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Large-scale spatiotemporal patterns in a ring of nonlocally coupled
oscillators with a repulsive coupling
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Nonlocally coupled oscillators with a phase lag exhibit various nontrivial spatiotemporal patterns such as
the chimera states and the multitwisted states. We numerically study large-scale spatiotemporal patterns in a
ring of oscillators with a repulsive coupling with a phase delay parameter α. We find that the multichimera
state disappears when α exceeds a critical value. Analysis of the fraction of incoherent regions shows that the
transition is analogous to that of directed percolation with two absorbing states but that their critical behaviors
are different. The multichimera state reappears when α is further increased, exhibiting nontrivial spatiotemporal
patterns with a plateau in the fraction of incoherent regions. A transition from the multichimera to multitwisted
states follows at a larger value of α, resulting in five collective phases in total.
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I. INTRODUCTION

The collective behavior of coupled oscillators is ubiquitous
in nature [1,2]. When the coupling is weak, the dynamics
of oscillators are described only by a phase parameter by
means of phase reduction. Depending on the form of the
coupling function, the phase oscillators exhibit not only global
synchronization and desynchronization [3] but also spatial
coexistence of coherent and incoherent regions known as the
chimera states [4–6]. Originally found in nonlocally coupled
oscillators on a one-dimensional ring, the chimera states are
observed also in two or three dimensions [7–10], and in
globally [11–13] or locally [14,15] coupled oscillator sys-
tems. They are experimentally realized in chemically [16–18],
mechanically [19,20], and electronically [21,22] coupled os-
cillators, and also attracting attention in terms of neuronal
networks [23,24]. A widely used model to study the chimera
states is the nonlocally coupled phase oscillators on a ring, the
time evolution of which obeys

ψ̇ (x, t ) = ω0 − 1

2R

x+R∑
y = x − R

y �= x

sin [ψ (x, t ) − ψ (y, t )+απ ], (1)

where ψ (x, t ) represents the phase of the oscillator at x =
1, 2, . . . , N at time t , R is the coupling range, and απ gives
the phase lag. The intrinsic phase velocity ω0 is constant
and set to zero without losing generality by the transforma-
tion ψ → ψ − ω0t . Therefore, the spatiotemporal patterns are
predominantly determined by α and r = R/N . For a pair of
oscillators, the phase lag α causes in-phase synchronization
for |α| < 1/2 (attractive coupling) and antiphase synchroniza-
tion for 1/2 < |α| � 1 (repulsive coupling). For three or more
oscillators, the phase lag introduces frustration and causes
nonuniform patterns of synchronization. Previous studies on
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the chimera and twisted states focused mostly on the case
r ≈ 10−1, where a single or a small number of incoherent
clusters appear. Recent studies on a large system (r � 1)
with attractive coupling [25,26] found randomly branching
patterns of many clusters that resemble the patterns in directed
percolation (DP). DP is a two-state model of nonequilibrium
critical phenomena and describes the onset of turbulence in
fluid systems [27–29]. In terms of the chimera states, the
coherent and incoherent sites correspond to inactive and active
sites in DP, respectively. The aim of the present paper is to
extend the analogy to repulsive coupling and to explore novel
multicluster patterns beyond the analogy.

The collective behavior of the oscillator system governed
by Eq. (1) is summarized as follows: For α = 0 and R > Rc ≈
0.34N , a uniformly synchronized state is the only stable state
[30]. For R < Rc, the traveling-wave solution

ψ (x, t ) = �t + Qx, Q = 2πq

N
, (2)

where q is an integer with |q| � N−1
2 , also becomes stable.

This state is called the q-twisted state [30]. The uniform and
q-twisted states are replaced by the chimera states as α is
increased and approaches 1

2 [8,31,32]. If the coupling range
is sufficiently small compared with the system size, the mul-
tichimera states with many coherent and incoherent domains
are obtained. For α = 1, a q-twisted state or coexistence of
multiple q-twisted states (multitwisted states) are obtained
[33]. As α is decreased from 1, chimera states appear from
the multitwisted state and the number of incoherent regions
grows. Three scenarios for the chimera birth have been re-
ported [34].

