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Effects of frequency mismatch on amplitude death in delay-coupled oscillators
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The present paper analytically reveals the effects of frequency mismatch on the stability of an equilibrium
point within a pair of Stuart-Landau oscillators coupled by a delay connection. By analyzing the roots of the
characteristic function governing the stability, we find that there exist four types of boundary curves of stability
in a coupling parameters space. These four types depend only on the frequency mismatch. The analytical results
allow us to design coupling parameters and frequency mismatch such that the equilibrium point is locally stable.
We show that, if we choose appropriate frequency mismatches and delay times, then it is possible to induce
amplitude death with strong stability, even by weak coupling. In addition, we show that parts of these analytical
results are valid for oscillator networks with complete bipartite topologies.
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I. INTRODUCTION

A variety of phenomena occur in coupled oscillators [1,2].
Quenching, an attractive phenomenon, has received broad at-
tention for over 30 years [3–6]. This phenomenon is roughly
classified into two types: amplitude death, a coupling-induced
stabilization of equilibrium points embedded within oscilla-
tors, and oscillation death, a coupling-induced emergence of
stable equilibrium points in oscillators [7,8].

Amplitude death has been intensively studied not only
from viewpoints of academia [7–9], but also from viewpoints
of engineering [10,11], because of the ability of amplitude
death to suppress undesired oscillations with noninvasive
coupling signals. It has been reported that a simple diffu-
sive connection never induces amplitude death in oscillators
without frequency mismatch (i.e., in identical oscillators).
However, with frequency mismatch, amplitude death can be
induced [5,6]. Reddy, Sen, and Johnston discovered that a
time-delayed connection, which is the natural diffusive con-
nection with finite-speed propagation of information, can
induce amplitude death in oscillators, even without frequency
mismatch [12–14]. Such delay-coupled-induced amplitude
death has been investigated in a large number of studies.
Delay-induced amplitude death can be observed in oscillator
networks [12,13,15–19]. In order to enlarge the parameter
sets in which delay-induced amplitude death occurs, the time-
delayed connection has been modified. Examples include
distributed delay connection [20,21], partial delay connection
[22], two delay connections [23], digital delay connection
[24], and time-varying delay connection [25,26].

Considerable knowledge of delay-induced amplitude death
has been accumulated, as mentioned above. In recent years,
such knowledge has been widely applied in several fields,
including chemical reaction systems [27], candle-flame sys-

*URL: http://www2.eis.osakafu-u.ac.jp/∼ecs

tems [28–31], thermoacoustic systems [11,32–36], aeroelastic
systems [37], fractional-order systems [38–40], and reaction-
diffusion systems [41]. Very recently, in addition to such
applications, studies have examined amplitude death with par-
tial death [42,43], with analytical treatment for heterogeneous
delays [44,45], with time-varying network topology [46], with
asymmetric connection delays [47], with an additional mean-
field feedback [48], and on stability islands [49].

Analytical studies on the stability of equilibrium points
within delay-coupled oscillators play an important role in
the further development of knowledge about delay-induced
amplitude death. This is because such studies, which provide
analytical deep insights about the corresponding properties,
have the potential to be widely used in various fields and
for a variety of applications. Most of these analytical studies,
however, have concentrated on oscillators without frequency
mismatch [15–19,49] because the characteristic function gov-
erning the stability without mismatch can be reduced to a
simple function by some straightforward manipulations. In
other words, frequency mismatch, one of the most important
factors for coupled oscillators, makes the analytical treatment
of the characteristic function difficult. As a result, to our
knowledge, there has been a great lack of analytical compre-
hending effects of the frequency mismatch on delay-induced
amplitude death.

The present paper deals with analytical studies on sta-
bility with frequency mismatch from the stability analysis
[50–53] used in the control community. We reveal the effects
of frequency mismatch on the stability of the equilibrium
points within delay-coupled oscillators. The critical delays of
stability with frequency mismatch are analytically derived.
Furthermore, we provide a procedure for designing delayed
connections inducing amplitude death. Note that pioneering
research in this field [12,13] analytically derived the critical
delays without frequency mismatch. However, critical delays
with mismatch were obtained by numerically solving the char-
acteristic function.
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The remainder of the present paper is organized as follows.
Section II reviews a pair of Stuart-Landau oscillators with
frequency mismatch and yields the characteristic function at
the equilibrium point. Section III elucidates the roots of the
characteristic function located on the imaginary axis and an-
alytically derives the critical delays. Section IV designs the
coupling parameters and the mismatch such that the equilib-
rium point within the coupled oscillators is stable. Section V
extends the obtained results to oscillator networks with com-
plete bipartite topologies and presents numerical examples.

