulation frequency. This behavior disappears at larger frequencies,
where the dynamics can be described by the time-averaged equations. Here we find metastable patterns that

exhibit the features of noise-induced resonances.
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I. INTRODUCTION

Patterns are ubiquitous in nature; metastable spatiotem-
poral structures are observed from the microscopic to the
astrophysical scale [1-4]. The systematic characterization of
their onset and stability is a formidable challenge of theo-
retical physics. Theoretical descriptions are often based on
coupled nonlinear equations for macroscopic variables, whose
fixed points often capture essential features of the metastable
dynamics; see, for instance, [1,5-8].

A prominent example are the equations modeling the
dynamics of biological systems, such as food search of
Physarum polycephalum, a representative of the so-called true
slime molds [9]. Physarum polycephalum is a single-celled
organism that, despite its lack of any form of nervous sys-
tem, is able to solve complex tasks like finding the shortest
path through a maze [10-12] and creating efficient and fault-
tolerant networks [13,14]. These dynamics are qualitatively
reproduced by the noise-free coupled nonlinear equations of
motion [9], which are a reference model system for optimiza-
tion algorithms and deep learning [15].

Most theoretical descriptions of Physarum are noise-free
and do not include the effect of a thermal bath in which
Physarum is naturally immersed. On the other hand, tasks
such as finding the optimal path in a maze are solved in con-
tact with the external environment [10,13], which shows that
Physarum dynamics is robust and probably even optimized for
a certain level of noise, as typical of adaptive systems [16,17].

Motivated by this question, in this work we consider the
coupled nonlinear equations describing an adaptive system
that can choose between two paths in the presence of Gaussian
noise and that is inspired by the dynamics of P. polycephalum.
We analyze the dynamics when the relative dissipation rate
between the two paths is modulated in time and as a function
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of the modulation frequency and of the noise amplitude. We
benchmark our results with the work of Ref. [18], who studied
this model for a fixed value of frequency and noise amplitude.

This paper is organized as follows. In Sec. IIA we in-
troduce the physical model, and in Sec. III we discuss the
response as a function of the frequency and noise amplitude
and identify the regime where stochastic resonance charac-
terizes the dynamics. In Sec. IV we then turn to the regime
outside the stochastic resonance condition when the frequency
is sufficiently large and characterize the system dynamics as a
function of the noise amplitude. The conclusions are drawn in
Sec. V. The Appendixes provide details on the model and on
the calculations in Secs. IIl and I'V.

II. TWO PATHS WITH MODULATED DISSIPATION
A. The model

The model we consider is a simplified network, where a
source and a sink are connected through two paths of equal
and constant length L as illustrated in Fig. 1(a) and whose
dynamics is inspired by P. polycephalum. Here the capability
to connect two food sources is modeled with the flow of gel
inside the cell body along the network edges and is quantified
by the conductivity D; of path i = 1, 2 [9,19]. This variable in-
creases monotonically with the gel’s flow and vanishes when
the flow vanishes according to the deterministic equation (i =
1,2)

[9:Dilo = f(D;) — v:(t)D;, )]

where f(x) is the nonlinear force with argument D; =
D;/(Dy + Dy):

f(x) =T 4 e)x?/(e + x%), 2)
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FIG. 1. (a) Illustration of a system consisting of two different paths connecting a source and a sink. The paths are exposed to a periodically
modulated dissipation. (b, ¢) The periodic function ®;(z), determining the temporal behavior of the damping rate of path i, over one period T
and for the two examples discussed in this work [symmetric (b) and biased (c) case]. The time is in units of 1/y; the dotted lines are the time

averages over one period.

with € = 0.2 and y; is the damping rate of path i [18].
The dissipation is here periodically modulated in time with
period T,

vit) =y + @i(@), 3)

with ®;(r) = ®;(t + T) a periodic and positive function; see
Fig. 1. Let w = 27 /T denote the angular frequency. Further-
more, we set I' = y in the following. From now on, the time
will be given in units of y ! unless otherwise stated.

