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Contrariety and inhibition enhance synchronization in a small-world network of phase oscillators
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We numerically study Kuramoto model synchronization consisting of the two groups of conformist-contrarian
and excitatory-inhibitory phase oscillators with equal intrinsic frequency. We consider random and small-world
(SW) topologies for the connectivity network of the oscillators. In random networks, regardless of the contrarian
to conformist connection strength ratio, we found a crossover from the π -state to the blurred π -state and
then a continuous transition to the incoherent state by increasing the fraction of contrarians. However, for the
excitatory-inhibitory model in a random network, we found that for all the values of the fraction of inhibitors,
the two groups remain in phase and the transition point of fully synchronized to an incoherent state reduced by
strengthening the ratio of inhibitory to excitatory links. In the SW networks we found that the order parameters
for both models do not show monotonic behavior in terms of the fraction of contrarians and inhibitors. Up
to the optimal fraction of contrarians and inhibitors, the synchronization rises by introducing the number of
contrarians and inhibitors and then falls. We discuss that the nonmonotonic behavior in synchronization is due to
the weakening of the defects already formed in the pure conformist and excitatory agent model in SW networks.
We found that in SW networks, the optimal fraction of contrarians and inhibitors remain unchanged for the
rewiring probabilities up to ∼ 0.15, above which synchronization falls monotonically, like the random network.
We also showed that in the conformist-contrarian model, the optimal fraction of contrarians is independent of
the strength of contrarian links. However, in the excitatory-inhibitory model, the optimal fraction of inhibitors is
approximately proportional to the inverse of inhibition strength.
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I. INTRODUCTION

The Kuramoto model originally introduced by Kuramoto
[1,2] is a simple and mathematically tractable model showing
the synchronization transition in an ensemble of mutually
interacting phase oscillators (rotors). Synchronization is ubiq-
uitous, such as flashing of fireflies, flocking of birds and fishes,
the simultaneous firing of brain neurons, and heart cells [3–7].

While Kuramoto’s motivation for introducing his model
was to find an exactly solvable model for the transition
from desynchronized to synchronized states, this model found
many applications in physical, chemical, and biological sys-
tems [8]. The Kuramoto model and its variants have been used
to model the opinion formation dynamics in a society [9–13].
In this context, the phase of each individual corresponds to its
belief, and synchronization is equivalent to the formation of
consensus in society.

In the original Kuramoto model, the rotors globally
coupled to each other sinusoidally with uniform coupling con-
stant. The exact solution of this model indicates a continuous
synchronization at a critical coupling [8]. Recent develop-
ments in complex network science attracted the researchers to
the study of synchronization in general [14] and the Kuramoto
model with local interactions in complex networks [15]. For
instance, the Kuramoto model has been studied on the regular
[16,17] and small-world SW networks [18–23]. In this regard,
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some impressive results are forming patterns of synchrony
in regular and Watts-Strogatz networks for a group of iden-
tical phase oscillators. In a regular ring shape network, the
patterns are helical, topologically distinct, and characterized
by integer winding numbers [16,17]. Rewiring the ring’s links
with a small probability between 0.005 and 0.05 converts the
regular lattice to the SW network, which has the small-world
properties of small mean shortest path and high clustering
[19,24]. This process turns the helical patterns into several
isolated defects or deviated helical patterns for small and large
winding numbers, respectively [23]. In isolated defects, the
phase difference between their center and surroundings varies
continuously from 0 to π by going away from the center.

Esfahani et al. found that adding a spatially uncorrelated
white noise to the Kuramoto model could destroy theses
defects and make a more homogenous phase texture with
higher phase-synchrony, that is, stochastic synchronization
[23]. Moreover, they showed that the significant rewiring
probabilities larger than 0.15 destroy the defects and so set
the system in a full synchronization state [23].