II. DELAY-COUPLED STUART-LANDAU OSCILLATORS

We consider a pair of Stuart-Landau oscillators:

Ż1,2(t ) = {1 + i�1,2 − |Z1,2(t )|2}Z1,2(t )

+ K{Z2,1(t − τ ) − Z1,2(t )}, (1)

where Z1,2(t ) ∈ C are respectively the states of oscillators
1 and 2 at time t � 0. The imaginary unit is denoted as
i := √−1. The oscillators have frequencies of �1,2 > 0, a
coupling strength of K � 0, and a delay time of τ � 0. The
frequencies are given as

�1 := � + �

2
, �2 := � − �

2
,

where � > 0 is the nominal frequency, and � ∈ [0, 2�) rep-
resents the frequency mismatch.

The delay-coupled oscillators (1) have the equilibrium
point Z∗

1 = Z∗
2 = 0. The linearized dynamics of oscillators (1)

at the equilibrium point is described by

ż1,2(t ) = (1 − K + i�1,2)z1,2(t ) + Kz2,1(t − τ ), (2)

where z1,2(t ) := Z1,2(t ) − Z∗
1,2 are small perturbations around

the equilibrium point. The stability of linear system (2), which
is equivalent to the local stability of the equilibrium point, is
governed by the characteristic function [12,13]:

g(s, τ ) := (s − 1 + K − i�1)(s − 1 + K − i�2) − K2e−2sτ .

(3)

As shown in Fig. 1, the characteristic roots s ∈ C of g(s, τ )
move as a function of the delay time τ in the complex plane.
The stability changes when a root crosses the imaginary axis.
Now, we focus on the behavior of the roots located on the axis.
By substituting s = iω,ω ∈ R+ into g(s, τ ) = 0,1 we have its
real and imaginary parts [12,13]:

(ω − �)2 − �2

4
− (1 − K )2 + K2 cos 2ωτ = 0, (4a)

2(1 − K )(ω − �) − K2 sin 2ωτ = 0. (4b)

Here, ω satisfying both Eqs. (4a) and (4b) are denoted by
ω = ω++,+−,−−,−+,

ω++ := � +
√

p+(�, K ), ω+− := � +
√

p−(�, K ),

ω−− := � −
√

p−(�, K ), ω−+ := � −
√

p+(�, K ),
(5)

1Our analysis can be restricted to ω ∈ R+ without loss of general-
ity.

FIG. 1. Sketch of roots s around the imaginary axis on the com-
plex plane (see Lemma 2): roots can cross the imaginary axis via
stabilizing points iω+−,−+ (blue crosses) and the destabilizing points
iω++,−− (red crosses) at τ = τ+−,−+,++,−−.

where p±(�, K ) are defined as

p±(�, K ) := �2/4 − (1 − K )2 ±
√

q(�, K ), (6)

q(�, K ) := K4 − (1 − K )2�2. (7)

The roots s moving with τ can cross the imaginary axis
at, at most, the four points iω++,+−,−−,−+, as depicted in
Fig. 1. Note that previous studies [12,13] dealt only with the
two crossing points iω++,−+ for the case of � = 0.2 This
is because the other crossing points iω+−,−− do not exist
due to p−(�, K ) < 0 for � = 0. Thus, the frequency mis-
match is necessary for existence of the four crossing points
iω++,+−,−−,−+.

III. STABILITY ANALYSIS

This section reveals the relation of the crossing points
iω++,+−,−−,−+ to the frequency mismatch � and the coupling
strength K . The directions of the roots crossing these points
and the delays at these points will be analytically provided.

A. Existence of crossing points iω++,+−,−−,−+

This subsection focuses on the regions in parameter space
(�, K ) where there exist crossing points iω++,+−,−−,−+.
Equations (5), (6), and (7) suggest that the existence of these
points depends only on the signs of q(�, K ) and p±(�, K ).
This dependence leads to the following lemma (see Fig. 2).