In this work we characterize the system response to the
dynamically changing environment in the presence of the
stochastic force &;(¢):

0 D; = [8;Dilo + a&i(1). “4)

The stochastic force is scaled by the positive parameter & =
ay and describes white noise. It has vanishing expectation
value, (£;(¢)) = 0, and correlations

(&(0)E; (1)) = K8 ;8(t — 1), (&)

where k = y 7" and (-) is the average taken over a sufficiently
large number of independent realizations of the stochastic
process &;(t) [20,21]. Note that, since this force can take
negative value, we need to regularize the behavior of Eq. (4)
for small values of D; so as to keep D; > 0. This in turn
reflects the physical constraint that D; represents a conductiv-
ity. For this purpose, when D; = 0 and the right-hand side of
Eqg. (4) becomes negative, we set it equal to 0. In what follows
we numerically simulate Eq. (4) using the Euler-Maruyama
scheme [22] with a step size At = 0.05y ', unless otherwise
specified.

Asin Ref. [18] we quantify the system’s response by means
of the quantity

1

Di(t) — Dy(¢
c(t) = M, (6)
Dy (t) + D, (1)
which we denote by risk function. The risk function varies in
the interval [—1, 1]. The extremal values ¢ = +1 and ¢ = —1

correspond to the system being in the path i = 1 and i = 2,
respectively. We note that the function minimizing the risk
takes the form

er(t) = 2{0[P2(1) — @1(1)] — 5},

with 6(x) Heaviside’s function. The corresponding dynamics
follows the path whose instantaneous dissipation is minimal.

B. The biological system

Equation (1) has been proposed in Ref. [9] for simulating
the dynamics of P. polycephalum for a constant dissipation
y;. This model was extended in Ref. [18] for the purpose of
analyzing the effect of noise on the adaptivity of P. poly-
cephalum to dynamically varying environmental conditions.
The dynamically varying environment was there modeled by
a periodically modulated dissipation. The latter simulated the
effect of light, which inhibits the growth of P. polycephalum.

In the present work we start from that analysis and extend
it by investigating the dynamics as a function of the noise
strength and of the modulation frequency. This allows us to
identify whether and when there is an optimal noise strength
for which the system optimally adapts to the external environ-
ment.

III. SYMMETRIC CONFIGURATION

In the following we determine the dynamics as a func-
tion of «, the noise strength, and w, the frequency at which
dissipation is modulated. We assume that the two functions
®,(r) are step functions shifted by half period with respect
to one another: ®;(¢) = ®,(t + T/2). Over one period we
choose @ () =y 0(t)0(T /2 —t), with yy = 0.1y. Figure 2
displays the evolution of the conductivity D; for different,
increasing values of «. Among the three examples displayed,
the flow seems to best adapt to the periodic changes of the
external parameters for « ~ 0.1 (we emphasize that foro = 0
the system does not switch paths).

We quantify the capability of the system to adapt to the
changes of dissipation over the evolution time [0, fehq] by
means of the normalized correlation function

2 tend 1
o(r) = /O{e[c(r>]—5}cr(z—r>dr, %

end

which quantifies the overlap between the signal c¢(¢) and the
function c¢,(t), as a function of the delay t > 0. Perfect cor-
relation (anticorrelation) between dynamics and dissipation
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FIG. 2. Time evolution of the risk function ¢ for w = 1073y and (a) o = 0.051, (b) a = 0.099, and (c) @ = 0.222. The blue line
corresponds to one trajectory, the yellow line is the average over 5000 trajectories, and the red line displays c¢,(z). The initial conditions

are DY = 0.5, D9 = 1 corresponding to ¢® =

minimizes (maximizes) the risk and corresponds to g = 1 and
T—>0(=T/2).

Figure 3(a) displays the color plot of g(0) as a function of
the noise strength o and of the modulation frequency w. For
the full range of angular frequencies w shown in the figure,
it holds g(0) ~ max,[g(7)]. We observe a region for which
g(0) ~ 1, indicating synchronous behavior at an optimal noise
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FIG. 3. (a) Color plot of the measure g(0), calculated using
Eq. (7), as a function of the noise strength « and of the modulation
frequency w. The dotted line represents the noise strengths at which
we expect stochastic resonance to occur according to the matching
condition of Eq. (8). For the displayed range of angular frequencies
w it holds g(0) &~ max,[g(7)]. (b) Measure g(0) as a function of «
for three values of the frequency w; see legend. We used the initial
conditions DY = 0.5, D9 = 1 corresponding to ¢® = —1/3. The data
were generated by evaluating an ensemble of 5000 trajectories with
simulation time of 7., = 87 /w and step size At = 107%/w.

