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In general we are interested in dynamical systems coupled to complex hysteresis. Therefore as a first
step we investigated recently the dynamics of a periodically driven damped harmonic oscillator coupled to
independent Ising spins in a random field. Although such a system does not produce hysteresis, we showed how
to characterize the dynamics of such a piecewise-smooth system, especially in the case of a large number of spins
[Zech, Otto, and Radons, Phys. Rev. E 101, 042217 (2020)]. In this paper we extend our model to spin dimers,
thus pairwise interacting spins. We show in which cases two interacting spins can show elementary hysteresis,
and we give a connection to the Preisach model, which allows us to consider an infinite number of spin pairs.
This thermodynamic limit leads us to a dynamical system with an additional hysteretic force in the form of
a generalized play operator. By using methods from general chaos theory, piecewise-smooth system theory,
and statistics we investigate the chaotic behavior of the dynamical system for a few spins and also in the
case of a larger number of spins by calculating bifurcation diagrams, Lyapunov exponents, fractal dimensions,
and self-averaging properties. We find that the fractal dimensions and the magnetization are in general not
self-averaging quantities. We show how the dynamical properties of the piecewise-smooth system for a large
number of spins differs from the system in its thermodynamic limit.
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I. INTRODUCTION

Hysteresis phenomena can occur in many different fields,
such as magnetic materials, elastics rubbers, liquid crystals, or
economy. The investigation of hysteretic systems is an ongo-
ing field of research. For example, hysteresis plays a crucial
role in the control of skyrmions via a strain-mediated magne-
toelectric coupling [1], in nonmonotonic field and temperature
responses of magnetic superconductors [2], in the develop-
ment of new high-coercivity magnets [3] or in evolutionary
dynamics [4].

Many of the existing studies on hysteresis are related to
the input-output behavior of hysteresis operators [5–11] or
Ising-like spin models [12–16]. On the other hand, hysteresis
operators can be coupled to dynamical systems leading to a
closed-loop dynamical system with hysteresis. In most of the
works related to these systems, hysteresis is described by a
bi-stable unit leading to a single elementary hysteresis loop
in the input-output representation of the hysteresis operator.
This kind of hysteresis is known as “simple” hysteresis. For
example, there are some results on the conditions for global
stability in systems with relay feedback [17], on multistability
and hidden attractors in a DC/DC converter with hysteretic
relay control [18] as well as results on systems with delayed
relay control [19]. Also the dynamics of an oscillator with har-
monic forcing and a single hysteretic relay has been studied in
more detail [20,21].

A superposition of many elementary hysteresis loops or
relays leads to the prominent Preisach Model (PM) [22],

which is suitable for describing systems with “complex” hys-
teresis. “Complex” hysteresis is characterized by one major
hysteresis loops and infinitely many inner subloops in the
input-output representation [23]. Examples of dynamical sys-
tems with “complex” hysteresis can be found in robot arm
dynamics [24], in the ferroresonance phenomena in LCR
circuits [25,26], or in a mechanical system characterized by
an oscillator with a ferromagnetic iron mass in an external
magnetic field [27,28].

A special case of “complex” hysteresis is given by an
elementary play or backlash operator, which also appears in
various dynamical systems [29,30]. In the same manner as
the PM is defined by a superposition of elementary relay
blocks, the so-called Prandtl-Ishlinskii model for “complex”
hysteresis is build of elementary play operators [31]. There
are various works on dynamical systems with this type of
hysteresis, mainly in the context of control theory [32,33].

Another prominent model, which shows “complex” hys-
teresis is the Random Field Ising Model (RFIM) at zero
temperature. It can be used, for example, to model magnetic
dipole moments of atoms. Originally the RFIM was intro-
duced to study phase transitions with a renormalization group
approach [34]. Later, the hysteretic features of the RFIM also
gained some interest [12,35–37].

In [38] we studied a degenerated case of a RFIM without
hysteresis, where nearest neighbor interactions were ne-
glected. In this paper, as an extension of [38], we consider
an ensemble of independent spin pairs, which we will call
“dimers.” Also quantum mechanical treatments of spin dimers
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can be found in the literature [39,40], but here we focus on
a classical point of view. We analyze the system dynamics
of such a gas of dimers at zero temperature and show that
hysteresis is possible. In this case two spins form an elemen-
tary hysteresis loop or relay, and we show that this kind of
hysteresis can be equivalently modeled by a PM. Already
for a single dimer, we can find chaotic solutions and bifur-
cations, which are typical for piecewise-smooth systems. We
calculate the fractal dimensions of several chaotic attractors
and compare the results of the many-spin systems with the
thermodynamical limit. This sheds some light on how the
thermodynamic limit is approached by the piecewise-smooth
system. We also determine the self-averaging properties of the
fractal dimensions of the chaotic attractors.

In doing so, we also show that the thermodynamical limit
leads to a dynamical system with a nonlinearity in form of
a generalized play operator [41–43], known as the building
block of the generalized Prandtl-Ishlinskii model [44].

The organization of the paper is as follows. In Sec. II
we introduce the model and the different types of spin-spin
interactions. Section III is about the methods, which are neces-
sary for the analysis of the dynamical system with hysteresis.
In particular, we describe specific methods for handling the
discontinuities in piecewise-smooth systems, we derive a re-
lationship between the spin dimers and the PM, which is
used to describe the system dynamics in the thermodynamical
limit, and some remarks on the numerics and the calculation
of the Lyapunov exponents are given. In Sec. IV the results
are presented, at first for the single dimer dynamics and later
for many dimers, followed by a conclusion in Sec. V and an
Appendix.

II. MODEL

We study a periodically driven damped harmonic oscilla-
tor, which gets feedback from an ensemble of independent
spin dimers at zero temperature. On the one hand, the driven
harmonic oscillator is a classical and well-studied linear dy-
namical system. On the other, the spin dimers act as a model
for complex hysteresis. In this section we briefly describe the
two building blocks of the system and the coupling to each
other. A more detailed derivation can be found in [38].

A. Oscillator model

We consider the motion of a magnetizable point mass
(which we call “iron” for simplicity) in an external magnetic
field. The position q of the iron mass is determined by the
dynamics of a periodically driven harmonic oscillator in this
field. In general the magnetization M of the iron mass in
dependency of the magnetic field B is determined by the
orientation of the intrinsic magnetic domains, which can be
modeled, e.g., by a RFIM. Here, as a simplification, we want
to consider the magnetic system as an ensemble of indepen-
dent spin dimers (a spin gas at zero temperature), and we
assume a constant magnetic field gradient B(q) ∼ q, such that
the magnetization M changes with the position q(t ) of the
oscillator (cf. [28]).

In dimensionless variables the equation of motion can be
written as

q̈(t ) + 2ζ q̇(t ) + q(t ) = cos �t + Fhys[q](t ), (1)

where q(t ) denotes the position of the oscillator at time t , ζ is
the damping ratio of the system, and � is the scaled excitation
frequency. The mass of the oscillator is normalized to one,
and time t is rescaled such that the eigenfrequency of the
oscillator is equal to one. The hysteresis force Fhys[q](t ) is the
force due to the magnetization of the of the iron mass, which
is determined by the spin dimers, the local random fields,
and the external magnetic field, which changes linearly with
the oscillator position q. Here we assume that the hysteresis
force depends linearly on the magnetization, i.e., Fhys[q](t ) =
CM[q](t ), where C is the coupling constant and M[q](t ) de-
notes a functional that can depend on the whole trajectory of
q(t ′) up to time t . Correspondingly Fhys[q](t ) is in general also
a functional of the trajectory up to time t . This is due to the fact
that in contrast to [38], here the spin-spin interactions are not
neglected, thus there is more than one metastable state, which
the spin system can reach. Hence hysteresis is possible as
described in Secs. II B and II C. Introducing the state variable
x = (q, v = q̇, φ = �t )T in general, the oscillator dynamics
can be described by

ẋ(t ) =
⎛
⎝ v(t )

−2ζv(t ) − q(t ) + cos φ(t ) + CM[q](t )
�

⎞
⎠, (2)

where the ensemble of spin dimers is used to update the
magnetization M after each variation of q(t ).

B. Independent spin dimers at zero temperature

As mentioned before the spin system of the iron mass is
modeled by an ensemble of independent spin dimers. Thus
for an even number of N spins, we have N/2 spin dimers. A
spin dimer is given by the two spins σi and σi−1 with even
i = 2, 4, 6, . . . , N , and as usual the magnetization per spin
is given by the mean over all spins M = 1

N

∑N
i=1 σi. Nearest-

neighbor interactions, with the coupling strength J , occur only
between the two spins of one spin dimer. So this system is
not a spatially extended system. Also the state σi ∈ {−1,+1}
of each spin is affected by the local field bi and an external
magnetic field proportional to q, so in dimensionless variables
the Hamiltonian can be written as

H =
N/2∑
k=1

[−Jσ2k−1σ2k−(σ2k−1(q + b2k−1) + σ2k (q + b2k ))].