Lemma 1. The necessary and sufficient condition for �

and K to satisfy q(�, K ) > 0 is described by

q(�, K ) > 0 ⇔

K ∈
{

(K1,+∞) for � ∈ [0,�2],

(K1, K2) ∪ (K3,+∞) for � ∈ [�2,+∞).
(8)

2The previous work [54] also focused on the two crossing points
to analyze the local stability of an equilibrium point in a single
oscillator with delayed-feedback control.
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FIG. 2. Four regions �a,b,c,d in parameter space (�, K ): for �a,b,
there does not exist any point on the imaginary axis; for �c, there
exist iω++,−+; and for �d, there exist iω++,+−,−−,−+ (see Lemmas 1
and 2).

Under q(�, K ) > 0, the necessary and sufficient conditions
for � and K to satisfy p±(�, K ) > 0 are given by

p+(�, K ) > 0

⇔ K ∈

⎧⎪⎨
⎪⎩

(K4,+∞) for � ∈ [0,�1],
(K1,+∞) for � ∈ [�1,�2],
(K1, K2) ∪ (K3,+∞) for � ∈ [�2,�3],
(K1, K2) ∪ (K4,+∞) for � ∈ [�3,+∞),

(9)

p−(�, K ) > 0

⇔ K ∈
⎧⎨
⎩

(K1, K4) for � ∈ [�1,�2],
(K1, K2) ∪ (K3, K4) for � ∈ [�2,�3],
(K1, K2) for � ∈ [�3,+∞),

(10)

where K1,2,3,4 and �1,2,3 are defined as

K1 := −� + √
�2 + 4�

2
, K2 := +� − √

�2 − 4�

2
,

K3 := +� + √
�2 − 4�

2
, K4 := 1 + �2/4

2
,

�1 := −2 + 2
√

2, �2 := 4, �3 := +2 + 2
√

2.

Proof. See Appendix A. �
This lemma and definition (5) indicate that crossing points

iω++,−+ (iω++,+−,−−,−+) can arise for all � ∈ [0,+∞) [for
all � ∈ [�1,+∞)] by choosing the appropriate K .

Now we turn our attention to the relation between the
existence of these points and the parameter space (�, K ).
According to the positivity or negativity of q(�, K ) and
p±(�, K ), the parameter space (�, K ) is divided into four
regions, as follows (see Fig. 2):

�a := {
(�, K ) ∈ R2

+ : q < 0
}

= {(�, K ) : K ∈ [0, K1) ∪ (K2, K3), � ∈ [0,+∞)},
�b := {

(�, K ) ∈ R2
+ : q > 0, p+ < 0, p− < 0

}
= �

(1)
b ∪ �

(2)
b ,

�c := {
(�, K ) ∈ R2

+ : q > 0, p+ > 0, p− < 0
}

= {(�, K ) : K ∈ (K4,+∞), � ∈ [0,+∞)},
�d := {

(�, K ) ∈ R2
+ : q > 0, p+ > 0, p− > 0

}
= �

(1)
d ∪ �

(2)
d ∪ �

(3)
d ,

where �
(1,2)
b and �

(1,2,3)
d are defined as

�
(1)
b := {(�, K ) : K ∈ (K1, K4), � ∈ [0,�1)},

�
(2)
b := {(�, K ) : K ∈ (K3, K4), � ∈ (�3,+∞)},

�
(1)
d := {(�, K ) : K ∈ (K1, K4), � ∈ (�1,�2)},

�
(2)
d := {(�, K ) : K ∈ (K1, K2), � ∈ [�2,+∞)},

�
(3)
d := {(�, K ) : K ∈ (K3, K4), � ∈ [�2,�3)}.

The relations between regions �a,b,c,d and the existence of
iω++,+−,−−,−+ are summarized by the following lemma.