—1/3. In Appendix A we report a zoom of panel (a).

strength within a frequency range @ < 1072y. In Fig. 3(b)
we display g(t) for three values of w and as a function of
o: The dynamics exhibits the features of stochastic resonance
[23]; the optimal noise strength where g(t) is maximum can
be found from the relation

ty=—, ®)

where 1, is the average switching time between the two stable
fixed points ¢ = —1 and ¢ = 1. We estimate the switching
time using a one-dimensional model; the details are reported
in Appendix B. The resulting curve is the dotted line of
Fig. 3(a) and reproduces the position of the resonance in the
a-w plane, which we find numerically.

The resonance behavior as a function of « broadens as @
increases. For @ 2 y there seems to be no correlation between
c(¢) and the temporal modulation of the dissipation. In the
next section we analyze the effect of noise in this regime.

IV. SECULAR REGIME

In this section we analyze the dynamics as a function of
the noise strength at large frequencies, such that w/y > 1.
In this regime we expect that the effect of the time-dependent
dissipation on the dynamics can be replaced by its average. We
choose an asymmetric modulation of dissipation between the
two paths and fix @ = 10y . In order to compare with Ref. [18]
we define

Q1) = ymb(@ = T/2)6(T —1), ©)

Oy (1) = ynb(r = 3T/HO(T —1) (10)

for t € [0, T], with y9; = y/4 and yp, = 3y /5. According
to this choice we expect a bias towards path 1, since it is
characterized by the minimal (time-averaged) dissipation. We
note that in Ref. [18] the authors considered the specific
noise strength @ = 0.05 and simulated the dynamics till time
tena = 2007y !, In the following we study the dynamics as
a function of «. Moreover, we analyze the convergence of
the simulated trajectories by taking different times and by
comparing the results with the stationary state, which we
analytically determine.

Figure 4 displays the evolution of the conductivities D;
by numerically integrating Eq. (4) assuming that initially
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FIG. 4. Evolution of the conductivities D; as a function of time
(in units of 1/y) for @ = 10y and (a) « = 0, (b) @ = 0.05. In the
deterministic case, o = 0, the system converges to the fixed point
of the secular equation; see the blue solid circle of Fig. 5(a). In the
presence of noise this fixed point is metastable: the system quickly
converges to the stable fixed point at which the system favors the path
exposed to minimal averaged dissipation. The data shown represent
a single trajectory. The initial conditions are DY = 0.5 and DY = 1.

D, > D;. In the deterministic case, for « = 0, the curves
exhibit fast, small-amplitude oscillations at a frequency close
to the modulation frequency w, and their time average over
a period varies over a significantly longer timescale. After
a transient, the conductivity D; reaches a value larger than
D;. The corresponding dynamics in the presence of white
noise is shown in Fig. 4(b): we observe a timescale separation
as in the deterministic case, while the frequency of the fast
oscillations become chaotic. The slow dynamics reaches a
metastable state (corresponding to the asymptotic state of the
noise-free dynamics) where it is trapped for a relatively short
time. It then quickly reaches the steady state, with the value
of the conductivity D; approaching unity, while the flow along
the second path is almost suppressed.

A. Fixed points of the secular dynamics

In order to perform an analytical study, we consider the
secular dynamics, where we average Eq. (4) over a period T
of the oscillations and replace y;(¢) with the time-averaged
dissipation coefficients:

v =y +(®))r,
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FIG. 5. (a) Fixed points (D7, D3) of the secular equations for
(®1)r = 0.125 and (P, )7 = 0.15. The arrows indicate the flow. Sta-
ble (unstable) fixed points are represented by solid (hollow) circles.
The green (red) stable fixed point correspond to the system choos-
ing the path with minimal (maximal) average dissipation. (b) Fixed
points ¢* = (D} — D})/(D} + D3) as a function of y5™ — y# with
fixed y{ = 1.125. Full (hollow) circles indicate stable (unstable)
fixed points. The inset zooms into the parameter region of the in-
termediate, metastable fixed point.

with

1 t+T

(A)r = T/z dtA(7).
According to our parameter choice y{ < y5 and in the
regime of validity of this secular approximation path 1 is
favored. We then set « = 0 and study the fixed points of the
dynamics D, fulfilling 9,Df = 0. We report the details in
Appendix C.