(3)
Since in this paper we deal with spin dimers at zero tem-

perature, the internal spin dynamics of the system is totally
deterministic and can be described by the usual single spin
flip dynamics [45,46]. This means a metastable state at time
t is given, if each spin points in the direction of its local
field Fi(t ):

σi(t ) = sgn[Fi(t )], ∀i = 1, 2, 3, . . . , N (4)

with Fi(t ) =
{

Jσi−1(t ) + q(t ) + bi, i even
Jσi+1(t ) + q(t ) + bi, i odd . (5)
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TABLE I. Possible metastable states and corresponding condi-
tions for two coupled spins with J > 0. Since we assume b1 > b2,
the second configuration is not a metastable state. The third configu-
ration is possible only if J − b1 < −J − b2, i.e., for 2J < b1 − b2.

↓↓ q < J − b1

↓↑ Not possible
↑↓ J − b1 < q < −J − b2

↑↑ −J − b2 < q

Equation (4) is often called metastability condition. Here
the spin system is first updated until a metastable state is
reached and after that the oscillator position q can change
according to the magnetization M (see Sec. III A 1). This
property can be characterized as adiabatic limit [47].

C. Two pairwise interacting spins

We start by discussing the special case of N = 2 spins
coupled to each other, i.e., with one spin dimer. In this case
the metastability condition from Eq. (4) reads

σ1/2 = sgn(Jσ2/1 + q + b1/2), (6)

where σ1/2 denotes either the “first” or the “second” spin of
each spin dimer. Without loss of generality we assume b1 >

b2. Then, from 2N = 4 (not necessarily metastable) internal
states, only three metastable states remain. The conditions to
find the two spins in one of the three states can be derived
from Eq. (6). They are summarized in Table I and illustrated in
Fig. 1. We can see that qualitatively three different scenarios
under a variation of the position q are possible. The first
scenario occurs for b1 − b2 > 2J . In this case, for q < J − b1

the two spins are pointing downwards (σ1 = σ2 = −1). By
increasing q, the first spin σ1 flips up at q = J − b1 and the
second spin σ2 flips at q = −J − b2 (red dashed line in Fig. 1).
In the second scenario, for b1 − b2 = 2J , only one jump at

FIG. 1. Graphical illustration of the magnetization (output y) of
a spin dimer with J > 0 and b1 > b2. For 2J > b1 − b2 the system
shows elementary hysteresis and therefore memory. In contrast, for
2J < b1 − b2 a different scenario occurs. Starting with both spins
down and increasing the input q, at first one spin flips upward at
q = J − b1, and later at q = −J − b2 the second spin flips upward.

FIG. 2. Numerical validation of the behavior of two spins with
the coupling constant J = 2 and the local fields b1 = 2, b2 = 1. The
straight lines show the energies H (σ1, σ2) of the different internal
states of the system. It can be seen that for a single spin flip dynamics
only three states of the system can be reached (↓↓,↑↓, ↑↑), whereas
one state is impossible to reach (↓↑). Also the related threshold val-
ues β = −3 and α = 0 are given by the change of the energetically
favorable states, indicated by the corresponding intersection points.

q = J − b1 = −J − b2 occurs, where both spins flip at the
same position. In the third scenario for b1 − b2 < 2J , both
spins pointing downwards for q < −J − b2. By increasing q,
both spins flip upward at q = α = J − b1. However, starting
at q > J − b1, where both spins are in the upper state, and
decreasing q, both spins flip downward at q = β = −J − b2

with β < α (blue solid curve in Fig. 1). Hence, in this case,
for β < q < α two metastable states exist, where β and α

are the lower and higher jump value, respectively. This means
that in scenario 3 an elementary hysteresis loop occurs for two
interacting spins, and the internal state depends on the history
of q, or in other words, the system shows memory.

A numerical example with J = 2, b1 = 2 and b2 = 1 is
presented in Fig. 2. One can see the output, the magnetization
M (dotted black line) depending on its input q. Indeed, the first
spin flips upward at q = J − b1 = 0, and the second spin flips
downward at q = −J − b2 = −3, which are the boundaries α

and β of the elementary hysteresis loop, respectively. Thus,
the width p of the loop is equal to p = 2J − b1 + b2 = 3. In
addition, we have plotted the energy H (σ1, σ2) of the four
spin configurations {σ1, σ2}, σi = ±1 as functions of q, which
can explain the spin flips from an energetic point of view. For
q < β = −3 all spins are pointing down ↓↓, which is the state
with the lowest energy. By increasing q, the energy level of
the downward state increases, and at q = −1.5, the ↑↑-state
becomes the state with the lowest energy. However, this state
cannot be reached by a single spin flip (cf. Sec. II B), and
therefore, the system stays in the metastable state ↓↓. Later, at
q = α = 0 the ↑↓-state has the same energy as the ↓↓-state,
as a consequence, the first spin flips, and the resulting state
is ↑↓. However, this state is not metastable because a second
single spin flip is possible, for which the system can reach
the energetically favorable ↑↑-state. Since the spin system is
only updated if a metastable state is reached, at q = α = 0
the system immediately jumps form ↓↓ to ↑↑. A similar
procedure occurs for decreasing values of q, where the reverse
jump occurs at q = β = −3. From this energetic picture it is
also clear that only three of the four possible states can be
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reached, because the ↓↑-state has always a larger energy than
the ↑↓-state. These results are fully consistent with the results
in Table I.

D. Many spin dimers

In this paper we study the special case of spin dimers,
where each of the dimers has the same width of the hysteresis
loop; therefore without loss of generality and consistent with
the case of a single spin dimer, we assume bi−1 > bi, with i =
2, 4, . . . , N . Now we choose the two local field values bi and
bi−1 such that an elementary hysteresis loop is formed and that
each loop has the same width (p = 2J − bi−1 + bi > 0). Since
by definition bi−1 > bi, we obtain 0 < p < 2J for possible
fixed widths p of the elementary hysteresis loops. The higher
and the lower jump values are given by αk = J − b2k−1 and
βk = −J − b2k , respectively, where k = 1, . . . , N/2 numbers
the spin dimers.

This paper deals, on one hand, with spins in a random field.
On the other hand the hysteresis loops associated with the spin
dimers should all have the same width p. Therefore, if one
local field value, for example, bi−1, is chosen randomly, the
other field value bi is automatically determined by bi = p −
2J + bi−1. Correspondingly the jump values are given by

αk = J − b2k−1, (7)

βk = J − b2k−1 − p. (8)

For practical reasons instead of choosing one of the field
values bi−1 or bi for each dimer, we will choose the center
sk = (αk + βk )/2 of each elementary hysteresis loop to be
Gaussian distributed and uncorrelated with sksl = R2δkl , si =
0 and determine the related values as b2k−1 = −sk + J − p

2

and b2k = −sk − J + p
2 . Here X denotes the average of X over

all realizations of the quenched disorder field {bi}.

III. METHOD

A. Piecewise-smooth system

It is clear that the coupled system contains continuous
degrees of freedom of the harmonic oscillator as well as
discrete degrees of freedom of the spins, and therefore, it can
be treated by methods from piecewise-smooth system theory
[48]. The investigation of such systems can be fields such as
relay feedback systems [17], gear dynamics [49], or systems
with dry friction [50], but also in the field of tapping-mode
atomic force microscopy [51]. Here we briefly introduce the
theory of piecewise-smooth dynamical systems that we have
used to analyze our system. More details can be found in [38].

In a system with an even number of N spins, we have
N/2 spin dimers and both spins in one dimer only can be
in the down state or in the up state. This gives us the state
space { q, v, φ mod 2π } × { ±1 }N , where the corresponding
dynamics of the system takes place in a { q, v, φ mod 2π } ×
{ ±1 }N/2-subspace only. In the following we call the discrete
spin states sheets Sn with n = 1, . . . , 2N/2. From the discus-
sion above we know that the switching of the spin dimers
depends only on the actual position q of the system. Thus,
the transition from one sheet Si to another sheet S j is given by
the two-dimensional manifold q = q∗

i j . Since different Sn can

FIG. 3. (a) Illustration of a trajectory evolving in a system with
N = 2 spins corresponding to one spin dimer. The systems “jumps”
from sheet S1 to S2, when reaching the threshold value α1 = q∗

12

and vice versa at β1 = q∗
21. The Poincaré section in the q-v-space

at φ = 0 is illustrated by and . (b) Poincaré section of an actual
simulated trajectory with J = 2, p = 2, b1 = 2 and b2 = 0. In the
bistable region one finds blue as well as red dots, which indicates an
overlapping of two attractors living within S1 and S2.

show the same magnetization, there are only N/2 + 1 different
values for the magnetization Mk = 4k

N − 1, k = 0, . . . , N/2.
Hence, in the case where the system propagates within the
smooth regions between the switching, Eq. (2) becomes

ẋ(t ) =
⎛
⎝ v(t )

−2ζv(t ) − q(t ) + cos φ(t ) + CMk

�

⎞
⎠. (9)

We will discuss this in more detail by looking at the two
examples of two and four spins corresponding to one and two
spin dimers.