In this paper, we study the statistical properties of system
(1) for a repulsive coupling ( 1

2 < α < 1) and R � N , exploit-
ing an analogy to directed percolation with two symmetric
absorbing states (DP2) [35]. In directed percolation, active
(percolated) states propagate to neighbor sites with proba-
bility p and form randomly branching patterns [36]. Once
the propagation stops, the active sites will not be generated
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from the inactive sites. Therefore, the inactive state is called
an absorbing state. The fraction of active sites ρDP shows a
critical behavior ρDP ∼ (p − pc)βDP in the dynamical steady
states. In DP2, there are two inactive states I1 and I2 that are
symmetric in their time evolution rules. The active sites form
domain walls between the two types of inactive domains. The
domain walls fluctuate until they collide and annihilate mutu-
ally, resulting in algebraic decay of their fraction ρwall ∝ t−1/2

[35,36]. In one dimension, the active sites are interpreted as
diffusing particles which annihilate by reaction 2A → ∅ and is
generated by an offspring production A → 3A. In the present
model, the q-twisted states with q > 0 and q < 0 correspond
to the two absorbing states, and the transition region between
the two q-twisted region corresponds to the active site in DP2.
We find a transition from multichimera state to a twisted state
at a critical point αc as we increase α from 1

2 and compare the
critical behavior with that of DP2. Further increasing α, the
multichimera state reappears with nontrivial spatiotemporal
patterns. The fraction of incoherent sites shows a nonmono-
tonic dependence on α, and we classify the spatial-temporal
patterns into five phases.

II. LINEAR STABILITY ANALYSIS

In this section, we briefly recapitulate the linear stability
analysis of the q-twisted states, which has been done for α =
π in Ref. [33] and for general α and finite N in Ref. [37].
Here we consider the case of general α in the continuum limit
N → ∞, by adding a small perturbation to the solution for the
q-twisted state as

ψ (x, t ) = �t + Qx +
∑

K

AK eiKx+	K t . (3)

Here AK (� 1) and 	K are the amplitude and growth rate of
the mode with the wave number K = 2πk/N , respectively,
and the sum is taken over k = 1, 2, . . . , N − 1. Substituting
this solution into the governing equation (1) and linearizing it
with respect to AK , we get

� = − 1

2R

R∑
s = −R
s �= 0

sin (−Qs + απ ) (4)

at the zeroth order and

∑
K

	K AK eiKx+	K t = − 1

2R

R∑
s = −R
s �= 0

cos (−Qs + απ )

×
∑

K

AK eiKx+	K t (1 − eiKs) (5)

at the first order, where s = y − x. From Eq. (5), we extract
the linear growth rate of the perturbation as

Re 	K = − 1

2R
cos απ

R∑
s = −R
s �= 0

cos Qs(1 − cos Ks). (6)

Note that the sign of Re 	K does not depend on α for 1
2 < α �

1. We plot the normalized growth rate Re 	K/(− cos απ ) as a
function of Q and K and for R = 5 in Fig. 1(a). The q-twisted

FIG. 1. (a) The normalized linear growth rate Re 	K/| cos απ |
given by Eq. (6), for R = 5 and 1

2 < α � 1 as a function of K and
|Q|/π . (b) The phase velocity of the q-twisted state given by Eq. (4)
for R = 5 as a function of α and |Q|/π . In both plots, the borders
of the linearly stable range 0.215 < |Q|/π < 0.323 are shown by
dotted lines.

state with Q = 2πq/N is stable if Re 	K < 0 for 0 < K < 1.
The stable range is approximately given by 0.215π < Q <

0.323π , which coincides with the previous result for α = 1
[33]. Note also that the stability range is extended for finite
N because the condition for stability is Re 	K < 0 for a finite
number of K [37]. The phase velocity � of an unperturbed q-
twisted state for R = 5 is plotted in Fig. 1(b). Its sign changes
three times as the wave number Q is increased and is positive
in the linearly stable range. The absolute value of � converges
to zero as α approaches 1. The stable range is narrowed as
we increase R [33,37], which is interpreted as the result of
frustration between many oscillators. From the observation
that the linearly stable range roughly corresponds to a band
of positive phase velocity, we can relate the stability to the
sum in Eq. (4), which approaches zero as R is increased. Thus
the existence of stable twisted states is a consequence of the
finite interaction range.