Figure 5(a) displays the fixed points (D7, D): stable (un-
stable) solutions are represented by solid (hollow) circles.
The vector fields illustrate the flow. The path with average
minimal dissipation corresponds to the green circle. The blue
circle is the metastable path to which the deterministic dy-
namics of Fig. 4(a) converges for the given initial condition.
This solution still characterizes the transient dynamics in the
presence of noise, Fig. 4(b). On longer timescales, however,
the stochastic dynamics brings the system to the path min-
imizing dissipation. Figure 5(b) shows the variable ¢* =
(D} — D3)/(Dy + D3) as a function of the average dissipation
yst, which is varied starting from the symmetric case y§i =
y< while keeping y¢ fixed. The blue solid (red hollow)
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symbols indicate the stable (unstable) solutions. The red hol-
low symbols are the borders of the basins of attraction of the
nearby stable solution for the deterministic dynamics. The two
extremal solutions—where the system settles on one of the
two paths—are independent of y5™ . Instead, the solution char-
acterized by finite conductivities along both paths exists solely
below a threshold value y5%,. As ys" increases from yf'f
towards the threshold, this fixed point moves towards positive
values, indicating that the symmetry of the solutions is broken.
Correspondingly, its basin of attraction becomes asymmetric
by increasing ¥ and biased towards the region ¢ > 0. At
the threshold, the basin of attraction of ¢* = 1 undergoes a
discontinuous jump and extends to the neighborhood of the
other fixed point ¢* = —1.

Despite the fact that this analysis has been performed using
a secular approximation, we note that the fixed points of
Fig. 5(a) allow us to understand the steady state of Fig. 4 as
well as the metastable dynamics in Fig. 4(b). According to
this picture, one would expect that by increasing « the rate of
convergence to the stable state shall accordingly increase. In
the following section we will show that this is only partly true.

B. Convergence to the stationary state

The analysis of the fixed point of the deterministic dynam-
ics provides some insight into the behavior observed in Fig. 4.
Here metastable fixed points correspond to metastable con-
figurations whose lifetime is limited by noise. Fluctuations,
in general, allow the system to explore a large configuration
space.

In order to characterize the convergence to the steady state
as a function of the noise strength o we first determine the
variable ¢ for sufficiently large integration times fe,q. We
single out the slowly varying value by averaging out the fast
oscillations over a period,

fend
) = [ ctrr. (11
fena—T
where c(¢) in the integrand is the ensemble average over the
individual trajectories. Figure 6 displays ¢(f.ng) as a function
of the noise strength « for different integration times fe,q. The
choice f.ng = 2007 /y corresponds to the same integration
time of Ref. [18]. Comparison with longer simulation times
shows that at this time and « < 0.07 the dynamics has not
yet converged to the stationary state. For &« < 0.02, moreover,
the system is still trapped in the metastable configuration at
c¢* ~ 0 even for the longest integration time here considered.

The behavior in the interval 0.02 < « < 0.07 is remark-
able, as it exhibits local minima which have the form of
resonances. We note that the lifetime of the metastable con-
figurations at & ~ 0.04 exceeds feng ~ 10°/y.

Figure 7 shows the time evolution of ¢ about these special
values of «. Figure 7(a) displays the time evolution for values
of o < 0.02. Here the system is trapped in the metastable
configuration corresponding to the fixed point at ¢* 2 0: the
residence time visibly decreases as « increases. This trend
is still visible at larger values of « in Fig. 7(b). At longer
timescales, however, the curves in Fig. 7(b) show a metastable
regime close to path 1 where the system remains trapped
and whose lifetime is maximal for « ~ 0.04. This metastable

1
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om o4l ; end 5 7_1 ‘\)_
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! t =2007 7‘1, averaged
L d ]
0.2 J.’ en o
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FIG. 6. Average value ¢ at the simulation time #.,q as a function
of the noise strength a for t.,g = 200y !, 103y~!, 107y ~!. The
data shown were generated by averaging over a total of 5000 tra-
jectories. The initial conditions are DY = 0.5, DY = 1 corresponding
to ¢® = —1/3. For all values of #.,q we evolve the secular equation.
We also show the result of the full, periodic dynamics (circles) for
fena = 2007y ~!. Here, to generate comparable data, we use the same
set of random numbers for the trajectories.

configuration is not captured by the fixed point analysis and
seems to crucially depend on the noise strength. It has thus
the form of a noise-induced resonance.