To make the Kuramoto model closer to reality, the general-
ization of the model with random pairwise coupling with both
signs was investigated [25–27]. While the positive coupling
encourages that the phases of interacting oscillators converge
to an in-phase state, the negative coupling forces them to
align in an antiphase (π -difference) configuration. Initially,
a glassy behavior was claimed for this model [25]; however,
later investigations shed doubt on the existence and properties
of such a state [26,27].
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Hong and Strogatz introduced a simpler version of the
model with mixed coupling in which the oscillators are di-
vided into two groups of conformists and contrarians [12,13].
In this model the conformists have positive coupling with the
rest of oscillators and so tend to be in line with the domi-
nant rhythm of the population; however, the contrarians have
negative coupling with the rest and are prone to move in the
opposite direction of population. Hong and Strogatz inves-
tigated the model both with [12] and without [13] intrinsic
angular-velocity distribution and found a rich phase diagram
for this model in terms of the fraction of conformists. The
phase diagram includes the desynchronized, antiphase locked
state between the conformists and contrarians, and the travel-
ing waves in which the average angular velocity is different
from the mean intrinsic angular-velocity distribution. Surpris-
ingly, they found that the identical phase-oscillator model has
a richer phase diagram.

Motivated by Hong and Strogatz, in this work we study
the Kuramoto model of two groups of conformist and con-
trarian phase oscillators, which are identical in terms of their
intrinsic angular velocities, in a SW network. Moreover, we
also investigate a Kuramoto model of excitatory and inhibitor
phase oscillators in the SW network, in which a given rotor
is coupled positively to its excitatory and negatively to its
inhibitor neighbors.

The paper is organized as follows: In Sec. II we define the
model and the numerical methods of quantifying the synchro-
nization. Section III represents the results and discussion, and
section IV is devoted to the concluding remarks.

II. MODEL AND METHOD

In this work we study two Kuramoto models in bidi-
rected random and Watts-Strogatz small-world networks. The
two models are (i) the conformist-contrarian model and
(ii) the excitatory-inhibitory model. Each model consists of N
phase oscillators (rotors) divided into two groups (conformist-
contrarian and excitatory-inhibitory). The rotors occupy the
vertices of a network, and each interacts with its neighbors
through a sinusoidal coupling whose argument is their phase
difference. However, the coupling is not symmetric.

A. Conformist-contrarian model

The conformist-contrarian model is given by a set of cou-
pled first-order differential equations as

dθ s
i

dt
= ω0 + λs

i

ki

N∑
j=1

ai j sin
(
θ j − θ s

i

)
, i = 1, ..., N, (1)

where θi denotes the phase of the oscillator sitting at node
i, and ω0 is the intrinsic frequency of the oscillators and is
considered equal for all of them. ai j denotes the elements of
the adjacency matrix of a bidirected network (i.e., ai j = a ji =
1 if i and j are connected and ai j = 0 otherwise), and ki is
the degree of node i. λs, where s = conformist, contrarian), is
the coupling constant, which is positive for the conformist and
negative for the contrarians. Indeed, a conformist with positive
coupling inclines to align its phase with its neighbors’ phases,

while a contrarian tries to direct its phase as far as possible to
its neighbors.

The intrinsic frequency, ω0, can always be set to zero by
moving to a rotating frame with the angular velocity ω0, i.e.,
θ ′(t ) = θ (t ) − ω0t . Moreover, by defining the dimensionless
time τ = λconft , Eq. (1) converts to

dθ ′conf
i

dτ
= 1

ki

N∑
j=1

ai j sin
(
θ ′

j − θ ′conf
i

)
,

dθ ′cont
i

dτ
= −Q

ki

N∑
j=1

ai j sin
(
θ ′

j − θ ′cont
i

)
, (2)

where we assumed λcont = −Qλconf , with Q > 0 and λconf >

0 (cont and conf stand for contrarian and conformist, respec-
tively).

B. Excitatory-inhibitory model

Now consider a system consisting of two groups of excita-
tory and inhibitory phase oscillators. Each oscillator receives
a positive input from its excitatory and negative input from its
inhibitory neighbors in this system. Therefore the coupling λs

j
has to inserted inside the sum, and then we find

dθ i

dt
= ω0 + 1

ki

N∑
j=1

ai jλ
s
j sin

(
θ s

j − θi
)
, i = 1, ..., N, (3)

in which we assume λinhib
i = −Qλexcit

i with Q > 0 and λexcit >

0 (inhib and excit stand for inhibitory and excitatory, respec-
tively). Similarly, after moving to the rotating frame with
angular velocity ω0 and rescaling the time variable as τ =
λexcitt , we get

dθ ′
i

dτ
= 1

ki

∑
j∈excit

ai j sin(θ ′
j − θ ′

i ) − Q

ki

∑
j∈inhib

ai j sin(θ ′
j − θ ′

i ).