III. SIMULATION RESULT

A. Spatiotemporal patterns

We solved Eq. (1) with ω0 = 0 and R = 5 for N = 10 000
using the Runge-Kutta method with the time step 
t = 0.01.
The initial phases are randomly distributed in (−π : π ], and
the periodic boundary condition is applied. In Fig. 2, we show
typical spatial profiles of the phase difference of neighbor
oscillators,


(x, t ) = ψ (x + 1, t ) − ψ (x, t )

π
∈ (−1 : 1], (7)

and the normalized frequency distribution of 
.
When α = 0.5, the phases of oscillators are distributed uni-

formly, and so are their phase differences [Figs. 2(a) and 2(b)].
As α is increased, a chimera state consisting of twisted and
incoherent regions appears [Fig. 2(c)]. Two kind of twisted
regions with positive or negative phase differences appear
alternatively with an incoherent region in between. The dis-
tribution of 
 has double peaks in the linearly stable range
obtained in Sec. II [Fig. 2(d)]. As α is further increased,
the twisted regions become larger and the distribution of 


becomes sharper [Figs. 2(e)–2(h)]. The spatial profile of 


in the incoherent region is oscillatory, and convergence to the
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FIG. 2. Spatial profiles (left) and histogram (right) of 
(x) for
(a), (b) α = 0.5; (c), (d) α = 0.65; (e), (f) α = 0.70; and (g), (h)
α = 0.73. The plots in panels (a), (c), (e) show only 150 of the 10 000
oscillators. Panel (g) shows the whole system and a magnified view
of the border between two twisted regions (inset). The dotted lines in
the histograms (d), (f), and (h) show the borders of the linearly stable
range 0.215 < |
| < 0.323.

stable value in the twisted region looks similar to the Gibbs
phenomenon in Fourier series [Fig. 2(h), inset].

The spatiotemporal pattern of 
(x, t ) is shown in
Figs. 3(a)–3(k). The positively and negatively twisted re-
gions are separated by narrow incoherent regions, and
offspring-production and pair-annihilation of incoherent re-
gions (separation and coalescence of twisted regions) are
observed.

To exploit the analogy with directed percolation, we distin-
guish the twisted sites and incoherent sites by using the local
standard deviation of phase difference,

σ
(x, t ) =
√√√√ 1

2R

x+R−1∑
y=x−R

[
(y, t ) − 
]2. (8)

If σ
(x) < σc, the site x is defined as twisted, and if σ
(x) >

σc the site x is incoherent. We choose σc = 0.1 which roughly
matches with the width of the linearly stable range of the
phase difference. We define the state variable s(x, t ) = ±1
for a site with a positive and negative phase difference, re-
spectively, and s(x, t ) = 0 for an incoherent site. A sample
of the spatiotemporal patterns of s(x, t ) is shown Fig. 3(l).
Interestingly, in addition to pair production and annihilation
of the incoherent regions, we find branching of one incoherent
region into two and merger of two incoherent regions into one.

In these cases, one of the incoherent region is sandwiched by
twisted regions with 
 of the same sign. This is a difference
from DP2, in which each active site is always located between
different inactive states.

The fraction of incoherent sites is defined by [38]

ρ(t ) = 1

N

N∑
x=1

[1 − s(x, t )2]. (9)

For each simulation, ρ(t ) either decays to zero or fluctuates
around a constant value after a sufficiently long time depend-
ing on α and the initial condition.

B. Absorbing-state transition

For α < 0.79, the spatiotemporal patterns [Figs. 3(a)–3(e)]
resemble those in DP2 that the twisted (inactive) regions grow
in size and the irregularly fluctuating incoherent (active) re-
gion diminishes as α is increased. The time evolution of ρ(t )
for 0.70 � α � 0.78 is shown in Figs. 4(a) and 4(b). We take
the time-average over the late stage and ensemble average for
each α to define the asymptotic value ρ∞ = ρ∞(α). The plots
of the stationary fraction ρ∞(α) in Figs. 4(c) and 4(d) show
that ρ∞ decreases to zero as α approaches αc = 0.722. Fit-
ting by the power law ρ∞ ∼ |α − αc|β , β = 0.755 ± 0.028 is
obtained [Fig. 4(c)]. We define the states for α < αc = 0.722
as “phase I,” which corresponds to the active phase in DP2.
For αc � α < 0.79, the number of incoherent regions is either
zero or a very small even number (usually two or four), since
the process conserves the number of incoherent regions mod-
ulo two. We call this state “phase II.” If ρ∞ = 0, the whole
space is occupied by one of the twisted states which satisfy the
definition of “absorbing,” since incoherent sites never emerge
from a single twisted region. This corresponds to the inactive
phase in DP2. For αc � α < 0.75, ρ(t ) decayed to zero by t =
5 × 106 in six out of seven samples we tested. The survival
time of the incoherent region varies. For 0.75 � α � 0.78,
we tested 40 samples for t < 5 × 105 and found that the time
evolution of the incoherent fraction is fit by the power law
ρ(t ) ∼ t−δ with δ = 0.64 ± 0.04. We note that determination
of the exponents β and δ with an accuracy of 0.1 requires
the system size N = 104 or larger; finite-size effects make it
impossible for N = 103 or less. This is because the incoherent
fraction ρ changes discretely with the step size 
ρ ∼ 10R/N
(if R � N ), as each incoherent region has a width ∼5R and
their number changes in pairs. [For example, a step of height

