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Ergodicity and Born’s rule in an entangled three-qubit Bohmian system
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We study in detail the interplay between chaos and entanglement in the Bohmian trajectories of three entangled
qubits, made of coherent states of the quantum harmonic oscillator. We find that all the three-dimensional (3D)
chaotic trajectories are ergodic; namely, they have a common long time distribution of points regardless of the
initial conditions, and for any nonzero entanglement, their number is much larger than in the corresponding
two-qubit system. Furthermore, the range of entanglements for which practically all the trajectories are chaotic
and ergodic is much larger than in the two-qubit case. Thus, as the dimensionality of the system increases, Born’s
rule becomes accessible to a wider range of arbitrary initial distributions than in the 2D case. Our numerical
results lead to the conjecture that, for multiqubit systems, Born’s rule is the limit of almost all initial distributions
of particles.
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I. INTRODUCTION

According to Born’s rule (BR), the probability density of
finding a quantum particle in a region of space is given by the
squared absolute value of its wave function �, i.e., P = |�|2.
Born’s rule is a key postulate of standard quantum mechanics
and has never been doubted by the experiment.

In Bohmian quantum mechanics (BQM) [1–3], where the
quantum particles are guided by the wave function � [4–7]
according to the so-called Bohmian equations of motion

mi
dxi

dt
= h̄Im

(∇i�

�

)
, (1)

we are, in principle, allowed to consider an initial dis-
tribution of particles with probability density P0 �= |�0|2.
Consequently, it is of fundamental importance in BQM to
understand the mechanism that leads an arbitrary particle
distribution to that dictated by BR. The origin of BR in the
Bohmian framework has been studied extensively in the past
[8–17], but it remains a point of contention.

The nonlinear character of Bohmian equations implies that
for a generic Bohmian system ordered and chaotic trajecto-
ries coexist.1 Thus, the BR distribution of a Bohmian system
contains, in principle, both ordered and chaotic trajectories.
However, the behavior of ordered trajectories is very differ-
ent to that of the chaotic ones. Consequently it is crucial to
understand the role of both kinds of Bohmian trajectories and
their contribution in a large collective distribution of Bohmian
particles. The generation of chaos in BQM has been studied by
many authors in the past. In particular, Frisk [18], Bialynicki-
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1By saying chaotic trajectories we mean trajectories with high

sensitivity to initial conditions, as in the case of classical dynamical
systems.

Birula et al. [19], Falsaperla and Fonte [20], Sanz et al. [21],
Wisniacki and Pujals [22], Wisniacki et al. [23,24], Borondo
et al. [25], and Efthymiopoulos and Contopoulos [26] have
shown the key role of the nodal points (the points where
the wave function vanishes) for the generation of chaotic
Bohmian trajectories.

In Refs. [27,28] we presented a general theoretical mecha-
nism for the generation of chaos in arbitrary two-dimensional
(2D) and 3D Bohmian systems. This was the so-called “nodal
point–X-point complex mechanism,” according to which,
whenever a quantum particle comes close to a nodal point of
the wave function, it gets scattered by a nearby characteristic
stagnant point of the Bohmian flow in the frame of reference
of the moving node, the so-called X-point. The cumulative
action of many such scattering events implies the saturation
of the Lyapunov characteristic number at a positive value,
something that indicates the existence of chaos. Nodal points
along with their corresponding X-points form a characteristic
structure of the Bohmian flow, called the “nodal point–X-
point complex” (NPXPC).

In our latest series of works [29–32] we focused on the ap-
plication of the NPXPC mechanism in an entangled bipartite
qubit system made of coherent states of the quantum harmonic
oscillator. This system, besides its theoretical and experimen-
tal significance in quantum information theory and quantum
optics [33–37], has also many interesting characteristics and
advantages from a Bohmian perspective.

(i) Its probability density has two distinct Gaussian blobs
whose geometrical characteristics and motions in time can be
easily studied.

(ii) It has infinitely many NPXPCs lying on straight lat-
tices, whose positions can be analytically found, something
that facilitates significantly the computations.

(iii) It is in direct correspondence with a two-spin-qubit
system. In fact its entanglement [38–40] can be easily manupi-
lated by only one parameter and spans from zero entanglement
(product state) to maximum entanglement (Bell state) [33].
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Besides the evolution of the trajectories of this system, we
also considered the role of chaos and order in establishing
Born’s rule (P = |�|2). We found that when the entanglement
is large most trajectories are chaotic and in the long run the
form of the distribution of their points approaches that of
Born’s distribution.

In fact the chaotic trajectories of this system were found
to be ergodic, since their points cover densely the support
of the wave function2 and tend to the same final distribution
regardless of the initial conditions (for a study of ergodicity in
BQM, see also Refs. [41,42]). This distribution is different
in general from the BR distribution, due to the existence
of the ordered trajectories. This difference becomes larger
with the decrease of the entanglement due to the significant
number of ordered trajectories in the weakly entangled states.
Consequently, ergodicity is not sufficient to guarantee the
establishment of BR for any initial distribution, but only for
those distributions with a ratio between ordered and chaotic
trajectories equal approximately to the corresponding ratio of
the BR distribution [32].