N = 2 : In Fig. 3(a) a schematic trajectory projected in the
q-v-space is shown. In the case of N = 2 there are two sheets
S1 and S2 corresponding to the two (k = 0, 1) different values
of the magnetization M0 = −1 and M1 = +1. In accordance
with our discussion from Sec. II C, it can be seen that there
are two threshold values α1 = q∗

12 and β1 = q∗
21 where the

system “jumps” from one sheet to the other. In addition in
Fig. 3(a) we illustrated the Poincaré section (q, v, φ = 0) in
S1 with and in S2 with . The Poincaré section for an
actual simulated trajectory with J = 2, p = 2, b1 = 2, and
b2 = 0 is also shown in Fig. 3(b). We see that in the bistable
region −2 < q < 0 the Poincaré sections for S1 and S2 are
overlapping. Hence, in the case a chaotic attractor is projected
into the q-v-subspace, the different “parts” of the attractor
existing within different sheets could overlap, because of the
multistability of M.

N = 4 : Again in Fig. 4 a schematic trajectory projected
into the q-v-space is shown. In the case of two spin dimers,
there are four different sheets S1, . . . , S4. Each sheet corre-
sponds to one spin dimer configuration illustrated by the two
boxes with arrows. The related values of the magnetization are
also illustrated by M0 = −1 (S1), M1 = 0 (S2, S3), and M2 =
+1 (S4). Also for two spin dimers there are four threshold
values, where a spin dimer flips. Here we will assume without
loss of generality that the upper threshold value α1 = q∗

12 of
the left (“first”) spin dimer in Fig. 4 is lower then the upper
value of the right (“second”) dimer α1 < α2 = q∗

23. Imagine
a arbitrary trajectory starting at x0 in sheet S1. If the position
q is greater than the upper threshold value of the first dimer
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FIG. 4. Schematic trajectory evolving in the phase space given
by { q, v, �t mod 2π } × { ±1 }N/2, here for N = 4. The discrete val-
ues of the spin dimer configurations are illustrated by different sheets
S1, . . . , S4. The full description is given in the text.

α1 = q∗
12, the first dimer flips from its down to the up state

and the trajectory evolves within the sheet S2. Again, if q
becomes greater then α2 = q∗

23, the second dimer flips up and
the system stays in S3. Because we assume the same width of
the hysteresis loop of each dimer we have β1 = q∗

21 < β2 =
q∗

32, hence if q becomes lower then the threshold β2 = q∗
32

the same second dimer changes its orientation again. The
trajectory evolves in S2 again. Finally if q < β1 = q∗

21 the first
dimer flips back to the down state and the system reaches S1.

Note that because we assume p to be constant, for an
increasing input followed by a decreasing one, the spin dimers
are switching from the down to the up and back to the down
state by exactly the same reversed order. Thus, out of the
2N/2 sheets not more than N/2 + 1 can be reached. So each
sheet corresponds to only one spin state and to one unique
magnetization value Mk . This also means that the spin states
of the system can be determined by the actual input-output
values (q, M ), without the knowledge of the history of the
system. Furthermore it can be seen that in the case of the
thermodynamic limit (see Sec. III C) for a given point (q, M )
the slope of the hysteresis curve is unique and no intersections
are possible. Therefore the system shows local memory [52].

In Fig. 5 we also simulated an actual trajectory and coded
the different sheets by different colors and styles: S1 ( ,
dotted), S2 ( , dashed), and S3 ( , solid). Here the follow-
ing parameters were chosen: J = 2, p = 2, b1 = 2, b2 = 0,
b3 = −0.5, and b4 = −2.5. For the threshold values we find
in accordance with the simulation α1 = 0, β1 = −2, α2 = 2.5,
and β2 = 0.5.

1. Lyapunov exponents

Now we want to describe the calculation of the Lyapunov
exponents for a system like Eq. (9). From Eq. (9) we can see
that our system behaves regular within the regions Sn of the
phase space. In this case the system is a damped harmonic os-
cillator with periodic driving force and an additional constant
force Fhys = CMk . Hence, chaotic behavior can be introduced

FIG. 5. Simulation of an actual trajectory with J = 2, p = 2,
b1 = 2, b2 = 0, b3 = −0.5, and b4 = −2.5. The different sheets of
the phase space are labeled with S1 ( , dotted), S2 ( , dashed), and
S3 ( , solid).

only by intersections of the trajectories with boundaries be-
tween smooth regions. This means that specific attention must
be paid for the calculation of the Lyapunov exponents at these
intersections.

In general Lyapunov exponents are defined as the average
rate of divergence or convergence between a reference tra-
jectory x and a perturbed trajectory x̃ = x + δx. Within the
smooth region the standard method for calculating Lyapunov
exponents can be used [53]. In the case the reference tra-
jectory crosses a discontinuity boundary, the determination
of the dynamic behavior of a infinitesimal perturbation δx
becomes more complicated. This is because of the fact that
the reference trajectory and the perturbed trajectory does not
reach the intersection point at the same time, but with time
lag δt . To correct this difference in the switching behavior of
x and x̃, the concept of Discontinuity Mapping (DM) can be
applied [54–57]. If we assume that x crosses the boundary
before x̃ with a small time lag δt , then we can introduce the
discontinuity map Q, which maps x̃ from before to after its
crossing, at the moment x crosses the boundary. Thereby Q is
taking the effect of the discontinuity into account. Thus, the
DM incorporates the effect of a discontinuity crossing even
if the state is only in the neighborhood of a boundary and the
crossing appears in the future. For our system the DM is given
by

x̃ → Q(x̃) =
⎛
⎝ q̃

C(
M )δt + ṽ

φ̃

⎞
⎠, (10)

where δt = q̃−q∗
v∗ . Here q∗ is the intersection point with the

boundary, v∗ is the velocity at intersection, and 
M is the
change of the magnetization across the boundary.

Then for infinitely small perturbations δx the Jacobian
X = ∂x̃Q(x̃) of the map Q(x̃) can be used to calculate the per-
turbation δx+(t∗) after intersecting the discontinuity boundary
δx+(t∗) = Xδx−(t∗) from the perturbation directly before
the boundary crossing x−(t∗). The matrix X is often called
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saltation matrix. For our system we find

X =
⎛
⎝ 1 0 0

1
v∗ C
M 1 0

0 0 1

⎞
⎠. (11)

With the saltation matrix X, the largest Lyapunov exponent
for a reference trajectory with only one crossing at time t∗ can
be written as

λmax = lim
t→∞

1

t
ln

|Y(t, t∗)XY(t∗, 0)δx0|
|δx0| , (12)

where Y(t, t ′) is the fundamental solution of the variational
equation δẋ(t ) = Jx δx(t ) of Eq. (9) from time t ′ to t and
Jx denotes the Jacobian matrix. In general, at each crossing
a multiplication with the corresponding saltation matrix is
necessary and we use a QR-decomposition to calculate the
Lyapunov exponents for large t . A more detailed description
can be found in [38].

To use the concept of DM for the complex hybrid phase
space described in Sec. III A it is useful to consider the system
in a different way. Therefore we will treat the system as it
is evolving in the continuous phase space { q, v, φ mod 2π },
so that the Lyapunov exponents are well defined. This phase
space consists of the regions Sn, which are separated by the
boundaries q∗

nm. But in contrast to the case of independent
spins, which we investigated in [38], here the positions of the
boundaries change over time. Thus some of the boundaries are
“active” or “inactive” over time. In the next section we will
describe how to use this point of view to simulate trajectories
of this piecewise-smooth system.

2. Numerics

Since the disorder values bi are quenched and the spins
are pairwise coupled to each other, we are able to calculate
a priori the solution x(t ) at all possible discontinuities, where
a spin flips can occur. For the generation of a trajectory of
the piecewise-smooth system we start with an initial condition
at t = 0 with the corresponding initial magnetization Mk and
use the analytical solution of the linear system (9), which is
described in [38]. By discretizing this solution with time steps

t we propagate the trajectory until the first spin flip occurs,
where the magnetization jumps from the initial value Mk to
some other value. At all potential spin flips we determine the
metastable state of the spin dimer system to check whether
this boundary is an “active” boundary, i.e., whether a spin flip
occurs or not. This depends on the history of the system. If it is
indeed an intersection point with a jump of the magnetization
we use a root finder to exactly determine the time of the
discontinuity. After the boundary we can simply use the an-
alytic solution with the magnetization value to propagate the
trajectory within the next smooth region of the phase space.

In the case of a large number of spins the sizes of the
smooth regions in the phase space are very small, and the
algorithm based on the analytical solution becomes very slow.
For increasing the speed of the algorithm in this case we use
a linearization of the solution to calculate directly the time to
the next boundary, and therefore in this case no root finder is
necessary.

By using the fundamental solution of the variational equa-
tion of Eq. (9) to evolve the perturbation between two
boundaries and the saltation matrix from Eq. (11) at a bound-
ary, we can calculate the corresponding Lyapunov spectrum
by using a standard QR decomposition algorithm [58,59].