Lemma 2. The relations between regions �a,b,c,d and
crossing points iω++,+−,−−,−+ are described as follows:
for �a,b, there does not exist any point on the imaginary
axis; for �c, there exist iω++,−+; and for �d, there exist
iω++,+−,−−,−+. Root s passing points iω+−,−+ (iω++,−−) al-
ways moves from right (left) to left (right) with an increase in
τ . Furthermore, these points have the following relation:

ω++ > ω+− > ω−− > ω−+. (11)

Proof. It is obvious from the definitions of regions �a,b,c,d

and frequencies ω++,+−,−−,−+ that the regions and the cross-
ing points have such relations. In order to determine the
direction of the passing, with g(s, τ ) = 0 and Eq. (4), we have

Re

[
ds

dτ

]
s=iω

= ω(ω − �){(1 − K )2 + (ω − �)2 − �2/4}
{−1 + K + K2τ cos 2ωτ }2+{ω − �− K2τ sin 2ωτ }2

,

(12)

for regions �c,d. The denominator of Eq. (12) is positive.
Thus, from the sign of its numerator at iω++,+−,−−,−+, it is
straightforward to see that the two inequalities

Re

[
ds

dτ

]
s=iω+−,iω−+

< 0, Re

[
ds

dτ

]
s=iω++,iω−−

> 0,

are always satisfied. These inequalities show that root s pass-
ing points iω+−,−+ (iω++,−−) moves from right (left) to left
(right) with an increase in τ . The magnitude relation between
these points is obtained from the relation p+ > p− in Eq. (6)
and definition (5). �

We say that points iω+−,−+ (iω++,−−) are stabilizing
(destabilizing) points. These points are interlacing on the
imaginary axis owing to relation (11), as illustrated in Fig. 1.
It must be emphasized that Lemmas 1 and 2 do not depend
on the nominal frequency � and the delay time τ . The ana-
lytical results in these lemmas depend only on the frequency
mismatch � and the coupling strength K .

Lemmas 1 and 2 show that, for small mismatch � ∈
[0,�1) with �1 := −2 + 2

√
2, there exist only the two

crossing points iω++,−+ for �c, which can be observed
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FIG. 3. Boundary curves and stability regions in coupling parameters space (τ, K ) with � = 10 [τ−+(+−): black (red) thick lines, τ++(−−):
black (red) thin lines]: (a) � = 0.2 ∈ [0,�1), (b) � = 3.0 ∈ (�1, �2), (c) � = 4.2 ∈ (�2,�3), and (d) � = 5.5 ∈ (�3, +∞). The boundary
curves and the stability regions are analytically obtained in Lemma 3 and in Theorem 1, respectively.

even without mismatch � = 0. On the other hand, for mis-
match greater than �1, there exist the four crossing points
iω++,+−,−−,−+ for �d, which cannot be observed with � = 0.
This fact indicates that �1 can be treated as the threshold of
the frequency mismatch effect.

B. Boundary curves of stability

Let us consider the situation in which root s of g(s, τ ) is
located on the imaginary axis (see Fig. 1),

s(τ++) = iω++, s(τ+−) = iω+−,
(13)

s(τ−−) = iω−−, s(τ−+) = iω−+.

This situation suggests that root s is passing one of points
iω++,+−,−−,−+ at one of the corresponding delays, τ =
τ++,+−,−−,−+. This subsection analytically provides the
boundary curves of stability, the sets of coupling parameters
(τ, K ) at which root s is located on the imaginary axis, and
shows that these curves can be classified into four types ac-
cording to the frequency mismatch �.

For the four types of boundary curves, we consider some
numerical examples with � = 10. The four types correspond-
ing to mismatches � ∈ [0,�1), (�1,�2), (�2,�3), and
(�3,+∞) are shown in Figs. 3(a), 3(b), 3(c), and 3(d), re-
spectively. First, with mismatch � ∈ [0,�1), we have the

following (see also Fig. 2). For K < K4, root s does not cross
the imaginary axis (i.e., boundary curves do not exist). For
K > K4, root s can cross the imaginary axis at iω++,−+ (i.e.,
τ++,−+). These relations agree with the boundary curves for
� ∈ [0,�1) plotted in Fig. 3(a). Second, with � ∈ (�1,�2),
we have the following from Fig. 2. For K < K1, root s never
crosses the imaginary axis (i.e., boundary curves do not ex-
ist). For K ∈ (K1, K4), root s can cross the imaginary axis at
iω++,+−,−−,−+ (i.e., τ++,+−,−−,−+). For K > K4, root s can
cross at iω++,−+ (i.e., τ++,−+). These relations agree with the
boundary curves for � ∈ (�1,�2) in Fig. 3(b). Third, with
� ∈ (�2,�3), the following are obtained. For K ∈ [0, K1) ∪
(K2, K3), root s never crosses the imaginary axis (i.e., bound-
ary curves do not exist). For K ∈ (K1, K2) ∪ (K3, K4), root s
can cross at iω++,+−,−−,−+ (i.e., τ++,+−,−−,−+). For K > K4,
root s can cross at iω++,−+ (i.e., τ++,−+). These relations
agree with the boundary curves for � ∈ (�2,�3) in Fig. 3(c).
Fourth, with � ∈ (�3,+∞), the following are obtained. For
K ∈ [0, K1) ∪ (K2, K4), root s never crosses (i.e., boundary
curves do not exist). For K ∈ (K1, K2), root s can cross at
iω++,+−,−−,−+ (i.e., τ++,+−,−−,−+). For K > K4, root s can
cross at iω++,−+ (i.e., τ++,−+). These relations agree with the
boundary curves for � ∈ (�3,+∞) in Fig. 3(d).