ρ ∼ 0.005 is seen in Fig. 4(a) for α = 0.74 in the last stage
of time evolution.] The step size is too large to approximate
ρ(t ) and ρ∞(α) by smooth functions for N = 103 or less.
Also, a small number of lingering incoherent regions in the
phase II was observed only for the system size N = 104. For
N = 103, all incoherent regions vanished within the simula-
tion time. If two incoherent regions remain in the system, their
lifetime is larger for a larger system as it takes more time for
them to collide and annihilate. From the power-law decay of
ρ(t ), we may argue that their lifetime is proportional to N1/δ

on average, but its variance was too large to determine the N
dependence quantitatively.

The transition from the phase I to phase II is also reflected
in the phase velocity ψ̇ . We show its average in Fig. 4(e) and
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FIG. 3. (a)–(k) Spatiotemporal patterns of the phase difference 
(x, t ) for different values of α. Only 1000 out of 10 000 sites and a time
window of width 10 000 are shown. Twisted regions with positive and negative phase difference are shown in yellow (light gray) and light blue
(dark gray), and incoherent regions exist at the borders between them. In panel (d), the arrows show the boundaries between regions of slightly
different 
 with the same sign. Two incoherent regions get close and are bounced back after a certain period of time are shown in the circle. (l)
Spatiotemporal pattern of s(x, t ) for α = 0.70. Black: s = 0 (incoherent). White and gray: s = ±1 (twisted). Pair-production and annihilation
of incoherent sites are shown by red circles. Emission of a traveling wave is shown by an arrow.

its standard deviation σω in Fig. 4(f), both as functions of α.
The average phase velocity ω is peaked at α = αc, while σω

decays toward zero as the critical point is approached. For α >

αc, the standard deviation starts to rise again as ρ∞(α) does,

FIG. 4. (a), (b) Dependence of the incoherent fraction ρ on t .
(c), (d) Dependence of ρ∞ on α. The error bars show the standard
deviation of ρ(t ) for (c) t > 500 000, (d) 90 000 < t < 100 000. (e)
The average and (f) the standard deviation of the phase velocity. For
α > 0.93, the standard deviation of phase velocity becomes zero,
which means the transition from the multichimera to the multitwisted
state.

but vanishes again at α = 0.93; see the next section for more
details.

C. Resurgence of the multichimera states

For α � 0.79, the spatiotemporal patterns of the phase
difference changes dramatically [Figs. 3(f)–3(k)]. For statis-
tical analysis of the patterns, we introduce the spatiotemporal
correlation function of incoherent sites [38],

G(x, t ) = 〈[1 − s(x′, t ′)2][1 − s(x′ + x, t ′ + t )2]〉s(x′,t ′ )=0.

(10)

It gives the conditional probability that s(x′ + x, t ′ + t ) = 0
under the condition that s(x′, t ′) = 0. The space-time cor-
relation function computed for the time window 90 000 <

t ′ < 100 000 is shown in Fig. 5. According to the behavior
of ρ∞(α), σω(α), and G(x, t ), we classify the dynamics of
system (1) for α � 0.79 into the phases III to V. We also
show spatiotemporal patterns of the phase velocity ψ̇ (x, t ) in
Fig. 6, where some of the patterns of 
(x, t ) are also shown
for comparison.