B. Preisach model

The harmonic oscillator coupled to pairwise interacting
Ising spins results in a system with N/2 superposed elemen-
tary hysteresis loops, which resembles the definition of the
PM. Thus we want to give a quick overview of the basic ideas
of the PM. The building blocks of the PM [22,23] are the
elementary hysteresis loops, which are also called Preisach
units, hysterons, or relays. An example of such an elementary
hysteresis loop is given by the blue solid curve ( ) in Fig. 1.
For a given input q(t ) the output yαβ[q](t ) of a Preisach unit
at time t with threshold values α and β (α > β) is given by

yαβ[q](t )

=
{+1 for q(t0) � α and q(t1) � β, ∀ t1 ∈ [t0, t],
−1 for q(t0) < β and q(t1) < α, ∀ t1 ∈ [t0, t],

(13)

where t0 specifies the last time at which the input was outside
the bistable interval [β, α]. Since the time t0 depends on the
behavior of the position function q(t ′) with t ′ < t , the output
yαβ[q](t ) of the Preisach units is, in general, a functional. The
output of the whole PM is a superposition of the output of
infinitely many Preisach units with different threshold values
weighted by the so-called Preisach density μ(α, β ). For our
ferromagnetic interpretation of the complex hysteresis, the
output of the PM is the magnetization M[q](t ), which is
defined as

M[q](t ) =
∫∫

α�β

μ(α, β )yαβ [q](t ) dα dβ. (14)

The parameters α and β span a surface, the so-called
Preisach plane, which can be used to illustrate the Preisach
density or the internal state of the PM. However, since α > β

only a half-plane in the two-dimensional Preisach plane is
relevant. A very common transformation of the Preisach plane
is a rotation by +π/4 and a scaling by a factor 1/

√
2, where

the variables s and r are specified by

s = α + β

2
, r = α − β

2
. (15)

The variable s describes the center and r is the half of the
width of an elementary hysteresis loop (r > 0).

In the coordinates the relationship between the PM and
the ensemble of spin dimers becomes clear, by identifying
corresponding elementary hysteresis loops from each sys-
tem: the values αk and βk from Eq. (8) in Sec. II D are
identical to the threshold values captured by the Preisach
density of Eq. (14). For a finite ensemble of spin dimers the
Preisach density is given by the discrete density μ(α, β ) =∑N/2

k δ(α − αk ) δ(β − βk ), whereas a continuous Preisach
density μ(α, β ) corresponds to the thermodynamic limit of
the spin system. For instance, if we consider the example
from Sec. II D, where we assumed that the center s of the
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FIG. 6. (a) Illustration of mechanical play by using the analog
of a wagon. The input q(t ) is given by, e.g., a finger, which moves
the wagon. If the finger touches the right or the left side of the
wagon, respectively, the output is given by w(t ) = q(t ) − p/2 and
w(t ) = q(t ) + p/2, whereas the output stays constant if the finger
moves between both sides of the wagon. The black arrows on the
left and right side of w illustrate the separation of the spin dimers
(ordered according to the center values of their associated hysteresis
loops) in the down or up state, respectively. (b) Representation of the
movement of the wagon in the input-output plane.

elementary hysteresis loops is Gaussian distributed with s ∼
N (0, R2), and the width of the each loop is fixed equal to p,
the corresponding transformed Preisach density μ̃(r, s) given
as

μ̃(r, s) = μ(s) δ

(
r − p

2

)
, (16)

with

μ(s) = 1√
2πR2

e− s2

2R2 . (17)

This relationship between the system with pairwise interact-
ing spins and the Preisach model is especially helpful for
calculating the magnetization if the number of spin dimers
goes to infinity.

C. Play operator and thermodynamic limit

From Eq. (16) one can see that the width of the elementary
hysteresis loops are delta distributed and the center is Gaus-
sian distributed in the Preisach plane. It has been shown that
when using a uniformly distributed center of the loops, the
output of the PM is given by the so called “play” or “backlash”
operator [60,61]. The output w(t ) of this operator at time t is
given by

w(t ) = max
{

q(t ) − p

2
, min

{
q(t ) + p

2
,w(ti )

}}
, (18)

where ti < t is the time when the last extremum of the input q
was attained.

Since ti depends on the history of the input, w(t ) is a func-
tional of the input function q(t ′) with t ′ < t . The expression
in Eq. (18) can be visualized by using a mechanical analog
consisting of a wagon controlled by a finger movement [see
Fig. 6(a)]. Here the input q(t ) is the position of a finger that
moves a wagon. The center w(t ) of the wagon changes only
if the finger position during a movement is identical with the
right [w(t ) = q(t ) − p

2 ] or the left position [w(t ) = q(t ) + p
2 ]

of the wagon, respectively. In the case the finger stands be-
tween both walls, w(t ) does not change and is identical to its

last position in a movement. The corresponding behavior in
the input-output plane is illustrated in Fig. 6(b).

Because each spin dimer in our system contributes one
elementary hysteresis loop, we can make a connection be-
tween the mechanical play and the the system of spin dimers:
The input q(t ) corresponds to the position of the finger in
the mechanical play and to the value of the external field in
the spin system. Now one imagines the dimers placed on the
q-axis according to their center values sk (see Sec. II D), i.e.,
in increasing order from left to right [the arrows in Fig. 6(a)].
Then a movement of the wagon [with center position at w(t )]
to the right (left) corresponds to an increasing (decreasing)
field, which flips dimer states centered at position w(t ) =
q(t ) − p/2 from −1 to +1 (w(t ) = q(t ) + p/2 from +1 to
−1). If the finger moves inside the wagon without touching
the walls the position w of the wagon stays at its last position
of a movement. This corresponds to a variation of the external
field within the elementary hysteresis loop which switched at
last. Thus the position w of the wagon separates the dimers
in the down state from the dimers in the up state. For this to
hold we assume that initially all dimers were in the down state
and the external field assumed its minimal value. In Fig. 6 we
illustrated this by the arrows pointing down on the left side of
w and pointing up on the right side, respectively. Hence the
magnetization in the thermodynamical limit can be calculated
by summing over all dimer states or, in the thermodynamic
limit by an integration over the density of the centers of the
elementary hysteresis loops, given by μ(s) from Eq. (17):

M[q](t ) = 2
∫ w(t )

−∞
μ(s) ds − 1 = erf

(
w(t )√

2R

)
, (19)

where w(t ) is given by Eq. (18). Using the monotonicity of
the error function this can also be written in a more compact
way:

M[q](t ) = max{ f+[q(t )], min{ f−[q(t )], M[q](ti )}}, (20)

with

f−[q(t )] = erf

(
q(t ) + p

2√
2R

)
, (21)

f+[q(t )] = erf

(
q(t ) − p

2√
2R

)
. (22)

This form of the hysteretic play operator can be found in the
literature under the term “generalized play” [41–43]. In Fig. 7
an illustrative case with p = 2 and R = 1 is shown. Note that
Eq. (20) can also be derived by integrating Eq. (14) with a
Preisach density μ(α, β ) obtained from Eqs. (16) and (17)
using the transformation from Eq. (15).

As a verification of our calculations we determined the
Preisach density μ(r, s) of the piecewise-smooth system for
N = 20 000 spin dimers with randomness R = 1, as well as
for the system in its thermodynamic limit, given by Eq. (20). A
detailed description how to determine μ(r, s) in an experimen-
tal way by scanning the whole Preisach plane gradually can
be found in [11,23]. The results are shown in Fig. 8. We find
that for both systems the density coincides within numerical
accuracy with the result from Eqs. (16) and (17).
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FIG. 7. Illustration of the output of the spin dimer system in
its thermodynamic limit, resulting in an operator in form of a gen-
eralized mechanical play (p = 2, R = 1) given by Eq. (20). The
input-output behavior is characterized by a major loop formed by the
functions f− and f+ from Eqs. (21) and (22) and degenerate inner
loops.

1. Lyapunov exponents

Like mentioned before, in general, the largest Lyapunov
exponent λmax specifies the average exponential behavior of
an infinitesimal perturbation of a reference trajectory. The
time evolution of the infinitesimal perturbation can be de-
scribed by the linearization of Eq. (2). Note that the r.h.s of
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FIG. 8. (a) Comparison of the numerically calculated and the-
oretical density μ(s) from Eq. (17). (b), (c) The numerically
determined Preisach density plotted in the r-s-plane. N → ∞ de-
notes the system in its thermodynamic limit and N = 20 000 denotes
the piecewise-smooth system. The randomness and the width of each
elementary hysteresis loop are set to R = 1 and p = 2.

Eq. (2) depends on the functional M[q](t ) given by Eq. (19),
which depends on the output w(t ) (the wagon position) of the
play operator (18). Therefore, it is necessary to consider the
extended state space y = (q, v, φ,w)T (see details in Sec. V),
which also stores the memory of the system, in form of the
position of the wagon. The time evolution of y can be given
by

ẏ(t ) =

⎛
⎜⎝

v(t )
−2ζv(t ) − q(t ) + cos φ(t ) + g(t, t ′

i )
�

χ v(t )

⎞
⎟⎠ (23)

with

g(t, t ′
i ) = C{χM[w(t )] + (1 − χ )M[w(t ′

i )]}. (24)

Here the function χ (y(t )) indicates whether the state y(t )
corresponds to a situation “inside” or “outside” of the play

χ (y(t )) =
{

0, for |w(t ) − q(t )| < p/2, inside,
1, for |w(t ) − q(t )| = p/2, outside, (25)

and t ′
i is the time when the last extremum of the input q was

attained on condition that at this time the system changes
from “outside” to “inside” of the play. Hence t ′

i is the last
time, when the finger left one of the walls of the wagon from
Fig. 6(a). Therefore extrema, which only occur “inside” of the
play, are not denoted by t ′

i .
For infinitesimal perturbation δy(t ) of a reference solution

yR(t ), we can distinguish basically between two situations. For
χ [yR(t )] = 0 (“inside” the play) the Jacobian is given by

W0(t, t ′
i ) =

⎛
⎜⎜⎝

0 1 0 0
−1 −2ζ − sin φR(t ) C ∂M(w)

∂w

∣∣
wR (t ′

i )

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

(26)
whereas for χ (yR(t )) = 1 (outside), we have

W1(t ) =

⎛
⎜⎜⎝

0 1 0 0
−1 −2ζ − sin φR(t ) C ∂M(w)

∂w

∣∣
wR (t )

0 0 0 0
0 1 0 0

⎞
⎟⎟⎠.