We study these resonances by inspecting the variation Ac
of the curve c(t) at the extremal of the interval of time Z(8) =
[8 - tend, fena] With § € (0, 1):

1 8-tend
Ac = (cona = cydr')egh, (12)

T Sctena—T o
where cenq 1S the stationary value for t — oo. When the sys-
tem dynamics does not change over the interval Z(§), then the
variation Ac = 0. Figure 7(c) shows Ac as a function of « for
6 = 0.6 and different integration times z.,4. Metastable config-
urations appear as resonances. We observe several resonances
for relatively short integration times, while for increasing fenq
the number of metastable states decreases. The small res-
onance at o ~ 0.04 signals the metastable configuration of
Fig. 7(b). The largest resonance at o ~ 0.02 separates the
regime where the system is still trapped in the metastable fixed
point from the regime where the system has already escaped
this region.

C. Steady state

We complete this study by discussing the steady state of
the dynamics as a function of «. We apply the approach imple-
mented in Ref. [18] and extend it to determine the dependence
on «. We review here the basic steps. The approach consists
in determining the time-averaged dynamics of the single vari-
able ¢, assuming that it undergoes a time-continuous Markov
process in the presence of a drift w(¢) and an It6 diffusion
with amplitude o (¢, t), which are determined by means of an
equation-free analysis; see Appendix D. We verify the validity
of this approximation by comparing the predictions of the
full dynamics at fepg = 107 /vy with the one of the stochas-
tic equation for the single variable ¢&; see Fig. 8(a). For the
one-dimensional case we take noise strengths o« > 0.01 since
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FIG. 7. Time evolution of the average value of ¢, Eq. (6), for the noise strengths (a) « = 0.011, « = 0.017, « = 0.023, and (b) « = 0.032,
a = 0.044, @ = 0.053. In each panel the dotted green (black) lines label the times 0.6 x 200y ' (0.6 x 10°/y) and t = 200z y ="' (10°y ).
(c) Variation Ac as a function of o for the simulation times fopg = 2007y ™" and feg = 10°y !, For t.,q = 200y ~! the trajectories for
periodic and time-averaged dynamics are shown. To generate comparable data, in both of these cases the same set of random numbers was
used to simulate the trajectories. The integration method, trajectories, and initial conditions are the same as in Fig. 6.

for smaller values the numerical algorithm does not converge
within the simulation times we considered. The corresponding
Fokker-Planck equation for the probability distribution p(¢, t)
takes the form

a
O p(E, 1) = —%\7(5,0, 13)

with the current

10
T @, 1) = n@p@E, 1) — E%o—z(ap(a H.  (14)

We denote the steady state of p(¢,7) by po(¢). The
steady-state distribution pg(¢) fulfills 9, po(¢) = 0, which cor-
responds to a constant current J and explicitly reads

N
po(@) = ——exp[—¢(0)] 15)

o2(e)

with A/ a normalization coefficient, warranting fjl dé p(&) =

1, and
B “2u(y)
= — d
@ /;1 a2(y) Y

being the potential associated with the stationary solution. Po-
tential and steady-state probability are shown in Figs. 8(b) and

(16)

(a) A (b)

8(c), respectively, as a function of ¢ and «. For small values
of o the minima and maxima are localized at the fixed points
of the deterministic equation. The position of the minima are
shifted towards the center of the interval as « is increased.
Increasing the noise, moreover, decreases the barrier between
minima: at sufficiently large o the system explores the full
interval of values of ¢ with longer residence times in the
region at ¢ = 1. At large « the effect of noise is to diffuse the
solution across both paths keeping a bias towards ¢ = 1. We
remark that the noise-induced resonances observed in Fig. 6
are not captured by the equilibrium potential calculated from
the one-dimensional Fokker-Planck equation.