(4)

C. Method

To obtain the time evolution of the phase of the oscillators,
we use the fourth-order Runge-Kutta method for integrating
the sets of equations (2) and (4). The initial phase distribution
is taken from a box distribution in the interval [−π, π ], and
the integration time step is set to dτ = 0.1. To make sure that
the integration time step 0.1 is a good choice, we used the
smaller time step 0.01 for some simulations and found that
the results remain unchanged for both integration time steps.

The global synchrony among the oscillators at any time can
be measured by the Kuramoto order parameter, defined as

r(τ ) = 1

N

N∑
j=1

exp (iθ j (τ )). (5)

In the stationary state we define the long time averaged order
parameter as r∞:

r∞ = lim
�τ→∞

1

�τ

∫ τs+�τ

τs

r(τ )dτ, (6)

in which τs is the time of reaching a stationary state. The
magnitude of r∞ shown by r∞ is a real number between
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FIG. 1. Stationary total and partial order parameters vs fraction of contrarians for the conformist-contrarian model [Eq. (2)] for (a) Q = 0.5,
(b) Q = 1.0, and (c) Q = 3.0 for a random network of N = 1000 oscillators and mean degree < k >= 10.

0 and 1. r∞ = 0 indicates a disordered or a phase-locked
state with regular phase lag, 0 < r∞ < 1 indicates a partially
synchronized state, and r∞ = 1 shows the full synchrony in
the system.

We also define a partial order parameter for the two groups
of oscillators as

ra(τ )=ra(τ ) exp (i�a(τ ))= 1

Na

∑
j∈a

exp (iθa
j (τ )) · a = 1, 2,

(7)
where a = 1 refers to conformist and excitatory and a = 2 to
contrarian and inhibitory oscillators. ra and �a are the magni-
tude and phase of the partial order parameter. For each model
the fraction of contrarian ( Nct

N ) and inhibitory ( Nin
N ) oscillators

is denoted by p.
It can be easily seen that Eqs. (5) and (7) give rise to

r(τ ) = (1 − p)r1(τ ) + pr2(τ ), (8)

from which one found the following expression for the mag-
nitude of the total order parameter in terms of the magnitude
of partial order parameters and their phase difference:

r =
√

(1 − p)2r2
1 + p2r2

2 + 2p(1 − p)r1r2 cos(�1 − �2).
(9)

The Kuramoto order parameter is a measure of global
synchronization in the system. To gain insight into the local
coherence in the stationary state, we calculate the pairwise
correlation matrix D [28]:

Di j = lim
�τ→∞

1

�τ

∫ τs+�τ

τs

cos (θi(τ ) − θ j (τ ))dt . (10)

The matrix elements Di j take a value in the interval [−1, 1].
Di j = 1 denotes full synchrony between oscillators i and j,
while Di j = −1 represents an antiphase state (i.e., |θi − θ j | =
π ).

The phase diagram of the conformist-contrarian model,
with identical intrinsic frequency, has been obtained by Hong
and Strogatz [13]. This phase diagram includes four phases:

(a) An incoherent phase where both partial order parame-
ters are zero (r1 = r2 = 0);

(b) A blurred π -state, where the conformists and contrari-
ans are partially ordered (r1, r2 < 1) but there is π difference
between the phase of their order parameters |�1 − �2| = π ,
and the incoherent and blurred π -states coexists together for
some range of fraction of contrarians;

(c) A traveling wave state, where the conformist are
completely ordered r1 = 1, but the contrarians are partially

FIG. 2. Stationary total and partial order parameters vs fraction of inhibitory oscillators for the excitatory-inhibitory [Eq. (4)] model for
(a) Q = 0.5, (b) Q = 1.0, and (c) Q = 3.0 for a random network of N = 1000 oscillators and mean degree < k >= 10.
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FIG. 3. Stationary total and partial order parameters vs fraction of contrarians for the conformist-contrarian model [Eq. (2)] for (a) Q = 0.5,
(b) Q = 1.0, and (c) Q = 3.0 for a SW network of N = 1000 oscillators and mean degree < k >= 10.

ordered r2 < 1, and in this case, the absolute phase difference
of these order parameters could be less than π , and

(d) The π -state, where both conformists and contrarians
are fully synchronized r1 = r2 = 1 and their phase difference
is equal to π (|�1 − �2| = π ).