(27)
Hence, the variational equation of y can be written as δẏ(t ) =
Wχδy(t ).

First, we note that for both matrices the entries Wi j with
i, j = 1, . . . , 3 are similar and correspond to the Jacobian
of a damped harmonic oscillator with periodic forcing and
without play operator. In the following we want to explain the
differences between W0 and W1, starting with W1 (outside):
Here the finger touches one of the walls of the wagon [see
Fig. 6(a)] and therefore the actual position of the wagon is
given by w(t ) = q(t ) ± p/2, which means there is no memory
in the system. Thus the time evolution of the correspond-
ing perturbations δq and δw should behave in a similar way
(δq̇ = δv, δẇ = δv). This is satisfied by the fact that the first
and the last line of W1(t ) in Eq. (27) are identical. Note that
both matrices also differ in the entry W24. Here W 1

24 gives the
linearization of Eq. (20) evaluated at wR(t ). Because in this
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case we are outside of the play, from Eq. (19) we simply get

C
∂M(w)

∂w

∣∣∣∣
wR (t )

= C

√
2

πR2
e− wR (t )2

2R2 . (28)

This means the system behaves like a harmonic oscillator
with an additional nonlinear force without memory, which is
indeed similar to the system we investigated in [38].

The situation changes rapidly, if the finger moves inside
the wagon and w stays constant, storing the last extremum of
the input q at time t ′

i . Hence δw does not evolve in the same
way as δq, in fact δw stays constant [δẇ(t ) = 0], because
actual perturbations of q, v and φ do not change the stored
perturbation δw at the time t ′

i . Furthermore, now W 0
24 gives

the linearization of Eq. (20) evaluated at wR(t ′
i ). This means

inside of the play δv(t ) is determined by δw(t ′
i ), when the

system enters the play, which of course is an after-effect of
the memory in the system.

Special attention has to be paid to the scenarios, when
the system changes from χR = 0 to χR = 1 and vice versa.
This change is described by crossing the boundary |wR(t ) −
qR(t )| = p/2 given by Eq. (25) at the intersection point y∗
at time t∗. Note that in the case the system changes from
χR = 1 to χR = 0, we have t∗ = t ′

i . By using the theory of
piecewise-smooth system from Sec. III A we can again deter-
mine a saltation matrix, which gives us δy immediately after
crossing the boundary. Lets first deal with the case when the
system enters the play (χR = 1 to χR = 0): Because here q(t )
is an extremum, v(t ) in Eq. (23) becomes zero, and therefore
the corresponding saltation matrix Vin, calculated in the usual
way (see [48]) is simply Vin = I, the four-dimensional iden-
tity matrix. This is clear, because in the case the system enters
the play, w(t ) and its time derivative are smooth. This means
δw1 immediately before and δw0 immediately after the tran-
sition from the outside to the inside of the play are identical
δy0(t∗) = Vinδy1(t∗) = δy1(t∗). In contrast, when the system
leaves the play ẇ(t ) has a jump. This can be explained by
using Fig. 6(a) again. Here at first the wagon holds its position
with ẇ = 0. After the finger hits one of the walls, the velocity
v(t ) is applied, hence ẇ(t ) has a jump, because in this case
q(t ) is not an extremum (v(t ) �= 0) [62]. Then the perturbation
of y after the transition is given by δy1(t∗) = Voutδy0(t∗), with

Vout =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎠. (29)

This is quite remarkable, because the last line of Vout shows
that when leaving the play region the perturbation δw is been
wiped out by δw1 = δq0. This leads to repeatedly dimensional
collapses from the four-dimensional system to only three
dimensions. Hence one corresponding Lyapunov exponent
becomes minus infinity. This behavior typically can found in
systems with time- or state-dependent delays [63–65].

2. Numerics

Finally the Lyapunov spectrum can be calculated in a sim-
ilar way as described in Sec. III A 1. Here we discretize the
system with time steps 
t . Inside of the play the discretization
of Eq. (26) can be used to determined the evolution of the

perturbation, whereas outside of the play we can use Eq. (27).
In the case the system undergoes a transition from the inside of
the play to the outside of the play we use the saltation matrix
from Eq. (29) to correct the perturbations. By applying this
concept we calculate the whole Lyapunov spectrum by using
again a QR decomposition algorithm.

3. Fractal dimensions

By ordering all k Lyapunov exponents from largest to
smallest λ1 = λmax � λ2 � · · · � λ4 we are able to calculate
the so-called Kaplan-Yorke dimension of a chaotic attrac-
tor, also known as Lyapunov dimension, which is defined as
[66,67]

DKY = j +
∑ j

i=1 λi

|λ j+1| , (30)

where j ∈ N :
∑ j

i=1 λi � 0 ∧ ∑ j+1
i=1 λi < 0.

This means that j-dimensional volumina are still ex-
panding (with rate

∑ j
i=1 λi), whereas ( j + 1)-dimensional

volumina are contracted with the rate
∑ j+1

i=1 λi. The second
part of Eq. (30) follows from a linear interpolation between
these two cases such that expansion and contraction balance
yielding a zero rate for volumina with (fractal) dimension
DKY.

Below we will also determine the box-counting dimension
D0 = DBC. The box-counting dimension of a chaotic attractor
can be determined by partitioning the phase space of the
attractor into a grid of boxes with size ε and a subsequent
counting of the number N of boxes, which contain points.
Thus the scaling with the grid size defines the box-counting
dimension:

D0 = DBC = lim
ε→0

log N (ε)

log 1/ε
. (31)

The Kaplan Yorke conjecture states that the Kaplan-Yorke di-
mension equals the information dimension D1 (which is lower
than the box-counting dimensions DBC � DKY) for “typical”
systems [67]. We are not calculating the information dimen-
sion D1, but it is worth mention that the main difference
between the box-counting dimension D0 and D1 is given by
the fact that in contrast to D0 by calculating D1 the amount
of points found in one box of the scaled grid is taken into
account. For a more detailed view of the topic of fractal
dimensions see [68].

IV. RESULTS

Here we present our numerical results. If not stated
otherwise, for the numerical simulations we used the ini-
tial conditions and model parameters from Table II for the
piecewise-smooth system as well as for the system in its
thermodynamic limit.

In the following we want to distinguish between the fractal
dimension of the piecewise-smooth system and the system in
its thermodynamic limit by denoting the fractal dimensions
either with DN or D∞. Also the corresponding Lyapunov
exponents will be denoted in the same way.

For the piecewise-smooth system we find the three Lya-
punov exponents λN

1 = 0, λN
2 , and λN

3 , where the sum of all
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TABLE II. Model parameters and initial conditions of the numer-
ical simulations for the piecewise-smooth system as well as for the
system in its thermodynamic limit.

Parameter Symbol Value

General
Damping ratio ζ 0.05
Excitation frequency � 1.0
Initial position q0 −1.0
Initial velocity v0 0.1
Elementary hysteresis loop width p 2.0
Randomness R 1.0

Piecewise-smooth
Initial spin orientation σi(t = 0) −1
Spin coupling strength J 2.0

Thermodynamic limit
Initial output of the play operator w0 = q0 − p/2 −2.0

exponents equals the volume contraction of the corresponding
phase space

∑
i λi = ∇ · F = −2ζ . Here F is the right-hand

side of Eq. (9). Thus, one can show that for regular behavior
we have λN

1 = 0, λN
2 = −ζ and λN

3 = −ζ , which is in full
accordance with our numerical findings (see, e.g., Fig. 9).
Note that one of the three Lyapunov exponent associated to
perturbations of the phase φ of the external forcing equals
zero. However, for calculating DN

KY these perturbations are
neglected in the following discussions and thus the system
is considered within the Poincaré-section φ = 0. Furthermore
instead of calculating DN

BC for each sheet Sn we can determine
DN

BC from the superposition of all N/2 + 1 sheets in the q-v-
space, as long as the number of sheets is finite [see Fig. 3(b)].

In the case of the system in its thermodynamic limit we
have four Lyapunov exponents λ∞

1 = 0, λ∞
2 , λ∞

3 , and λ∞
4 =

−∞. In the same way as for the piecewise-smooth system we
want to neglect the direction of the perturbations associated

FIG. 9. For two coupled spins N = 2 the system shows the bifur-
cation scenarios expected from piecewise-smooth square-root maps,
illustrated by the different colored boxes: immediate jump to robust
chaos with a positive largest Lyapunov exponent λmax ( , left),
period-adding with chaotic windows ( , middle), and overlapping
period-adding cascade ( , right). The local disorder fields are b1 = 1
and b2 = −1.

to φ, when calculation D∞
KY. As for the piecewise-smooth sys-

tem, here the box-counting dimension D∞
BC is also determined

within the q-v-space. It is worth mention that this projection
of the fractal attractor into the two-dimensional space equals
the fractal dimensions of the three-dimensional space. This is
because of the fact that the projected fractal dimension are
smaller than the dimension of the projective space [69], as we
will see later.