Unlike the behavior in the phases I and II, where the inco-
herent sites region diffuse from its original position [Figs. 5(a)
and 6(a)], the incoherent region maintains a straight line for
α = 0.79 [Fig. 5(b)]. Phase III: for 0.80 � α < 0.85, the inco-
herent sites start to move at a constant speed at approximately
0.16 site per time unit [Figs. 5(c) and 6(b)]. The stationary
fraction ρ∞ increases with α to about 0.4. Phase IV: for
0.85 � α < 0.93, the system shows a novel spatiotemporal
pattern of 
(x, t ) that consists of alternating straight lines and
zigzag lines as shown in Fig. 6(c). The pattern of ψ̇ (x, t ) in
the same region is shown in Fig. 6(d). We find a mesh-like
pattern of small phase velocity. The moving direction of the
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FIG. 5. The spatiotemporal correlation function G(x, t ). Gray
scale represents the strength of correlation.

incoherent region is related to the phase velocity ψ̇ (x, t ) of
oscillators on each side. The zigzag-moving incoherent region
always moves toward the side with smaller ψ̇ (x, t ), while the
ψ̇ (x, t ) on each side of the straight line has the same value. For
α = 0.91, 0.92, the zigzag stripes begin to disappear which
can been seen as a transition to the next phase. As seen in
Fig. 4(f), the standard deviation of the phase velocity de-
creases to zero as we increase α and vanishes at α = 0.93,
Phase V: for 0.93 � α < 1.00, the whole system including
the incoherent region between twisted regions evolves with
the same phase velocity, as shown in Fig. 6(f), while the
incoherent regions become straight in the spatiotemporal map

FIG. 6. The spatiotemporal pattern of the phase velocity ψ̇ (x, t )
for (a) α = 0.78, (b) 0.83, (d) 0.87, (f) 0.93, and the phase difference

(x, t ) for (c) α = 0.87 and (e) 0.93.

[Fig. 6(e)]. The transition from the phase IV to V accompany-
ing uniformization of the phase velocity is found for a small
number of clusters, and bifurcation scenarios are discussed
[34]. By studying a large number of clusters, we find that the
distances between incoherent regions become larger and lose
its equality as α is increased, as seen in Figs. 5(e) and 5(f).

IV. DISCUSSION AND CONCLUSION

In summary, the spatiotemporal patterns of the nonlocally
coupled oscillators are classified into five phases depending
on the phase delay α. The transition from the phase I to II is
qualitatively similar to the absorbing transition in DP2, in (i)
pair production and annihilation of incoherent sites and (ii)
vanishing of the incoherent fraction ρ∞ at the critical point.
The large system size allowed us to study the critical behavior
with a sufficient accuracy to compare it with that of DP2. The
critical exponent β = 0.755 ± 0.028 is smaller than the cor-
responding exponent in DP2, βDP = 0.90. Also, the exponent
δ = 0.64 ± 0.04 characterizing the decay of ρ(t ) is larger than
the DP2 value δDP = 0.5. It shows that the irregular motion of
incoherent regions is not described by a simple random walk
as in DP2. These results lead us to the conclusion that the
transition at α = αc does not belong to the DP2 universality
class [35].

A possible origin of the deviation from DP2 is the existence
of soliton-like traveling waves (narrow bands of incoherent
sites emitted from incoherent regions) for α < αc, such as
those in Figs. 3(b), 3(c), and 3(l). For αc < α < 0.75, we
do not find soliton-like traveling waves but sometimes the
incoherent region propagates at a constant speed, as seen in
Fig. 3(d). The straight motion of incoherent regions enhances
their collision and decay of the incoherent fraction ρ(t ). For
0.75 � α < 0.79, we find neither the traveling waves nor the
straight motion, but the exponent δ > 1/2 means that the
trajectory of the incoherent region has long-time correlation
and is not a simple random walk as in DP2. Another difference
between DP2 and the coupled oscillators is that DP2 has
only three possible states, whereas the wave number q in the
oscillator system can take an arbitrary integer within the stable
range. As a result, a single twisted region can contain different
values of 
. Boundaries between regions of slightly different
values of 
 are seen in the profile at x ≈ 2800 and 9500 in
Fig. 2(g), and are also shown by arrows in Fig. 3(d). Such
boundaries sometimes prevent pair annihilation of incoherent
regions by repelling them back, as shown in the encircled
region in Fig. 3(d). Quantitative analysis of the pair interaction
and its effect on ρ(t ) is beyond the scope of this paper and left
for future work.

For α > 0.79, we find nonmonotonic change of the inco-
herent fraction and the spatiotemporal patterns are classified
into the phases III to V. The nonmonotonic dependence as well
as the zigzag pattern in the phase IV are highly nontrivial and
the underlying mechanism needs clarification in future work.
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