In the present paper we extend our previous calculations
by adding another qubit in the third direction. The transition
from two to three dimensions implies many technical difficul-
ties in the calculations of the Bohmian trajectories and large
computational times for the numerical simulations. That is
why only a few works have been published in 3D Bohmian
systems [18,20,28,43,44] and no one with references to mul-
tiparticle distributions and Born’s rule. In fact, the infinitely
long straight lattices of NPXPCs of the 2D case become in-
finitely long 2D grids of NPXPCs embedded in the 3D space,
which wander around the configuration space and scatter the
approaching trajectories in a very complex way. However, we
managed to calculate analytically the positions of these grids
in space and time.

We consider a wave function which is a superposition
of two individual solutions of the unperturbed 3D quantum
harmonic oscillator and covers all the range from zero entan-
glement up to maximum tripartite entanglement [38,45].

We find first that the chaotic trajectories are ergodic, i.e.,
the limiting distribution of their points is the same regardless
of their initial conditions, just as in the two-qubit case. For
strongly entangled states we find that all (or the vast majority)
of the Bohmian trajectories are chaotic and the pattern of their
limiting distributions is the same (or approximately the same)
as that of Born’s rule, while in the opposite extreme case of
zero entanglement, all the trajectories are ordered and they
form 3D Lissajous figures; i.e., they fill rectangular 3D boxes
(just as the 2D Lissajous figures in the two-qubit case). In this
case BR is not accessible by initial distributions with P0 �=
|�0|2.

However, the increase of the number of the qubits implies
drastic changes in the intermediate and weakly entangled
states, where chaotic and ordered trajectories coexist. We find
that as the dimensionality increases from 2 to 3, there are more

2The support is the region of the configuration space where the
probability density of the wave function has appreciable value. In the
present work we consider as support the region of the configuration
space with probability density larger than 5 × 10−4.

chaotic trajectories for any nonzero amount of entanglement
than in the 2D case. Moreover, the chaotic trajectories are
ergodic in all cases, but for weak entanglements the ergodic
character of the chaotic trajectories is established after a
longer time.

Based on our results in two and three dimensions, we
expect that the increase of the chaotic trajectories will become
even stronger with further increase of the degrees of freedom,
so that in the case of multiqubit systems almost all initial
particle distributions will tend to BR.

The present paper is organized as follows: In Sec. II we
describe our wave function and the form of its support in the
configuration space. Then in Sec. III we present the form of
the 3D NPXPCs and the analytical formulas of their position
in space as a function of time (the detailed calculation is
presented in the Appendix). In Sec. IV we find the distribution
of the points of the chaotic trajectories for various amounts
of the entanglement and show that they tend to the same
limiting distribution. The form of these distributions is dif-
ferent from that of the corresponding Born’s distribution and
this difference becomes larger as the entanglement decreases.
In Sec. V we calculate the ratio between the ordered and
the chaotic trajectories inside the BR distribution for various
amounts of entanglement and emphasize its difference with
that of the corresponding two-qubit case. Finally, in Sec. VI
we summarize the similarities and the differences between
the two-qubit and the three-qubit cases and draw our final
conclusions.

II. TIME EVOLUTION OF THE WAVE FUNCTION

We extend our previous studies [29–32] to the case of a 3D
wave function,

� = c1YR(x, t )YR(y, t )YR(z, t ) + c2YL(x, t )YL(y, t )YL (z, t ),
(2)

where

YR/L(q, t )

=
(ωq

π

) 1
4

exp

[
− ωq

2

(
i ∓

√
2

ωq
a0 cos(ωqt )

)2

+ i

(
∓√

2ωqa0q sin (ωqt ) + a2
0 sin(2ωqt ) − ωqt

2

)]
,

(3)

and q = x, y, or z. Furthermore c1 and c2 are real coefficients
and c2

1 + c2
2 = 1. YR/L refers to a coherent state which for

t = 0 is on the right or left from the center of the oscillation.
Similarly to the 2D case, the entanglement of the state � in
Eq. (2) can be controlled by the coefficient c2, by working
in the range [0,

√
2/2]. For c2 = 0 we have a product state

(nonentangled state) and for c2 = √
2/2 we have a maximally

entangled three-qubit state, the so-called Greenberger-Horne-
Zeilinger (GHZ) state [33].3

3The quantification of multipartite entanglement remains an open
problem in quantum information theory [45].
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FIG. 1. The ordered trajectory of a particle with (x0 = 1, y0 = 1,
and z0 = 2) in the case c2 = 0 (product state) for t ∈ [0, 1000]. It is
a 3D Lissajous figure.

We further assume that the frequencies have an incom-
mensurable ratio. In our calculations we worked with ωx = 1,
ωy = √

2, ωz = √
3, and a0 = 2.5.

Regarding the probability density |�|2, in the product case
c2 = 0 (c1 = 1) we have a 4D blob, called hereafter “hyper-
blob,” around a point with

xc =
√

2

ωx
a0 cos(ωxt ), yc =

√
2

ωy
a0 cos(ωyt ),

zc =
√

2

ωz
a0 cos(ωzt ). (4)

Consequently the center (xc, yc, zc) of the hyperblob,
which for our numerical values starts at xc = 3.54, yc = 2.97,
and zc = 2.69, forms a 3D Lissajous curve with correspond-
ing periods Tx = 2π/ωx = 2π , Ty = 2π/ωy � 4.44, and Tz =
2π/ωz � 3.63. The corresponding value of � is

�c =
(ωxωyωz

π3

) 1
4

exp

{
− i

2

[
a2

0[sin(2ωxt ) + sin(2ωyt )

+ sin(2ωzt )] + (ωx + ωy + ωz )t

]}
(5)

and the center (xc, yc, zc) is always at the maximum of the
corresponding |�|2, equal to |�max|2 = ( ωxωyωz

π3 )
1
2 � 0.28. All

the Bohmian trajectories in this case follow the Lissajous

figure of the hyperblob, filling a rectangular box, like the one
shown in Fig. 1.