In the next section we proceed to investigate the phase dia-
gram of both conformist-contrarian and excitatory-inhibitory
models in random and small-world networks. The networks
used in this study are created by the Watts-Strogatz algorithm
[19,24]. To build an SW network, starting from a ring with a
given degree of k for each node, we rewire the links with the
probability 0.03, and for the random network, we rewire them
with probability 1.

III. RESULTS AND DISCUSSION

Since we did not find remarkable size dependence for the
networks larger than N = 200, we performed all the simula-
tions on the size N = 1000. Moreover, since we are interested
in applying the models in real networks that are mostly sparse,
we consider the mean degree of 10. We check that, as far as
the network is sparse, the results remain unchanged. In the
following we report the results of both models in random and
then in small-world networks.

A. Random network

In random networks for the conformist-contrarian model,
the simulations typically reach the stationary state up to
∼10 000 time steps. Figure 1 represents the variation of the
magnitude of long-time averaged total (r∞) and partial order
parameters (rconf and rcont) vs the fraction of contrarians (p)
for the conformist-contrarian model with Q = 0.5, 1.0, 3.0.
Each data is obtained by averaging over 100 independent
distribution of contrarians.

Our calculations indicate that for all ranges of p, the phase
difference between two partial order parameters is equal to π ,
i.e., the system is in π or blurred π -state for all values of p.
In this case, Eq. (9) results in the following relation for the
stationary total order parameter in terms of the partial order
parameters:

r∞ = (1 − p)rconf − prcont. (11)

The solid line in Fig. 1 is the plot of Eq. (11) which completely
lies on the total order parameter data. This figure shows,
regardless of the value of Q, the magnitude of partial order
parameters is near unity for p � 0.12, giving rise to a linear
dependence of r∞ vs p with the slope −2 in this range of p. It
means that the stable state of the system in this region is the
π -state. However, for p > 0.12, conformists and contrarians’
partial order parameters are less than unity, indicating that

FIG. 4. Stationary total and partial order parameters vs fraction of inhibitory oscillators for the excitatory-inhibitory [Eq. (4)] model for
(a) Q = 0.5, (b) Q = 1.0, and (c) Q = 3.0 for a SW network of N = 1000 oscillators and mean degree < k >= 10.
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FIG. 5. Temporal evolution of the phases of rotors in a single realization of the conformist-contrarian model [Eq. (2)], with Q = 1.0, in an
SW network for (a) p = 0.0, (b) p = 0.03, (c) p = 0.05, and (d) p = 0.09.

they have more freedom to swing their phase; then the system
is the blurred π -state. Our results denote that the traveling
wave states are not present in a random network with sparse
connectivity, unlike the all-to-all network.

The variation of the order parameters in terms of the frac-
tion of contrarians does not depend on Q. Such independence,
if the stationary results to the parameter Q, can be easily
justified by absorbing Q into the dimensionless time param-
eter τ in Eq. (2), which drops Q from the right-hand side of
this equation. It means that Q only affects the contrarians’
stationary timecale; hence, the results in the stationary state
do not depend on Q.

Indeed, we find a crossover from the π -state to the blurred
π -state at the same p for all values of Q. This result is in
sharp contrast with the complete network. A traveling wave
(TW) state mediates the π -state and blurred π -state. The
transition between the π -state and TW is discontinuous, while
TW continuously connects to the blurred π -state [13].

The stationary time for the excitatory-inhibitory model is
more considerable and could be up to ∼35 000 time steps.
Figure 2 displays the dependence of the magnitude of station-
ary total order parameter (r∞) and partial order parameters
(rexcit and rinhib) to the fraction of inhibitory oscillators (p) for
the model with Q = 0.5, 1.0, 3.0. Each data is obtained by
averaging over 100 independent distribution of inhibitors.