Boundary curves τ++,+−,−−,−+ in Fig. 3 can be analyti-
cally obtained by the following lemma.
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Lemma 3. The time delays τ++,+−,−−,−+ in situation (13)
are analytically provided as follows:
for K � 1,

τ++(l ) := ψ−/2 + lπ

� + √
p+

, τ+−(l ) := ψ+/2 + lπ

� + √
p−

,

τ−−(l ) := −ψ+/2 + lπ

� − √
p−

, τ−+(l ) := −ψ−/2 + lπ

� − √
p+

,

for K � 1,

τ++(l ) := π − ψ−/2 + lπ

� + √
p+

, τ+−(l ) := −ψ+/2 + lπ

� + √
p−

,

τ−−(l ) := ψ+/2 + lπ

� − √
p−

, τ−+(l ) := −π + ψ−/2 + lπ

� −√
p+

,

where

ψ± := cos−1 2(1 − K )2 ± √
q(�, K )

K2
∈ [0, π ].

l ∈ Z is an integer.
Proof. See Appendix B. �
Note that time delays τ++,−+ (see black lines in Fig. 3)

with no mismatch (i.e., with � = 0) were analytically pro-
vided in previous studies [12,13]. However, delays τ+−,−−
(see red lines in Fig. 3) induced by mismatch (i.e., with
� > 0) were not. Note also that the boundary curves of Fig. 3
are plotted by delays τ++,+−,−−,−+ described in Lemma 3.

IV. DESIGN OF PARAMETERS INDUCING
AMPLITUDE DEATH

The goal of this section is to design the coupling param-
eters and the frequency mismatch to induce amplitude death.
To this end, we elucidate the behavior of root s in the complex
plane by increasing delay τ from zero.

First, we concentrate on root s for the case of τ = 0. The
characteristic function (3) at τ = 0, i.e., g(s, 0), has two
roots [6],

s =
{

1 − K + i
(
� ±

√
�2/4 − K2

)
(K � �/2),

1 − K ±
√

K2 − �2/4 + i� (K � �/2).
(14)

According to these roots, (�, K ) space can be divided into
three regions, as shown in Fig. 4,

�1 := {(�, K ) : K ∈ [0, K4) ∩ [0, 1), � ∈ [0,+∞)},
�2 := �c,

�3 := {(�, K ) : K ∈ (1, K4), � ∈ (2,+∞)}.
The relation between the roots and the regions is described by
the following lemma.

Lemma 4. Consider two roots (14) of characteristic func-
tion (3) at τ = 0. The signs of the real parts of these roots
depend on three regions �1,2,3 in (�, K ) space, as follows. For
�1, the two roots have positive real parts. For �2, one of the
two roots has a positive real part and the other has a negative
real part. For �3, the two roots have negative real parts.

Proof. The real parts of the roots (14) clarify the relation
between the roots at τ = 0 and the regions. Thus, we omit the
proof. �
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FIG. 4. Three regions �1,2,3 in (�, K ) space. For �1 (�3), the
two roots of g(s, 0) have positive (negative) real parts. For �2, one
of the two roots has a positive real part and the other has a negative
real part (see Lemma 4).

Note that in the case of no delay, τ = 0, amplitude death
occurs at �3. This was reported in a previous study [6].