Similarly, in the case c1 = 0 (c2 = 1) we have a blob
around the symmetric point x′

c = −xc, y′
c = −yc, and z′

c =
−zc. When c1c2 �= 0 both hyperblobs coexist, while their sizes
depend on the amount of the entanglement. If we set the values
(4) in Eq. (2) we find

� = c1�c + c2

(ωxωyωz

π3

) 1
2

exp
(

− 4a2
0[cos2(ωxt )

+ cos2(ωyt ) + cos2(ωzt )]

+ i

2

{
3a2

0[sin(2ωxt ) + sin(2ωyt ) + sin(2ωzt )]

− (ωx + ωy + ωz )t
})

. (6)

Therefore the second exponential is not only an imag-
inary quantity as in Eq. (5) but it has also a very small,
in general, real factor of the form E = exp{−25[cos2 t +
cos2(

√
2t ) + cos2(

√
3t )]}. Thus, only when the quantity

[cos2 t + cos2(
√

2t ) + cos2(
√

3t )] is very small, the term E
may become of order O(1) and the value of � is not close
to c1�c. This happens when the two hyperblobs are close to
collision, where all the quantities xc, yc, and zc are close to
zero.

In Fig. 2 we give the evolution of the hyperblobs in two
cases when c1 = c2 = √

2/2 [Fig. 2(a)] and when c2 = 0.2
[Fig. 2(b)]. These figures give the forms of the isosurfaces
with |�|2 = 0.008 for t = 0 [Figs. 2(a) and 2(b) (yellow)],
for t = 8 during a collision [Figs. 2(a) and 2(b) (green)],
and for t = 11 after the collision [Figs. 2(a) and 2(b) (blue)].
Consequently the hyperblobs are reformed after the collisions,
similarly to the 2D case [30,32].

III. NODAL LINES

The nodal lines are defined by the equations

�real = �Imag = 0. (7)

In the 2D case Eqs. (7) define a set of infinite nodal points
lying on a straight line [Eqs. (14) of Ref. [32]]. When the
two blobs collide, close to the origin, they split into a number
of secondary blobs (due to their interference) that appear be-
tween the nodal points. On the other hand, when the two blobs
are far from the origin, there are again extremely small blobs
between the nodal points that can be considered completely
insignificant.

In the present case (3D) instead of nodal points we have
infinitely long nodal lines (Fig. 3). These are given by the
equations

xnod(z, t ) = kπ cos(ωyt ) + sin(ωyt ) ln
(∣∣ c1

c2

∣∣) − 2
√

2ωza0z sin(ωzyt )

2
√

2ωxa0 sin(ωxyt )
, (8)

ynod(z, t ) = −kπ cos(ωxt ) + sin(ωxt ) ln
(∣∣ c1

c2

∣∣) − 2
√

2ωza0z sin(ωzxt )

2
√

2ωya0 sin(ωxyt )
, (9)

where ωxy = ωx − ωy, ωzy = ωz − ωy, and ωzx = ωz − ωx,
and k is odd for c1 · c2 > 0 and even or zero for c1 · c2 < 0.

For any given z the nodal lines give nodal points
along straight lines, while for z = 0 we recover the nodal
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FIG. 2. The 3D isosurfaces of the 4D probability density |�|2 when |�|2 = 0.008, at t = 0 (yellow balls), t = 8 (green balls), and t = 11
(blue balls) for (a) c2 = √

2/2 (maximally entangled state) and (b) c2 = 0.2 (weakly entangled state).

points of the corresponding 2D case � = c1YR(x, t )YR(y, t ) +
c2YL(x, t )YL(y, t ). The relative distances between successive
nodal points for constant z are

�x = π cos(ωyt )√
2ωxa0 sin(ωxyt )

, �y = − π cos(ωxt )√
2ωya0 sin(ωxyt )

,

(10)

and they do not depend on k, z, or c1/c2. The straight lines
for every z are parallel with inclination �y

�x = −
√

ωx
ωy

cos(ωxt )
cos(ωyt ) .

The nodal lines lie on a plane which rotates clockwise and
counterclockwise in time. The distances between the nodal
points for any z change also with time. In particular, when
t = �π

ωxy
(� = 0, 1, 2, . . . ) all the nodal points go to infinity.

The distance of the straight lines from the z axis (x = y =
0) is equal to

d = ln
(∣∣ c1

c2

∣∣)
2
√

2a0

√
ωx cos2(ωxt ) + ωy cos2(ωyt )

, (11)

which is larger than

dmin = ln
(∣∣∣c1

c2

∣∣∣)/
(
2
√

2a0
√

ωx + ωy
) � 0.086 ln

(∣∣∣c1

c2

∣∣∣).

(12)

This distance is independent of z and is the same as in the
2D case [32]. On the other hand, the distance of a nodal
line [given by Eqs. (11) and (12)] from the origin is found

by taking the minimum value of r =
√

x2
nod + y2

nod + z2
nod, and

this is

rmin =

√
ωx

[
kπ cos(ωxt )+ln

(∣∣ c1
c2

∣∣)]2
+ωy

[
kπ cos(ωyt )+ln

(∣∣ c1
c2

∣∣)]2
+ωz

[
kπ cos(ωzt )+ln

(∣∣ c1
c2

∣∣)]2

ωxωy sin2(ωxyt )+ωzωx sin2(ωzxt )+ωzωy sin2(ωzyt )

2
√

2a0

. (13)

According to the NPXPC mechanism, close to the nodal
lines are the so-called X-lines, whose points are stationary
with respect to the corresponding nodal points and scatter
the incoming trajectories, thus leading to chaos production
[27,28].