We found that the excitatory and inhibitory oscillators have
the same phase for all p and Q for this model, which can be
verified by the exact overlap of the equation

r∞ = (1 − p)rexcit + prinhib, (12)

with the total order parameter, illustrated in Fig. 2.

Interestingly, the system remains in a fully synchronized
state (up to p ∼ 0.3) for Q = 0.5, and the range of full syn-
chrony decreases by increasing Q. Indeed, at small enough p,
the minority inhibitors synchronize with each other through
their neighboring majority excitatory oscillators. The larger
Q also reduces the transition point to the incoherent state.
This result is not surprising; as expected, the strengthening
of the inhibitory links leads to the faster vanishing of the
synchronized state.

B. Small-world network

The time to reach a stationary state in an SW network
(Watts-Strogatz network with rewiring probability 0.03) is an
order of magnitude larger than those of random networks for
both models and could as large as 6 × 105 time steps.

Figures 3 and 4 illustrate the variations of the total and
partial order parameters in terms of the fraction of contrarian
and inhibitors for the conformist-contrarian and excitatory-
inhibitory models, respectively. For both models we adapt
Q = 0.5, 1.0, 3.0, and each data point is obtained by averag-
ing over independent random initial conditions. In contrast to
the random network, the averaged order parameters are less
than unity for p = 0, which is due to the formation of the
defect patterns in small-world networks [23]. Indeed, for a
group of identical phase oscillators, depending on the initial
phase distribution, the magnitude of stationary order parame-
ters varies between 0 and 1; then its average is less than 1. The
oscillators in the center of defects are in a π -locked state with
those in the homogeneous parts, indicating that the Kuramoto

FIG. 6. Temporal evolution of the phases of rotors in a single realization of the excitatory-inhibitory model [Eq. (4)], with Q = 1.0, in an
SW network for (a) p = 0.0, (b) p = 0.03, (c) p = 0.05, and (d) p = 0.09.
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dynamics turns some individual oscillators to contrarians even
for an identical ensemble of phase oscillators.

Figure 3 shows that the behavior of order parameters versus
the fraction of contrarians does not depend on Q, and like the
random network, the exact overlap of the total order param-
eter and the relation r∞ = (1 − p)rconf − prcont indicates that
the phase difference between conformist and contrarians are
always equal to π . Hence the system is in a blurred π -state
for all values of p and Q. Moreover, Fig. 3 represents the
enhancement of synchronization by increasing the fraction
of contrarians to p ∼ 0.04, at which the synchrony reaches
a maximum and then begins to fall by further increase of p.

For the excitatory-inhibitory model, as can be seen in
Fig. 4, the relation r∞ = (1 − p)rexcit + prinhib fits very well
with the total order parameter, meaning that the excitatory and
inhibitory oscillators, regardless of the value of p and Q, are
always in-phase. This model also shows a maximum for the
total order parameter; however, the optimal value of p, which
leads to this maximum synchrony, decreases by increasing the
strength of inhibitory links to the excitatory ones.

The nonmonotonic behavior of order parameters versus p
can be explained by weakening and reducing the defects as
the contrarians or inhibitors are introduced to the dynamics.
Figures 5 and 6 respectively represent the evolution of the
phases of the rotors for a single realization of the conformist-
contrarian and excitatory-inhibitory models with Q = 1. Both
figures show the remarkable reduction of the isolated defects
in going from p = 0.03 to 0.05.

To make sure that theses results are not the artifact of using
only a fixed network realization, we performed the above
simulations on ten realizations of SW network with the same
number of nodes, degree, and rewiring probability but with
different adjacency matrices and observed similar results in all
of them. As a result, when several contrarians and inhibitors
are randomly substituted in the network, some sit in the vicin-
ity of defect locations. The perturbing effect of these new
agents on the oscillators inside the defects, which are in an
antiphase state with other oscillators of their group, give them
more freedom to deviate from their previous antiphase state
and so lead to the weakening of the defects. When the fraction
of contrarians or inhibitors reaches an optimal value, they give
maximal freedom to the defects and lift the synchronization to
a maximum. As explained before, the optimal value of p is in-
dependent of Q for the conformist-contrarian model; however,
in the excitatory-inhibitory model, increasing the inhibitory
links’ weight gives rise to a more substantial perturbation and
therefore tends to decrease the optimal p.