Second, we examine the behavior of root s in the complex
plane for τ � 0. When the delay τ increases from zero, a
root crosses one of points iω++,+−,−−,−+ at one of the cor-
responding delays, τ = τ++,+−,−−,−+. The existence of these
points and the direction of the crossing over the imaginary
axis were clarified in Lemma 2. Furthermore, the delays were
analytically provided in Lemma 3. These results and Lemma 4
lead to the theorem described below.

As a preliminary to presenting the theorem, the numbers of
each critical positive delay τ++,+−,−−,−+ that are lower than a
certain value of τ (i.e., the number of boundary curves existing
on the left side of a certain value of τ in space (τ, K ), as shown
in Fig. 3) are described as follows (see Appendix C for more
details):
for K � 1,

l (a)
++(τ ) :=

⌊
� + √

p+
π

τ − ψ−
2π

⌋
+ 1, (15a)

l (a)
+−(τ ) :=

⌊
� + √

p−
π

τ − ψ+
2π

⌋
+ 1, (15b)

l (a)
−−(τ ) :=

⌊
� − √

p−
π

τ + ψ+
2π

⌋
, (15c)

l (a)
−+(τ ) :=

⌊
� − √

p+
π

τ + ψ−
2π

⌋
, (15d)

for K � 1,

l (b)
++(τ ) :=

⌊
� + √

p+
π

τ + ψ−
2π

⌋
, (16a)

l (b)
+−(τ ) :=

⌊
� + √

p−
π

τ + ψ+
2π

⌋
, (16b)

l (b)
−−(τ ) :=

⌊
� − √

p−
π

τ − ψ+
2π

⌋
+ 1, (16c)
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(see Theorem 1).

l (b)
−+(τ ) :=

⌊
� − √

p+
π

τ − ψ−
2π

⌋
+ 1, (16d)

where 
z� denotes the largest integer that is not greater
than z ∈ R. Furthermore, the delay intervals based on
l (a),(b)
++,+−,−−,−+(τ ) are defined as

	1 := {τ � 0 : l (a)
+−(τ ) + l (a)

−+(τ ) = l (a)
++(τ ) + l (a)

−−(τ ) + 2},
(17a)

	2 := {τ � 0 : l (b)
−+(τ ) = l (b)

++(τ ) + 1}, (17b)

	3 := {τ � 0 : l (b)
+−(τ ) + l (b)

−+(τ ) = l (b)
++(τ ) + l (b)

−−(τ )}. (17c)

In addition, the four regions in space (�, K ) (see Fig. 5) are
given by

�	1 := �d ∩ �K<1, �	2 := �c ∩ �K>1,

�	3 := �d ∩ �K>1, �	inf := �
(1)
	inf

∪ �
(2)
	inf

,

where

�K<1 := {(�, K ) : K ∈ [0, 1), � ∈ [0,+∞)},
�K>1 := {(�, K ) : K ∈ (1,+∞), � ∈ [0,+∞)},
�

(1)
	inf

:= {(�, K ) : K ∈ (K2, K3), � ∈ (�2,�3]},
�

(2)
	inf

:= {(�, K ) : K ∈ (K2, K4), � ∈ (�3,+∞)}.
The above definitions and Lemmas 2, 3, and 4 are summarized
as the following theorem.

Theorem 1. The equilibrium point Z∗
1 = Z∗

2 = 0 of delay-
coupled oscillators (1) is locally stable for τ belonging to the
following intervals:

τ ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	1 for (�, K ) ∈ �	1 ,

	2 for (�, K ) ∈ �	2 ,

	3 for (�, K ) ∈ �	3 ,

[0,+∞) for (�, K ) ∈ �	inf .

Proof. See Appendix D. �
This theorem allows us to design (�, K, τ ) analytically

such that Z∗
1 = Z∗

2 = 0 is locally stable. From regions �	1 ,

�	2 , �	3 , and �	inf illustrated in Fig. 5, we note the follow-
ing.

(i) Without mismatch � = 0 or with small mismatch � ∈
(0,�1) (see �	2 ), amplitude death cannot be induced for K
less than 1.

(ii) With mismatch � > �1 (see �	1 ), amplitude death
can be induced, even by K less than 1 [see Fig. 3(b)].

(iii) For the sum set of �	3 , �	inf , K2, and K3 (i.e., �3),
amplitude death can be induced, even without delay τ = 0
[see Figs. 3(c) and 3(d)].

(iv) For �	inf , amplitude death can be induced with all τ �
0 [see Figs. 3(c) and 3(d)].