IV. TRAJECTORIES AND DISTRIBUTIONS

In order to study the Bohmian trajectories of single particle
or multiparticle distributions for very long times, it is useful to
construct a 3D grid covering the support of the wave function
|�|2 and count the number of passages of the trajectories in
every cell of the grid. Then we can make color plots of these
countings, similarly to our figures of the 2D case, and gain
significant information about the long time behavior of the
trajectories.

In particular, if S = [x(ti ), y(ti ), z(ti )], with ti = i�t , i =
0, 1, 2, . . . , N , is a sample of the points of a single tra-

jectory collected with a time step �t up to t = ti, then
we define the “single trajectory distribution” Ps(x j, yk, zl ; ti )
over a grid of cubic cells around the points (x j, yk, zl ) =
( j�x, k�y, l�z), with j, k, l = −N,−N + 1, . . . , N − 1, N ,
where N = |xmax/�x| = |ymax/�y| = |zmax/�z|, as

Ps(x j, yk, zl ; ti ) = �N (x j, yk, zl ; ti ), (14)

where �N is the number of points of the sample S lo-
cated within the cell defined by x j − �x/2 � x < x j +
�x/2, yk − �y/2 � y < yk + �y/2, and xl − �z/2 � z <

xl + �z/2. Consequently �N (x j, yk, zl ; ti ) is the “single tra-
jectory occupation number” of the cell (x j, yk, zl ) from
t = 0 up to t = ti. Thus Ps(x j, yk, zl ; ti ) can be represented
by a (2N + 1) × (2N + 1) × (2N + 1) matrix defined by
PS (J, K, L) = PS (xJ−N−1, yK−N−1, zL−N−1), where J, K, L =
1, 2, . . . 2N + 1.
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FIG. 3. Nodal lines (continuous curves along the different values
of z) and nodal points (joined by dashed lines for every given value
of z) for integer values of z from −5 up to 5 at time t = 9 for the
GHZ state with k being odd in [−9, 9].

We now extend the above considerations in the case of an
ensemble of the points of NP Bohmian trajectories evolved up
to t = ti. We define the “multiparticle distribution” as

PM (x j, yk, zl ; ti ) = �M(x j, yk, zl ; ti ), (15)

�M(x j, yk, zl ; ti ) =
Np∑

m=1

�N (m)(x j, yk, zl ; ti ), (16)

where �M(x j, yk, zl ; ti ) is the sum of the occupation numbers
of the Np trajectories and is called “multiparticle occupation
number” from t = 0 up to t = ti. Thus the multiparticle distri-
bution can also be represented by a (2N + 1) × (2N + 1) ×

(2N + 1) matrix, PM (J, K, L) = (xJ−N−1, yK−N−1, zL−N−1),
where J, K, L = 1, 2, . . . 2N + 1.

In Figs. 4(a) and 4(b) we make a 3D cubic grid and count
the occupation numbers of its bins (cubic cells of side length
�0.167) by the points of the trajectories. Our grid contains
723 bins from −6 to 6 in x, y, and z directions. Outside this
cube, the value of |�|2 is, in general, smaller than 5 × 10−4

(while the maximum value of |�|2 is close to 0.3), and thus
we cover essentially all the support of |�|2. The occupation
number of every bin is represented by a color of the spectral
color bar on the right of every figure, where for a higher
number of counts we have a warmer color (towards the red).
The use of a variable transparency for the points (the so-called
“α channel”), which increases with the decrease of the counts
in the bin, provides us a way to observe the inner structure of
the 3D color map, without loss of information about the outer
limits of the pattern.

In the case of the maximally entangled state, the long
time distribution of the points of a single trajectory takes a
characteristic form [Fig. 4(a)] that has eight regions of high
concentration (red) joined by yellow lines, while outwards,
beyond the red regions, the density decreases practically to
zero. The sampling time of the points of the trajectories is
taken to be equal to �t = 0.05,4 while the overall time is
t = 106.

4We have checked that smaller �t gives very similar final results.

FIG. 4. The distribution of the points (a) of a single trajectory of the 3D state c2 = √
2/2 with x0 = 3, y0 = 0, and z0 = 0 up to t = 106

and (b) of 2400 trajectories following Born’s rule up to t = 5000. (c, d) The single-particle distribution with x0 = 3 and y0 = 0 and the Born
distribution in the 2D state �2d = c1YR(x)YR(y) + c2YL (x)YL (y) with c1 = c2 = √

2/2.
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FIG. 5. The Frobenius distances between successive patterns of the points of (a) particular trajectories of various c2 up to t = 1.2 × 107

and (b) Born distributions containing 2400 particles for various entanglements up to t = 5000. In all cases the long limit variations of the
self-distance of the patterns in the double logarithmic scale follow straight lines with inclinations � −1.05.

In Fig. 4(b) we show the Born distribution of 2400 particles
up to t = 5000. The two patterns [Fig. 4(a) and Fig. 4(b)] look
very similar. In fact they are the 3D analogs of the distribution
of the 2D state �2D = c1YR(x)YR(y) + c2YL(x)YL(y) [Fig. 4(c)
for a single trajectory up to t = 106 and Fig. 4(d) for 2400
trajectories up to t = 5000], where we have four red regions
joined by yellow lines.