To wrap up this section, we investigate the effect of
rewiring probability and the strength of contrariety or in-
hibition in the above results. As discussed before, for the
conformist-contrarian model the contrariety strength Q does
not have any effect on the stationary features of the model
and so the optimal fraction of contrarians is independent of Q.
Nevertheless, in the excitatory-inhibitory model the optimal
fraction of inhibitors pm, at which the synchrony reaches a
maximum, decreases by increasing the strength of the in-
hibitors Q. Figure 7 illustrates the dependence of pm on Q
for a SW network with rewiring probability 0.03. This figure
displays a power law relation between pm and Q with an expo-
nent close to −1, implying that the effect of inhibitors in the

FIG. 7. Log-log plot of optimal fraction of inhibitory oscillators
(pm) vs their link strength Q in a small-world network of excitatory-
inhibitory rotors of size N = 1000 and mean degree < k >= 10 and
with rewiring probabilities p = 0.03.

collective behavior of system is approximately proportional to
Q.

In terms of the probability rewiring pr , we found that for
both models the optimal fraction of contrarians or inhibitors
is nearly independent of the rewiring probability up to pr ∼
0.15, above which the peak in synchrony vanishes and the
system behaves like a random network. (See Fig. 8 for the
conformist-contrarian model.)

IV. CONCLUSION

In summary, we numerically investigated the Kuramoto
model with two groups of conformist-contrarian and

FIG. 8. Stationary order parameters vs fraction of contrarians
for the conformist-contrarian model [Eq. (2)] for Q = 1 and in a
small-world of N = 1000 oscillators and mean degree < k >= 10
with rewiring probabilities pr = 0.03, 0.05, 0.09, 0.15.
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excitatory-inhibitory phase oscillators, with the same intrinsic
frequency, in the sparse random and Watts-Strogatz SW net-
works. In random networks, the conformist-contrarian model
finds a stationary state with a π -state that crosses over to a
blurred π -state by increasing the fraction of contrarians. On
the other hand, for the SW network the system is always in
a blurred π -state where both conformists and contrarians are
partially synchronized, and unlike the all-to-all network, the
traveling wave state does not appear in both networks. For
the excitatory-inhibitory model, we found that both types of
oscillators are always in-phase in random and SW networks.

Interestingly, for both models in SW networks, we
observed nonmonotonic variation of the stationary order pa-
rameter versus the fraction of contrarians and inhibitors; the
synchronization first increases and reaches a maximum at
an optimal fraction of contrarians or inhibitors. Indeed, one
expects that the impurities like contrarians or inhibitors have
destructive roles in the population synchrony. Therefore, in-
creasing the synchrony up an optimal value of a fraction of
contrarians and inhibitors seems counterintuitive.

We explained that the above results are due to the atten-
uation of preexisting defects of the SW network when the
contrarians or inhibitors are added to the system. We note
that enhancement of synchronization by contrariety and in-
hibition in this model could be considered an implication
of asymmetry-induced symmetry [29–32], stating that a more
symmetric state can be induced in an oscillator system by re-
ducing the symmetry of pairwise interactions. Here we found

that the symmetry reduction in the couplings of a group of
interacting identical oscillators in an SW network pushes it
to a more symmetric state by elevating the system’s level of
synchrony.

For the conformist-contrarian model, the optimal frac-
tion of contrarians at which the order parameter reaches a
peak is independent of contrariety strength. However, for the
excitatory-inhibitory model, the optimal fraction of inhibitors
is approximately proportional to the inverse of the inhibition
strength. However, we found that for a given value of contrari-
ety or inhibition strength, the optimal values of contrarians or
inhibitors hardly depend on the rewiring probability of the SW
network, and for the rewiring probabilities larger than ∼ 0.15,
both models show behaviors similar to the random network.

We hope that this work gains more insight into the con-
structive role of diversity, appearing in the form of contrarians
in human societies and inhibitors in neuronal networks which
are known to have small-world connectivity.
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