V. CONCLUSION

We have analyzed the dynamics of a simple adaptive sys-
tem as a function of the strength of a stochastic force. The
system is composed by two paths connecting a sink and a
source and subject to a periodic modulation of the dissipation
rate between the two paths.

When the dissipation modulation frequency is smaller than
the mean value of the dissipation rate, the system dynam-
ics exhibit stochastic resonance, with the system periodically

(c)
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0.8 0
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5
206 0.08 c
04 ; 0 =2
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—_ zg, t, =107 7 0.06
-0 bt — 00 i
d .
02 O 1D, setréady state 0.04 i 15
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FIG. 8. (a) The risk function ceyq as a function of the noise strength « for the parameters of Fig. 6. The prediction of the model of Eq. (4)
att.,g = 107y ! is compared with the one of the Fokker-Planck equation of Eq. (13) for # — oo. For the Fokker-Planck approach, the value of
Cend 18 given by the average of the steady-state distribution ceng = f_1 L €po(¢) dé. Furthermore, we take only @ > 0.01 for the one-dimensional
case as for smaller noise strengths the numerical algorithm does not converge within the considered simulation time. (b) Color plot of the
potential ¢, Eq. (16). The dotted white lines indicate the local maxima, the dotted black lines the local minima. (c) Color plot of the logarithm
of the probability density distribution py, Eq. (15), as a function of & and ¢.
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FIG. 9. Time evolution of the risk function ¢ for @ = 103y and
o = 0.051. The blue line corresponds to one trajectory, the yellow
line is the average over 5000 trajectories, and the red line displays
¢ (t). See Fig. 2(a).

switching to the path minimizing dissipation. At large fre-
quencies, instead, the dynamics is reproduced by the secular
equations, obtained by taking the time average of the damping
coefficient over a period. The steady state is the fixed point
of the secular equations which minimizes dissipation. The
metastable configurations are in general the other fixed points
of the secular equations, and the net effect of noise is to
limit their lifetime. Nevertheless, the dynamics also exhibits
other metastable configurations at certain values of the noise
amplitude that are neither captured by stochastic resonance
nor by the fixed point analysis. They exhibit the features of
noise-induced resonances.

Our study suggests that noise could play a nontrivial role
in both developing and optimizing algorithms for search prob-
lems, network design, and artificial intelligence. In the future
we will extend this investigation to a network such as the
configuration considered in Ref. [19] in the presence of a
dynamically changing environment.
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APPENDIX A: TIME EVOLUTION OF THE
RISK FUNCTION

Figure 2(a) shows a single trajectory of the time evolution
of the risk function ¢ for @ = 1073y and & = 0.051. Figure 9
zooms over the behavior during one period.

APPENDIX B: SWITCHING TIME

We determine ¢, (o, w), Eq. (8), using the first-passage time.
This is the time to reach a metastable point, say, c = —1, when
starting close to the other metastable point, say, c = 1 — €, in
an interval with reflecting boundaries. This corresponds to the
first passage time of the one-dimensional model of Sec. IV C

and takes the form [21,24]
-1 ) y
t‘y(Ol,G):/ d —/ dzp(z). (B1)
P 2epm S P

We evaluate ¢, (o, €) numerically and use it in Eq. (8) in order
to find the stochastic resonance condition.

APPENDIX C: FIXED POINTS AND LINEAR
STABILITY ANALYSIS

In the following, we will perform a linear stability analysis
of the system of differential Eq. (4). In the stationary regime,
the conductivities D; and D, oscillate with the period T = %’
of the dissipation around the stationary values (D;) = D7} and
(D,) = Dj and it holds

()= (5 [ 2rar)
=0. (CDH

At this point, we remind the reader that we use D; =
D;/(D; + D,). Applying this averaging procedure to Eq. (4)
we obtain

0= (f(D)) — {ri()Dy). (C2)

We assume that the conductivities D; and D, are approxi-
mately constant during the period T. Thus, in the stationary
regime the following relation holds:

1 t+T
(vi(t)D;) = lim (—/ Yi(t")D; dl')
t—oo \T '
1 t+T
~ lim (—Dj / yi(t’)dt’) = yDr. (D)
t—oo \T p
This leads us to the equation
0= (fD)) — ¥ D}. (C4)

Performing a Taylor expansion of the first term in this equa-
tion around the stationary values D} and Dj to first order, we
get

(D) ~ F(DF) + (ﬂai)‘ (D, — Dt
l ! 8Dl 3D1 Dy=D%,D,=Dj} 1 1
af b, *
(3_Dz 3_Dz) ‘DI=DT,D2=D§((D2 —Dy)).  (C5)

We notice that the terms of first order vanish due to ((D; —
D})) = (D;) — D} = 0. Using this expression, Eq. (C4) yields

0= f(D;) - y"D}. (C6)

In the following, we introduce the deviation y; = D; — D} of
the conductivities from their stationary value. We can cast
Eq. (4) in the form

ay; ~
=L = FD) = 0+ D). (C7)

Assuming that the period T of the illumination is much
smaller than the timescale on which the network structure
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changes, we can cast Eq. (C7) in the form

ay; -

= = FD) =y Gi+ D).
Performing a Taylor expansion of the first term in this equa-
tion around the stationary values D} and Dj to first order, we
get

(C8)

70~ oy + (2L

' i aD; D D1=DT,D2=D§y1
af b

(35,50, »
oD; 0D,/ |p,=D*,D,=D;

= f(D}) + Ay + By, (C9)
with
= (3o
" \4D; D,/ |p\=p;,0,=D5’
af aD;
i = (—f—)‘ . (C10)
dD; 0D,/ |D\=D%,D,=D}

Combining Eq. (C7) and Eq. (C10) with Eq. (C9) yields

ay;
8_tl = Ay + By, — v (v + DY) + y"D;

= A1 + By, — vy, (C11)

In order to solve the system of differential Eq. (C11), we
create the ansatz y;(t) = Y;e* with A € C. This yields

L —Ap+ T —B ny _ (0
( rmiy) (h) = (o) ©2

—A,
To find nontrivial solutions, it must hold det(A) = 0, which
gives

A=

0 = det(A)
& 0=(r—Ar +y") (A — By + y5T) — A2B,
A + B _ eff + eff
RO 2 — (1] n{
2
n (Al + By — (" + Vzeff)z
4

1/2
—%—ﬁm&—ﬁ%Mﬁo. (C13)
The fixed points (D7, D3) are given by Eq. (C6). They are
stable if the corresponding values A; are negative. The cor-
responding fixed points ¢* of this quantity can be calculated
from the fixed points (D7, D). A fixed point ¢* is considered
stable if (D}, D3) is a stable fixed point. Figure 10 shows the
fixed points for different choices of the average dissipation
along the two paths.

APPENDIX D: FOKKER-PLANCK EQUATION

The variable ¢ is assumed to undergo a time-continuous
Markov process in the presence of a drift ©(¢) and a Ito
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FIG. 10. Fixed points (D7, D;) of the secular equations. The
arrows indicate the flow. Stable (unstable) fixed points are repre-
sented by solid (hollow) circles. The green (red) stable fixed points
correspond to the system choosing the path with minimal (maxi-
mal) average dissipation. Panel (a) corresponds to the case of equal,
constant dissipation. In (b) (®,) =0 and (P,) = 0.6, while in (c)
(®y) = 0.25 and (P,) = 0.6.

diffusion with amplitude o (¢, t):
ac

oy = KO +0(0F®) (DI)
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with & (r) describing white noise. Drift and the diffusion coef-
ficient are determined by means of equation-free analysis:

o @ +8t) —c@®)le@) =)
u(c) = 5 ,

(e + 8t) — c(t) — p(@)st1*lc(t) = &)
5t ’

D2)

o2(@) =

(D3)

where (-)g indicates a sample average and c(t) is calculated
from Eq. (6) from the values of D;(¢), that are obtained by
numerical integration of Eq. (4). We verify the validity of
this approach by comparing the values of c.,q We obtain by
numerically integrating Eq. (D1) with the ones of Eq. (4);
see Fig. 8(a). The Fokker-Planck equation corresponding to
Eq. (D1) is given in Eq. (13).
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