In the case of the GHZ state (maximum entanglement) all
the trajectories are chaotic and ergodic, as in the Bell state
of the 2D case. Namely, the distributions of the points of
individual chaotic trajectories with the same entanglement are
practically the same, and if we took individual trajectories for
longer times in order to have about the same total number
of points as in the case of 2400 particles satisfying the Born
distribution, we would find final patterns very similar to those
in Fig. 4(a). In fact, the number of points in the second case
is 20 × 5000 × 2400 = 240 × 106, while in the first case it is
20 × 106. In further cases of individual trajectories we take
t = 12 × 106, so that the total numbers of points in both cases
are equal.

Following the same method as in the two-qubit system, we
can study the similarity of the patterns of the color plots by
using the Frobenius distance [46]:

D(A, B) =
√∑

i, j,k

|Ai jk − Bi jk|2, (17)

where A and B are the 3D arrays which contain the counts
inside the bins of two color plots. We note here that we always
divide the distributions represented by matrices A and B by
the quantities NA = NpAtA and NB = NpBtB, where NpA and NpB

are the number of particles in A and B, and tA and tB are
the corresponding time of the measurement of A and B. This
reduction guarantees the correct comparison of the arrays,
given the fact that the sampling time �t is common for all
trajectories.

A first application of the Frobenius distance D is in check-
ing the approach of the long time pattern of the points of
individual trajectories, by comparing the patterns from t =
5 × 105 up to t = 1.2 × 107 [Fig. 5(a)] for different amounts
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FIG. 6. The Frobenius distances between the patterns of the points of two trajectories with the same c2 as functions of the time (a) for
c2 = 0.4, 0.5, 0.6, and 0.707 up to time t = 1.2 × 107. In all cases the long limit variations of D follow a straight line in log-log scale with
inclination � −0.49 and (b) for c2 = 0.3 up to t = 6 × 107. In this case there is a large increase of D beyond t � 2 × 106 but in the long run
D decreases linearly in time, in log-log scale, with an inclination roughly equal to −0.7.

of entanglement. We find that all these Frobenius distances
decrease for large t and tend to zero. The distances of the cases
with c2 � 0.4 (strongly entangled states) decrease monoton-
ically in time and reach values smaller than D = 0.0001
beyond t = 107. In the cases c2 = 0.1, 0.2, and 0.3 (weakly
entangled states) we have some considerable increases after
t = 25 × 105 and then decreases, but their values are still
between 0.005 and 0.01 at 1.2 × 107. On the other hand,
in the case of 2400 particles satisfying Born’s rule for t =
100, 200, 300, . . . , 5000 in Fig. 5(b), the Frobenius distances
decrease very fast and become smaller than D = 0.0002 for
t = 5000. For longer times this number D decreases even
further and tends to zero.

Then we calculated the Frobenius distance between the
patterns of the points of two chaotic trajectories in the cases
c2 = √

2/2, 0.6, 0.5, and 0.4 (strong entanglement regime)
up to time t = 1.2 × 107. We found that it decreases mono-

tonically in time and becomes smaller than D = 0.002 for
t > 1.2 × 107 [Fig. 6(a)].

However, the corresponding distance in the weakly en-
tangled case c2 = 0.3 decreases up to time t � 4 × 106 but
then increases up to a maximum D = 0.64 at t � 1.6 × 107

[Fig. 6(b)]. Finally it decreases monotonically and reaches a
value D = 0.03 after t = 6 × 107. From Fig. 6(b) we estimate
by a rough extrapolation that D should be smaller than D =
0.01 after time t = O(1 × 108), decreasing further towards
D = 0.

For such long times the accurate calculation of the
trajectories becomes very difficult and requires an extremely
long computer time. Our computations were made with the
adaptive step size solver DLSODA in PYTHON 2.7 [47] with
an absolute error tolerance of 10−10 and a relative error
tolerance of 10−6. However, there were a few times when the
integrator could not achieve this accuracy due to the existence
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FIG. 7. The time series of x, y, and z and the corresponding stretching number of a chaotic trajectory: in the maximally entangled state
with c2 = √

2/2 (a) and in the weakly entangled state with c2 = 0.3 (b).

of Bohmian vortices close to the nodal points and the
calculations were aborted.5 Our conclusion is that for weakly
entangled states (c2 � 0.3) the chaotic trajectories are ergodic,
but their ergodic character is established after extremely long
times. On the other hand, the ergodicity of the chaotic
trajectories of the strongly entangled states (c2 � 0.4) can be
established (approximately) after times smaller than t = 107.

We note that the chaotic trajectories of the present problem
are not just irregular motions in 3D space but they have a cer-
tain structure. In fact the chaotic character of the trajectories

5The comparison of two trajectories for time t = 6 × 107 took
about 6 h in the high-performance computer of RCAAM which has
20 cpu threads and 128 GB of RAM. Similar (or longer) times are
required for c2 = 0.2 and c2 = 0.1.

stems from their successive close encounters with the NPX-
PCs. Between these approaches every trajectory tries to form
a Lissajous figure. The deviation between every prescattering
and postscattering Lissajous figure is larger if the approach
to a NPXPC is closer and with a smaller velocity. However,
there are approaches which are not very close to the NPXPCs
or they occur very fast. In such cases the trajectory continues
along the same Lissajous figure for more periods. This is
shown in Fig. 7 where we give the functions x(t ), y(t ), and
z(t ) for times up to t = 500 in the case of the maximum
entanglement [panel (a)] and in the case of a chaotic trajectory
when c2 = 0.3 [panel (b)]. Below these functions we give the
“local Lyapunov stretching number a” [48]. The scattering
events correspond to the abrupt changes of a.