A. Bifurcations and attractors

1. Two spins

At first, we study the basic system with a single dimer
(N = 2). In this case we numerically determine the projec-
tion q(φ = 0) of the Poincaré section and the corresponding
largest Lyapunov exponent λmax = λ1 in dependency on the
coupling strength of the magnetization C. The local field
values are b1 = 1, b2 = −1. The corresponding bifurcation
diagram is shown in Fig. 9. Starting with a large C and
decreasing C step by step one finds that at C = 9 the system
undergoes a period-adding cascade ( , right). This is in accor-
dance with the theoretic value of C, which can be calculated
by using the results from [38]. In the bifurcation diagram we
can also find period-adding scenarios with chaotic regimes in
between ( , middle) and an immediate jump to chaos ( ,
left). These are typical scenarios for piecewise-smooth sys-
tems with grazing behavior and piecewise-smooth square-root
maps [70–72]. In [38] we derived the Poincaré-section discon-
tinuity mapping and the zero-time discontinuity mapping for
the system with a single spin, which indeed showed these kind
of maps. Therefore it can be seen that the system with only one
spin and with two coupled spins behave in a similar way. It is
worth emphasizing that when changing the initial condition
and/or the disorder realization the qualitative behavior of the
bifurcations stays the same, but the position of the periodic
windows and the chaotic regimes may change.

For only a small number of spins the overall behavior
of the piecewise-smooth system does not change much in
comparison to the system with only two spins. An interesting
question arises, when the number of spins becomes very large
(N → ∞). On the one hand, when the number of spins in-
creases, also the number of boundaries increases. This means,
when we determine the largest Lyapunov exponent, we have
an increasing number of saltation matrices X multiplied with
the fundamental solution Y [see Eq. (11) and (12)]. On the
other hand, the change in the magnetization, when crossing
a single boundary, decreases and so the influence of each
boundary becomes smaller because X → I. Hence Fhys be-
comes smoother. In [38] we showed that in this case chaos
is still possible.

2. Many spins

A comparison between the system in its thermodynamic
limit (N = ∞) and the piecewise-smooth system for N =
20 000 spins is illustrated in Figs. 10 and 11, where the same
parameters and initial conditions are used for both systems.
From Fig. 11 it seems that the trajectory, the Poincaré sec-
tion and the magnetization curve behave in a similar way. In
contrast the comparison of the bifurcation scenario for both
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FIG. 10. The bifurcation diagrams with the largest Lyapunov
exponent for the piecewise-smooth system with a large number of
spins N = 20 000 ( , top) and for one special disorder realization
{bi} does not show the typical bifurcation scenario, which is known
from piecewise-smooth systems with grazing behavior. Instead, the
behavior is very similar to the behavior of the continuous system ( ,
bottom) in the thermodynamic limit (N = ∞).

systems ( , top =̂ piecewise-smooth; , bottom =̂ thermo-
dynamic limit), shows some differences (see Fig. 10). First,
we find that the typical bifurcation scenarios for piecewise-
smooth systems, which we found in the system with only a
few spins, vanish. This is an indicator that only transversal in-
tersections of the trajectory with the boundaries are important
for systems with a large number of spins. This is similar to the
behavior we found in the system for independent spins [38].
In general, the two bifurcation diagrams show overall some

similarity, but they differ within the periodic windows. This
is due to the fact that we used only one initial condition and
always the same disorder realization. Like in the case of only
one spin dimer, the exact position of the chaotic and periodic
windows can change when changing these values.

Another remarkable point is that the calculated largest
Lyapunov exponent λN

max of the piecewise-smooth system (de-
termined by the theory of DM; see Sec. III A) differs from
λ∞

max of the system in its thermodynamic limit (determined
by extending the state variable by the relevant extreme values
and linearizing the system; see Sec. III C). For a small cou-
pling strength C ∈ [1.7, 1.8] and C ∈ [2.5, 3.0], by looking
at the projection of the Poincaré section at the q-axes for
N = 20 000, it seems that the systems behaves in a chaotic
way, which is in contrast to the finding of λN

max < 0 for these
two windows. Therefore we suggest that in contrast to the
system in its thermodynamic limit with λ∞

max > 0, in this case
the piecewise-smooth system does not show chaotic behavior,
but undergoes a long periodic motion. In contrast, for larger
values of C (e.g., C ∈ [3.8, 4.2]) both systems show chaotic
motion. As we mentioned at the beginning of this chapter, note
that for the piecewise-smooth system the Lyapunov spectrum
is determined from a two-dimensional tangent space, whereas
the Lyapunov spectrum for the system in its thermodynamic
limit is calculated in a three-dimensional tangent space, ne-
glecting the perturbation corresponding to the phase φ for
both systems. It seems that this difference leads to a different
behavior of λmax for smaller values of the coupling strength C.

B. Fractal dimension of the chaotic attractor

For a quantitative measure of the similarity between the
chaotic attractor of the piecewise-smooth system with a large
but finite number of spins and the continuous system in the
thermodynamic limit, we analyze the box-counting DBC and
the Kaplan-Yorke dimension DKY of the chaotic attractors of
both systems. As we discussed before, DN

BC is determined
from the superposition of the N/2 + 1 sheets, whereas D∞

BC
is determined from a projection into the q-v-space. Also DN

KY
is calculated by using two Lyapunov exponents and D∞

KY is,
in general, calculated by using three Lyapunov exponents.

FIG. 11. Comparison of the system in its thermodynamic limit (a) and the piecewise-smooth system with N = 20 000 spins and for one
specific disorder realization {bi} (b). The light gray curves ( ) show the chaotic attractor, projected in the q-v-space, and the red (dark gray)
curves ( ) are the magnetization. For the system with N = ∞ the Poincaré section for φ = 0 is projected from the q-v-w-space into the
q-v-space, whereas for N = 20 000 the Poincaré section is plotted in the q-v-space as a superposition of all N/2 + 1 sheets, illustrated by the
blue (gray) points ( ). For both systems we chose C = 4.0.
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FIG. 12. Calculation of the mean of the box-counting (BC) and
the Kaplan-Yorke dimension (KY) over 500 disorder realizations
for the piecewise-smooth system indicated by the different data
point symbols. The dashed and dotted horizontal lines illustrate the
corresponding fractal dimensions for the system in its thermody-
namic limit. The coupling strength was chosen to C = 4.0 (a) and
C = 2.9 (b).

Note that D∞
KY is effectively determined by two Lyapunov

exponents only, because of λ∞
4 = −∞.

We now focus on two examples with coupling strength
C = 2.9 and C = 4.0. The results are shown in Fig. 12. On
the one hand, we calculated the disorder average of both di-
mension DBC and DKY for the piecewise-smooth system with
an increasing number of spins (solid lines), and on the other
hand, we calculated the same values in the thermodynamic
limit N = ∞ (dashed lines). For the piecewise-smooth system
we take the average over 500 different realizations of the local
disorder fields bi at each value of N .

For C = 4.0 we can see that both fractal dimensions of the
piecewise-smooth system nearly converge to their values in
the thermodynamic limit. This supports the assumption that
for larger values of C and independent of the realization of the
disorder {bi} of the piecewise-smooth system, both systems
show chaotic motion. In contrast, for C = 2.9 the situation
is not so clear. Even for N = 20 000 the averaged values
for the fractal dimensions of the piecewise-smooth system
are considerably different from the values in the thermody-
namic limit. Remarkably, in the piecewise-smooth system
the averaged Kaplan-Yorke dimension is smaller than one,
which shows that for a nearly constant fraction of disorder
realizations the system does not show chaos and DKY = 0
[see Fig. 13(b)].

For a more detailed analysis in this direction, we cal-
culated the coefficient of variation, also often called the
Self-averaging Parameter (SAP) of the fractal dimensions,
again for 500 different disorder realizations. The SAP is given
by

SAP[D] = D2 − D
2

D
2 . (32)

In general, the SAP specifies the relative variance of a quan-
tity, here the fractal dimension. If it vanishes for N → ∞,
the behavior of the ensemble can be represented by only one
realization of the local disorder with many spins. In Fig. 13 the

FIG. 13. (a) For C = 4.0 ( ) and for C = 2.9 ( ) we
determined the SAP of the box-counting and the Kaplan-Yorke di-
mension over 500 disorder realizations for the piecewise-smooth
system. The fractal dimensions shows self averaging behavior in the
case of C = 4.0. For C = 2.9 the box-counting and the Kaplan-Yorke
dimension do not show self averaging properties. (b) For C = 2.9
the number of realizations with DKY = 0 converges to a constant
value near 100. One specific example is shown in Fig. 10 (top).
This indicates the non-self-averaging property of the Kaplan-Yorke
dimension.