We further observe that up to the first collision at t � 30,
we have almost periodic motions with frequencies ωx = 1,
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FIG. 8. The time series of x, y, and z and the corresponding stretching number of an ordered Lissajous-like trajectory in the partially
entangled state with c2 = 0.3.

ωy = √
2, and ωz = √

3. Thus there are t
Tx

� 5 oscillations
in x, t

Ty
� 7 oscillations in y, and t

Tz
� 8 oscillations in z.

The trajectories form approximately a 3D Lissajous figure of
size �x = 2xc = 7.1, �y = 2yc = 5.9, and �z = 2zc = 5.4.
After various transitions the trajectory forms approximately
new 3D Lissajous figures with the same frequencies and the
same sizes, but with irregular positions. On the other hand,
in the case of ordered trajectories the changes of the approx-
imate Lissajous figures are very small, as in the example of
Fig. 8. In fact, ordered trajectories appear mainly close to the
center of the main hyperblob for small values of c2. At the
collisions between the two hyperblobs when x, y, and z are
small, the nodal lines are relatively far from the center. In
fact, if | cos(ωxt )| and | cos(ωyt )| are smaller than, say, 0.1, the
minimum distance of a straight line from the z axis [Eq. (11)]
is larger by a factor 10 from the numerical value of Eq. (12).

Furthermore the minimum value dmin of Eq. (12) is propor-
tional to ln(| c1

c2
|); i.e., it increases when c2 decreases. Thus the

ordered trajectories are more frequent when c2 is smaller, as
expected.

V. ORDERED AND CHAOTIC TRAJECTORIES
IN THE BORN DISTRIBUTION

The ordered trajectories appear, in general, close to the cen-
ter (xc, yc, zc) of the leading hyperblob, while in the outer part
of this hyperblob the trajectories are chaotic. Furthermore,
it seems that all the trajectories of the small hyperblob are
chaotic, since during the collisions of the hyperblobs the small
one is fully deformed and the trajectories of its particles are all
prone to scattering events (as in the corresponding two-qubit
case).

The distinction between order and chaos is usually made by
use of the Lyapunov characteristic number (LCN). The finite

time LCN is χ (t ) = ln( ξ

ξ0
)

t , where ξ0 and ξ are infinitesimal
deviations at times t0 = 0 and t . The limit of χ (t ) when t →
∞ is the LCN, namely, LCN = limt→∞ χ (t ).

In the case of the ordered trajectories the value of χ (t ) is
roughly proportional to 1/t (in logarithmic axes) [Fig. 9(a)];
therefore, the limiting value of LCN is equal to zero. On the
other hand, in the case of a chaotic trajectory χ (t ) saturates at
a positive value [Fig. 9(b)], and thus the LCN is positive. The

FIG. 9. The time series of the finite-time Lyapunov characteristic number in the case c2 = 0.2 for (a) an ordered trajectory with x0 = 3.5,
y0 = 3.5, and z0 = 2 and (b) a chaotic trajectory with x0 = −3, y0 = −3, and z0 = −3.
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FIG. 10. Two temporary 3D Lissajous figures in the trajectory of
a weakly entangled state with c2 = 0.1 and x0 = −2, y0 = −3, and
z0 = 0.5 up to t = 600. The blue curve is closer to the observer than
the red one. The trajectory forms the blue curve up to t � 320 and
then, after a scattering event, deviates and forms the red curve for the
rest of the motion.

temporary decreases of χ (t ) correspond to time intervals in
which the trajectory tends to form a Lissajous figure, while the
abrupt positive shifts of χ (t ) correspond to scattering events
between the trajectory and the NPXPCs, which mostly occur
during the collision of the hyperblobs of |�|2. An example
of the temporary Lissajous figures is shown in Fig. 10, where
we plot with different colors two successive Lissajous figures
during the evolution of a trajectory in the case of c2 = 0.1.
The superposition of many such temporary Lissajous figures
produces the final long limit pattern of the points of the chaotic
trajectory.

We now proceed further to an estimation of the proportions
of the chaotic and the ordered trajectories (Pch and Pord = 1 −
Pch) in the Born distribution, as functions of the entanglement.

Apparently, it is practically impossible to calculate all the
LCNs of 2400 trajectories, due to the extremely long compu-
tational time needed for this task. Instead, we use a method
that we developed in our last paper [32]. Namely, we exploit
the fact that the ordered trajectories are confined in a restricted
volume that is similar to the parallelepiped of the 3D Lissajous
figures (Fig. 1). Therefore we can check whether a trajectory
is confined inside a box, somewhat larger than a 3D Lissajous
figure, or whether it goes out of this box. In the latter case
the trajectory is characterized as chaotic. Although this is an
approximate method, it provides reliable results, provided that
the integration times are sufficiently large.