SAP[D] is illustrated in dependency on the number of spins
for C = 2.9 and C = 4.0. One can see that for C = 4.0 we
have SAP[D] → 0 for N → ∞, which supports the argument
that the fractal dimension converges to the value in the ther-
modynamic limit. More precisely, the SAP[D] converges to
zero in an algebraic way, whereas in the case of independent
spins we found that SAP[D] converges to zero exponentially
[38]. A different behavior can be observed for C = 2.9. In this
case, a nonzero value remains for SAP[D], which means that
there is no self-averaging and there are at least two or more
different representative values of the fractal dimensions for
the ensemble. In fact, for C = 2.9 and a large number of spins
nearly 100 of the 500 disorder realizations lead to DKY = 0
[see Fig. 13(b)], whereas the remaining 400 realizations are
associated with a Kaplan-Yorke dimension larger than one.
A specific example is that of Fig. 10(top) at C = 2.9 and
λN

max < 0. This explains also the convergence of the averaged
Kaplan-Yorke dimension DKY to a value between zero and
one. Thus the thermodynamic limit N = ∞ and the limit
of the piecewise-smooth system with large but finite N are
different for C = 2.9, which strongly differs from the behavior
that we found for independent spins [38]. The coexistence of
regular and chaotic systems in the ensemble for C = 2.9 ex-
plains the absence of self-averaging of the fractal dimension.
This is supported by Fig. 13(b), which suggests that a finite
fraction of systems remains regular for N → ∞.

It is worth mention that for the chosen values of C = 2.9
and C = 4.0 the Kaplan-Yorke dimensions of the system in
its thermodynamic limit D∞

KY, illustrated by the dotted lines in
Figs. 12(a) and 12(b), are independent on the initial values q0

and w0 of the system. To validate this, we first calculated D∞
KY

for different values of q0 [see Fig. 14(a)], where the systems
starts outside the play with w0 = q0 − p/2. In a second case,
we determined D∞

KY for different values of w0 [see Fig. 14(b)],
here the systems starts inside the play with q0 = −1. In
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FIG. 14. Kaplan-Yorke dimension of the system in its thermody-
namic limit for three different values of C in dependence on the initial
values q0 and w0. The initial velocity was chosen as v0 = 0.1. (a) The
system starts outside the play for different values of q0, hence w0 =
q0 − p/2. For both values of C = 2.9 and C = 4.0 the Kaplan-Yorke
dimension seems to be independent of the initial values of q0. (b) The
system starts inside the play for different values of w0 and with
q0 = −1. Again, for both values of C, D∞

KY seems to be independent
of w0. (c) In the case of C = 2.92 the system behaves totally different
and “switches” between regular behavior with D∞

KY = 0 and chaotic
motion with D∞

KY ∈ [1.0, 1.5], respectively. More details are given in
the text.

both cases we chose v0 = 0.1. For C = 2.9 and C = 4.0 we
find the Kaplan-Yorke dimensions to stay within the lim-
its D∞

KY ∈ [1.37, 1.45] and D∞
KY ∈ [1.42, 1.48], respectively.

Hence for those values of C, we suggest that for different
initial conditions q0 and w0 the system shows chaotic motion.
Because of the variation of D∞

KY we suggest that in both cases
the system reaches different attractors, but the corresponding
Kaplan-Yorke dimensions seem to be very similar. For other
values of C this is not necessarily the case. For instance for
C = 2.92 [see Fig. 14(c)] different initial values of q0 can
lead to regular behavior with D∞

KY = 0 or chaotic motion with
D∞

KY ∈ [1.0, 1.5], respectively. Thus, in the chaotic case the
system again evolves to different attractors, but with totally
different values of D∞

KY. We also investigated the dependence
on the initial conditions in the stable region for C = 1.9. We
find that in this case the system reaches different periodic
orbits with slightly different negative Lyapunov exponents in
dependence on q0. This is a well-known feature for dynamical
systems coupled to hysteretic behavior [28,73].

C. Magnetization

In addition to the fractal dimension we are interested in
the behavior of the magnetization of the piecewise-smooth
system in the context of its dynamics. Therefore we defined
the time-averaged magnetization MT = 1

N

∑
i〈σi〉Time, where

FIG. 15. (a) Variance of the magnetization in dependency on the
the number of spins of the piecewise-smooth system for 500 disorder
realizations. It can be seen that for C = 2.9 the system does clearly
not self-average with respect to the magnetization. Also for C = 4.0
it seems that the system does not self-average. (b) Illustration of the
variance of the magnetization for the system without dynamic feed-
back, but with iid input, here the variance of the the magnetization
goes algebraically to zero as N−1.

〈σi〉 denotes the time average of the configuration of the ith
spin, where, dependent on the dynamics of the system, 〈σi〉Time

does not necessarily equal zero. Here we simulated the system
with a length of 106 time steps. Since, in general, the assem-
ble average of the magnetization becomes zero MT = 0, we
calculated the variance of the magnetization VAR[M] instead
of the SAP of the magnetization. The variance is defined by

VAR[M] = M2
T − MT

2
. (33)

Again the ensemble size for the quenched disorder is 500, and
we have chosen C = 2.9 and C = 4.0. The results are shown
in Fig. 15. For C = 2.9 and for C = 4.0 we find that up to
N ≈ 5000 and N ≈ 10 000, respectively, the variance of both
system decreases roughly algebraically with N−1. This behav-
ior is equivalent to the behavior in a system without dynamic
feedback but with independent and identically distributed ex-
ternal field input B, where the variance of the magnetization
converges algebraically to zero in accordance with the central
limit theorem. Instead for C = 2.9 in the coupled system, for a
larger number of spins the decay of VAR[M] becomes slower
and eventually stays constant and nonzero for large N . This
indicates that the magnetization does not show self-averaging
for C = 2.9. In the case C = 4.0 it seems that VAR[M] also
stays constant and nonzero for large N . From these findings,
we can see that the non-self-averaging behavior of the magne-
tization is dynamically induced.

To verify the almost constant behavior of VAR[M] for
large N , we plotted the empirical Probability Density Function
(PDF) of the time-averaged magnetization in Fig. 16. For C =
4.0 ( , top row) and C = 2.9 ( , middle row), we show the
PDF, on the one hand, for N = 15 000 and N = 10 000 spins,
respectively, and on the other hand, for N = 20 000 spins.
In addition, the behavior of the PDF for iid input is shown
( , bottom row). For the coupled systems and for C = 2.9 as
well as for C = 4.0 the PDF of the magnetization appears to
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FIG. 16. Histograms of the empirical PDF for different values of
N in the case of C = 4.0 ( , top row), C = 2.9 ( , middle row), and
for iid input ( , bottom row). In contrast to the magnetization for iid
external field input B, in the system with feedback for both values
of C the PDF does not become narrower for increasing N , which
indicates the non-self-averaging property of the magnetization.

become stationary, whereas for the iid input the variance of
the distribution decreases for an increasing number of spins
N . This means that for a large number of spins different time-
averaged magnetizations are possible for different realizations
of the local disorder field, which we have found already in the
system with independent spins [38].

V. CONCLUSION

In this paper we extended our results from the investiga-
tion of independent spins of a RFIM coupled to a damped
and periodically driven harmonic oscillator [38] to pairs of
interacting spins. We showed that two interacting spins can
form an elementary hysteresis loop, depending on the local
disorder fields of the spins and the strength of the nearest
neighbor interaction. We analyzed a system with hysteretic
play character by using only loops with the same width. We
determined the relationship between an ensemble of indepen-
dent spin dimers at zero temperature and the Preisach operator
and calculated the related Preisach density for the system
in its thermodynamic limit. We also introduced a formalism
to determine the whole Lyapunov spectrum of a dynamical
system with a hysteretic nonlinearity in form of a generalized
play operator.

From the numerically calculated bifurcation diagram for
two spins, we showed that the behavior of few spins is very
similar to the case of only one independent spin and typical
bifurcation scenarios for piecewise-smooth systems can be
found. For a larger number of spins we also calculated the
bifurcation diagram of the projected Poincaré section and the
corresponding largest Lyapunov exponent. We stated that in
the case of the piecewise-smooth system, in general, there are
three Lyapunov exponents according to the three-dimensional
space { q, v, φ mod 2π }, whereas for the system in its thermo-
dynamic limit we have to consider an additional dimension w,
caused by the hysteretic play. Eventually, for larger coupling
strengths we found a good agreement between both systems,
whereas for smaller values of C the largest Lyapunov expo-
nents differ.

For a more detailed explanation, we investigated the box-
counting and the Kaplan-Yorke dimension of the attractor for
a small and a larger value of the coupling strength. We stated
that for the piecewise-smooth and the continuous system on
one hand, the Kaplan-Yorke dimension is calculated from
three and four Lyapunov exponents, respectively and on the
other hand the box-counting dimension is determined from a
superposition of N/2 + 1 sheets and a projection, respectively.
Nevertheless we found that at least in the case of the larger
coupling strength the fractal dimensions of the attractors of
the piecewise-smooth system converge to their values of the
system in its thermodynamic limit. But in contrast to the
system with independent spins and no hysteretic behavior,
here the self-averaging parameter of the fractal dimensions
converge for increasing N to zero in an algebraic way and not
exponentially [38]. In contrast for a smaller coupling strength,
it seems that in the chaotic case, there is still a fraction of re-
alizations of the piecewise-smooth system, where the system
appears to behave in a regular way, even for a large number of
spins.