By applying this method, in Fig. 11 we make a comparison
of the proportion Pch of the chaotic trajectories in the Born
distribution in the cases of two and three qubits (red and
blue squares, correspondingly) for various degrees of entan-
glement. We found reliable results by taking integration times
up to t = 104 (in the 2D case) and t = 105 (in the 3D case).
In fact, the chaotic character of the 3D trajectories requires
times to be established that are much longer than those in the
2D trajectories, because, in order to have collisions in the 3D
case, we must have all three coordinates x, y, and z close to

FIG. 11. The proportion of the chaotic trajectories in the Born
distribution as a function of the entanglement parameter c2 in the 2D
case (red squares for t = 104) and in the 3D case (blue squares for
t = 105).

zero, while in the 2D case we require only x and y to be close
to zero. We checked that larger values of integration times do
not affect our results.

First we see that Pch is equal to 0 for the product states
and equal to 1 for the maximally entangled states in both two-
qubit and three-qubit systems, as expected. Then we observe
that the transition from two qubits to three qubits implies a
drastic increase of Pch for all partially entangled states. In
fact, for every c2 ∈ (0, 0.3] we observe the doubling of Pch,
while for c2 ∈ [0.4,

√
2/2], practically all the 3D trajectories

are chaotic. Thus in the 3D case the range of the values of
the entanglement parameter for which all the trajectories are
chaotic and ergodic is three times larger than in the 2D case.
This is the most important difference between the two-qubit
and the three-qubit system.

Further numerical evidence supporting the above results
can also be found if we study the Frobenius distance between
the patterns of the points of individual trajectories for various
values of c2 and various times t and the patterns of the points
of 2400 trajectories satisfying Born’s rule at t = 5000. [At this
time the pattern of the BR distribution is practically finalized,
as seen in Fig. 5(b)].

We see that the Frobenius distances of the cases c2 = 0.4,
0.5, 0.6, and 0.707 approach well to zero with increasing time
(almost linearly with an approximate inclination � −0.4 in
log-log scale). Namely, for t = 1.2 × 107 the value of D has
reached values of order D = 0.002 [Fig. 12(a)]. This means
that, for these values of the entanglement, the patterns are not
only close to each other, as we have seen in Fig. 6(a), but
they also approach the patterns of the corresponding Born’s
rule distribution. However, for c2 = 0.3 the distance between
the patterns of individual trajectories increases considerably
beyond t = 0.6 × 107 and tends to be stabilized beyond t =
6 × 107 at a value close to D = 0.1 [Fig. 12(b)]. This value
is much larger than that of the distance between individual
chaotic trajectories for the same amount of entanglement and
the same time [Fig. 6(b)]. We have seen that this distance be-
tween two chaotic trajectories decreases and tends to zero for
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FIG. 12. The Frobenius distance between the patterns of a single chaotic trajectory at various times compared with the corresponding
pattern of the Born distribution of 2400 particles at t = 5000 (a) for c2 = 0.4, 0.5, 0.6, and 0.707 up to time t = 1.2 × 107 and (b) for c2 = 0.3
up to time t = 6 × 107.

much larger times, while the distance from the BR distribution
remains large [Fig. 12(b)].

Similar results were found for c2 = 0.2 and c2 = 0.1.
Therefore we conclude that in the 3D case considered in the
present paper the chaotic trajectories are also ergodic, for
every c2 �= 0. But, while for c2 � 0.4 these trajectories form
patterns approaching closely the patterns of the corresponding
Born distributions, the chaotic trajectories for c2 � 0.3 form
ergodic patterns that are distinctly different from the corre-
sponding BR patterns. However, this difference appears after
a very long time, because, for given time t , the collisions of
the two hyperblobs in the 3D case are much less frequent than
in the 2D case.

Taking all the above considerations into account, it is
natural to expect that a similar increase of the chaotic
trajectories will appear in more dimensions (N-qubit sys-
tems with N > 3). Thus we conjecture that for N > 5
the vast majority of the 3D trajectories are chaotic and
Born’s rule will be accessible by most initial distributions of
particles.

VI. CONCLUSIONS

In this work we studied the ordered and chaotic Bohmian
trajectories of a three-qubit system, composed of coherent
states of the quantum harmonic oscillator in x, y, and z direc-
tions, and their role in the dynamical establishment of Born’s
rule.

Many results of our study are analogous to those of the
two-qubit system.

(i) We have considered a two-qubit wave function � =
c1YR(x, t )YR(y, t )YR(z, t ) + c2YL(x, t )YL(y, t )YL(z, t ) and cal-
culated its probability density |�|2, for various values of the
entanglement. In close analogy to the 2D case, the function
|�|2 consists of two hyperblobs which are equal if c1 = c2 and
only one hyperblob in the product states c2 = 0 and c1 = 0.
For c1 · c2 �= 0 the two hyperblobs are located very close to
the single hyperblobs of the two product states, except when
the hyperblobs collide.

(ii) If the two hyperblobs are populated by particles, then
during the collisions some particles are exchanged between
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the two hyperblobs. Exchanges appear when the particles
approach a nodal line where �real = �imag = 0. The nodal
lines are straight lines, infinite in number, that move around
in time. For every value of z the nodal lines define nodal
points, which are at equal distances from each other for any
c2 and z, but these distances change in time. According to
the NPXPC mechanism for 3D systems, close to the nodal
lines are the X-lines which scatter the incoming particles and
produce chaos.

(iii) After a collision the two hyperblobs of the wave func-
tion are formed again and consist of mixtures of particles of
the initial hyperblobs.