Furthermore, we investigated the variance of the magne-
tization. We found that in the case of the smaller coupling
strength the magnetization, as well as the fractal dimensions,
does not show self-averaging. But also in the case of the larger
coupling strength the magnetization does not self-average,
though the fractal dimensions does. This discrepancy be-
tween the self-averaging of the fractal dimension and the
magnetization is not a contradiction, because, in general, the
self-averaging property depends on the observable. The dif-
ference in the self-averaging behavior for different values of
C is due to the absence of a finite fraction of regular behavior
in the case C = 4.0 and the existence of such a finite fraction
for C = 2.9.

In general, we conclude that for a system with memory
in form of a hysteretic generalized play operator the limit
N = ∞ and N → ∞ are not necessarily equal, due to the
dynamical feedback in the system.

We mention two examples, where our findings could be
relevant for systems with a hysteretic behavior in form of a
generalized play. First, let us imagine the complex hysteretic
behavior of a system is modeled continuously (N = ∞) by us-
ing, e.g., the generalized Prandtl-Ishlinskii model, which has
the generalized play operator as its building blocks. This has
been done before, e.g., in pseudoelastic shape memory alloys
[74–76] and NiTi wires [77] or in modeling the state-of-charge
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of lithium-silicon cells [78]. By embedding such systems into
a dynamical environment, one has to make sure that the re-
sults, which are obtained from the continuous modeling can
be applied to the real system. This is not necessarily the
case, because the actual real system does not have to behave
continuously, but rather in a discrete way (N → ∞), like mag-
netic materials (Barkhausen effect [79]) or plastic deformation
(plastic events [80]). This leads to the second case, for which
our findings could be relevant. Magnetic hysteresis in form
of the generalized play represents the optimal situation of a
fully remanent hysteresis loop, which is tried to be achieved,
e.g., with nanowires [81–83]. Because of the discrete nature
of the origin of the hysteresis, the ideal thermodynamic limit
(N = ∞) can not be approached. Hence, considering such
a system in a dynamical environment, quantities obtained
from only one realization of the system, in general, does
not represent the whole behavior of the system due to the
non-self-averaging property. This statement could also be ex-
tended to magnetic systems with arbitrary complex hysteresis
by suggesting that the differences we found for N = ∞ and
N → ∞ should remain, also in the case of arbitrary complex
hysteresis.

Finally, our findings for the system in the thermodynamic
limit (N = ∞) could be experimentally tested by a parallel
connection of springs, dampers and a Prandtl element [84].

ACKNOWLEDGMENT

We would like to thank Olav Hellwig for helpful discus-
sions and valuable suggestions.

APPENDIX: LYAPUNOV EXPONENTS
IN THE THERMODYNAMIC LIMIT

Here we want to determine the Lyapunov exponents of
the damped harmonic oscillator with periodic forcing and an
additional external hysteretic force in form of a generalized
play operator. The equation of motion is given by Eq. (2):

ẋ(t ) =
⎛
⎝ v(t )

−2ζv(t ) − q(t ) + cos φ(t ) + CM[q](t )
�

⎞
⎠, (A1)

where M[q](t ) denotes the hysteretic force given by Eq. (19):

M[q](t ) = 2
∫ w(t )

−∞
μ(s) ds − 1 = erf

(
w(t )√

2R

)
. (A2)

Here μ(s) is the density of the center of the elementary
hysteresis loops, which in our case is chosen to be Gaussian
distributed. Thus the integration over μ(s) leads to an error
function in Eq. (A2). Furthermore w(t ) denotes the output of
the play operator, which can be imagined as the center of the
wagon in Fig. 6(a) and is given by Eq. (18):

w(t ) = max
{

q(t ) − p

2
, min

{
q(t ) + p

2
,w(ti )

}}
, (A3)

where ti < t is the time of the last extremum of the input q(t ′)
with t ′ < t . Because of this, w(t ) stores the position w(ti),
where the system enters into the play region. This expresses
the presence of memory in the system. Hence w(t ) is not a
function of time, but a functional of the whole trajectory of the

input q(t ). In the following we want to take this into account
by writing w(t ) = W[q](t ). Now Eq. (A1) can be written as a
functional differential equation:

ẋ(t ) = f (x,w(t )) = f (x,W[q](t )). (A4)

Formally, because of the functional character, this equation
is infinite dimensional. But we will show that this reduces to
four dimensions. To see this, note that instead of monitoring
the evolution of x(t ) as a solution of Eq. (A4), it is convenient
to monitor the evolution of w(t ) separately and therefore con-
sider the evolution of an instantaneous extended state variable
y(t ) = (x(t ),w(t ))T . Also note that we have to choose the
initial condition y(0) = (x(0),w(0))T in a special way, so that
the constraint |q(0) − w(0)| < p/2 is fulfilled.

To calculate the Lyapunov exponents, we have to linearize
Eq. (A4) around a reference solution xR(t ) = x(t ) − δx(t ).
Because the perturbation δx(t ) leads to a change in w(t ) =
wR(t ) + δw(t ), with

δw(t ) = w(t ) − wR(t ) = W[qR + δq](t ) − W[qR](t ) (A5)

we get

ẋR(t ) + δẋ(t ) = f (xR(t ) + δx(t ),W[qR + δq](t )),

ẋR(t ) + δẋ(t ) = f (xR(t ) + δx(t ),W[qR](t ) + δw(t )). (A6)

By Taylor expanding this up to first order in δx(t ) and δw(t )
it follows

δẋ(t )= ∂ f (ξ,W[qR](t ))
∂ξ

∣∣∣∣
xR (t )︸ ︷︷ ︸

=:A(t )

δx + ∂ f (xR(t ), ξ )
∂ξ

∣∣∣∣
wR (t )︸ ︷︷ ︸

=:B(t )

δw(t ).

(A7)
With Eq. (A1) for the matrix A(t ) we find

A(t ) =
⎛
⎝ 0 1 0

−1 −2ζ − sin φR(t )
0 0 0

⎞
⎠. (A8)

For the following calculations it is appropriate to separate
the behavior of w(t ) into two different cases [see Fig. 6(a)].
We want to call the case, when the finger (qR) is inside the
wagon inside and the case, where the finger touches one of the
walls of the wagon outside. We are taking this into account, by
using the indicator function χR(t ) given in Eq. (25):

χR(t ) =
{

0, for |wR(t ) − qR(t )| < p/2, inside,
1, for |wR(t ) − qR(t )| = p/2, outside.

(A9)

Now we want to determine the term δw(t ) = δW[q](t ) in
Eq. (A7). In general this differential of the functional W[q](t )
is given by

δw(t ) = δW[q](t ) =
∫ t

0

δw(t )

δq(t ′)
δq(t ′) dt ′. (A10)

Again, if we are inside the play (χR = 0), here w(t ) = w(ti )
becomes constant. Thus we have δw(t )

δq(t ′ ) = δw(ti )
δq(t ′ ) = 0, except if

the last extremum of q(t ) at t = ti also determined the value
w(ti ). Denoting the time of such an extremum as t ′

i , we have

w(t ) = q(t ′
i ) ± p/2, thus δw(t )

δq(t ′ ) = δq(t ′
i )±p/2

δq(t ′ ) = δ(t ′
i − t ′). In the

other case, if we are outside of the play (χR = 1), we have
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w(t ) = q(t ) ± p/2, which gives us δw(t )
δq(t ′ ) = δq(t )±p/2

δq(t ′ ) = δ(t −
t ′). Inserting this into Eq. (A10) leads to

δw(t ) = χR(t )δq(t ) + (1 − χR(t ))δq(t ′
i ). (A11)

Taking the time derivative gives us

δẇ(t ) = χR(t )δq̇(t ) = χR(t )δv(t ). (A12)

Furthermore we can calculate the vector B(t ) in Eq. (A7).
In the case we are inside the play (χR = 0) the term M[q](t ) in
Eq. (A1) becomes constant with M[q](t ) = erf[w(t ′

i )/
√

2R],
and we find

B0(t ′
i ) =

⎛
⎝ 0

C ∂M(ξ )
∂ξ

∣∣
wR (t ′

i )

0

⎞
⎠. (A13)

In contrast, if we are outside of the play (χR = 1) we have
M[q](t ) = erf[w(t )/

√
2R] and therefore

B1(t ) =
⎛
⎝ 0

C ∂M(ξ )
∂ξ

∣∣
wR (t )

0

⎞
⎠. (A14)

Putting it all together and by using the extended state
variable δy = (δq, δv, δφ, δw)T we can finally write down the
full system of differential equations for the perturbations:

Inside: χR = 0,

δẏ(t ) =

⎛
⎜⎜⎝

0 1 0 0
−1 −2ζ − sin φR(t ) C ∂M(ξ )

∂ξ

∣∣
wR (t ′

i )

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:W0(t,t ′

i )

δy(t ).

(A15)
Outside: χR = 1,

δẏ(t ) =

⎛
⎜⎜⎝

0 1 0 0
−1 −2ζ − sin φR(t ) C ∂M(ξ )

∂ξ

∣∣
wR (t )

0 0 0 0
0 1 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:W1(t )

δy(t ).

(A16)
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