(iv) The trajectories of the particles are either chaotic or
ordered. Similarly to the 2D case, the ordered trajectories ap-
pear close to the center of the major hyperblob. In the absence
of entanglement we have only ordered trajectories, which are
3D Lissajous figures, while the ordered trajectories of the
partially entangled states are, in general, deformed Lissajous
figures.

(v) The chaotic trajectories are ergodic. Namely, the final
distribution of their points does not depend on the initial
conditions and consists of eight high-concentration regions
near the corners of its pattern, similarly to the four high-
concentration regions of the 2D case. Further away from the
center, the density of points decreases and tends to zero. The
final distribution is approached after a time of order t = 106

for strongly entangled states and after times of order t = 108

for weakly entangled states. These times are much larger than
those in the two-qubit case, due to the increased dimensional-
ity of the system.

(vi) For weakly entangled states, the various patterns of
the long limit distributions of the points of single chaotic
trajectories deviate from the corresponding patterns of the
distributions satisfying BR. These deviations are due to the
existence of ordered trajectories in the BR distributions. Thus,
only the initial distributions with the proper ratio between
chaotic and ordered trajectories will approach the BR distri-
bution, as in the two-qubit case.

However, there is an important difference between the
three-qubit and the two-qubit systems: In the 3D case there is
a remarkable increase of the chaotic and ergodic trajectories
for every nonzero entanglement, in comparison with the two-
qubit case. This is due to the existence of significantly more
NPXPCs than in the 2D case.

Our main conclusion is that by increasing the dimension-
ality of our system, the number of NPXPCs grows, and so
does the number of chaotic trajectories. It is natural to ex-
pect that this behavior will become even more evident if
we add further qubits, i.e., more degrees of freedom. As a
consequence, the Born rule will be reachable, after very long
times, for the majority of initial preparations in multiqubit
systems.
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APPENDIX

The nodal lines are found by solving the equations �Real = �Imag = 0. We have

(ωxωyωz

π3

)− 1
4
(�Real + i�Imag)

= c1 exp

⎡
⎣−ωx

2

(
x −

√
2

ωx
a0 cos(ωxt )

)2

− ωy

2

(
y −

√
2

ωy
a0 cos(ωyt )

)2

− ωz

2

(
z −

√
2

ωz
a0 cos(ωzt )

)2
⎤
⎦

× [cos(Ax ) + i sin(Ax )][cos(Ay + i sin(Ay)][cos(Az ) + i sin(Az )]

+ c2 exp

⎡
⎣−ωx

2

(
x +

√
2

ωx
a0 cos(ωxt )

)2

− ωy

2

(
y +

√
2

ωy
a0 cos(ωyt )

)2

− ωz

2

(
z +

√
2

ωz
a0 cos(ωzt )

)2
⎤
⎦

× [cos(Bx ) + i sin(Bx )][cos(By) + i sin(By)][cos(Bz ) + i sin(Bz )] = 0, (A1)

where

Ax = −
√

2ωxa0x sin(ωxt ) + a2
0 sin(2ωxt ) − ωxt

2

Bx =
√

2ωxa0x sin(ωxt ) + a2
0 sin(2ωxt ) − ωxt

2
. (A2)

The expressions of Ay, By, Az, and Bz are similar to Ax and Bx. We only replace x by y (or z) and ωx by ωy (or ωz). From Eq. (12)
we find the following by dividing by c2 and by the exponential of c2:
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c1

c2
exp 
{cos(Ax + Ay + Az ) + cos(Bx + By + Bz )} = 0,

c1

c2
exp 
{sin(Ax + Ay + Az ) + sin(Bx + By + Bz )} = 0, (A3)

where 
 = 2a0[
√

2ωxx cos(ωxt ) + √
2ωyy cos(ωyt ) + √

2ωzz cos(ωzt )]. From these equations we derive sin(Ax + Ay + Az −
Bx − By − Bz ) = 0, and hence Ax + Ay + Az − Bx − By − Bz = kπ , k ∈ Z. Consequently

√
2ωya0y =

(
kπ

2
−

√
2ωxa0x sin(ωxt ) +

√
2ωza0z sin(ωzt )

)
/ sin(ωyt ). (A4)

Then from Eqs. (A3) we derive

c1

c2
exp(
) = −cos(Bx + By + Bz )

cos(Ax + Ay + Az )
= − sin(Bx + By + Bz )

sin(Ax + Ay + Az )
= ±1. (A5)

This is 1 if k is odd and then c1 · c2 > 0, or it is −1 if k is zero or even, and then c1 · c2 < 0. Furthermore, by use of Eq. (A4) we
find


 = kπ cos(ωyt ) − 2
√

2ωxa0x sin(ωxyt ) − 2
√

2ωza0z sin(ωzyt )

sin(ωyt )
. (A6)

Then, taking the logarithms in Eq. (A5) we find

ln
(∣∣∣c1

c2

∣∣∣) + [kπ cos(ωyt ) − 2
√

2ωxa0x sin(ωxyt ) − 2
√

2ωza0z sin(ωzyt )]/sin(ωyt ) = 0. (A7)

Therefore, by using also Eq. (A4), we find

xnod = kπ cos(ωyt ) + sin(ωyt ) ln
(∣∣ c1

c2

∣∣) − 2
√

2ωza0z sin(ωzyt )

2
√

2ωxa0 sin(ωxyt )
, (A8)

ynod = −kπ cos(ωxt ) + sin(ωxt ) ln
(∣∣ c1

c2

∣∣) − 2
√

2ωza0z sin(ωzxt )

2
√

2ωya0 sin(ωxyt )
. (A9)
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