Here we comment on the notable observations. For obser-
vation (ii), the mismatch can be useful to reduce the coupling
strength (i.e., the lowest K = 1 → K = K1 < 1). For observa-
tion (iv), amplitude death can be robust against delay τ � 0:
this corresponds to the concept of delay-independent stability
in the field of control theory [51]. In addition, we discuss ob-
servation (iv) from the viewpoint of long-delay systems [55].
For � ∈ (�2,�3) [� ∈ (�3,+∞)], the stability region be-
tween K2 and K3 (K2 and K4) as shown in Fig. 3(c) [Fig. 3(d)]
exists even for sufficiently large delay τ . The reason is de-
scribed below. Note that the stability region corresponds to
the region �	inf , which is a subset of �a ∪ �b (see Figs. 2 and
5). Since crossing points for �a ∪ �b do not exist (see Lemma
2), for �	inf , root s never crosses the imaginary axis for any
delay τ . Thus, the stability at τ = 0 (see Lemma 4 and �3 in
Fig. 4) remains for all τ � 0. In other words, if one wants to
induce amplitude death in long-delay systems, (�, K ) should
be located in �	inf .

Let us consider two numerical examples. For a given mis-
match � (strength K), the delay τ and the strength K (the
mismatch �) are designed according to Lemma 3 and The-
orem 1. As a first example, for given mismatches � = 0.2,
� = 3.0, � = 4.2, and � = 5.5, we design τ and K . The time
delays τ++,+−,−−,−+ described in Lemma 3 and the delay in-
tervals (17) are plotted in space (τ, K ) when K increases from
zero. Note that, instead of plotting the delay intervals (17),
we also easily obtain the stability regions using the following
two pieces of information:3 the directions of root s crossing
the imaginary axis as provided in Lemma 2 and the number
of unstable roots at τ = 0 as given in Lemma 4. Figure 3
shows the critical delays (i.e., black and red curves) and the
intervals (i.e., gray regions) for � = 0.2, � = 3.0, � = 4.2,
and � = 5.5. If τ and K are chosen from the gray regions, it is
guaranteed that Z∗

1 = Z∗
2 = 0 of delay-coupled oscillators (1)

is locally stable. As a second example, for a given strength
K = 1.5, the critical delays τ++,+−,−−,−+ of Lemma 3 and
the intervals (17) are plotted in space (τ,�) when � in-
creases from zero, as shown in Fig. 6. These numerical
examples suggest that the boundary curves and the stability
regions can be easily obtained analytically using Lemma 3 and
Theorem 1.

Here, we turn our attention to attractive examples. Fig-
ures 7(a) and 7(b) show the color plots for the real part of

3This concept, a well-known approach in the control community
[50–53], is used in the proof of Theorem 1 (i.e., Appendix D).
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τ

Δ
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FIG. 6. Boundary curves and stability regions with � = 10 in
coupling parameters space (τ,�) for a given K = 1.5. These curves
and the stability regions are analytically obtained in Lemma 3 and in
Theorem 1, respectively.

the rightmost roots4 of g(s, τ ) with � = 1.9 in (τ, K ) space
for � = 5 and for � = 10, respectively. The areas filled with
color denote the parameter sets in which the real part is nega-
tive: the colored areas agree with the stability regions obtained
in Theorem 1. Furthermore, Theorem 1 and Fig. 5 indicate
that, for � ∈ (�1, 2), the stability regions are separated into
upper regions (i.e., K > 1) and lower regions (i.e., K < 1).
The upper regions can be seen even in the absence of the mis-
match (i.e., � = 0) [6]. In contrast, the lower regions appear
only in the presence of the mismatch. For � = 5, as shown
in Fig. 7(a) (see the color of the inset), the parameter range
of the lower region is narrow compared to the upper region.
However, the stability of the lower region is stronger than that
of the upper region. For � = 10, as shown in Fig. 7(b), the
stability of the lower region is not so weak compared to that of
the upper region. These interesting examples and Theorem 1
suggest that amplitude death can be induced with small K
and with strong stability if �, K , and τ are designed such
that τ ∈ 	1 for (�, K ) ∈ �	1 holds. Note that our results can
analytically provide the stability regions but not the strength
of the stability. Further insight into the analytical treatment of
the strength is left for a future study. Here, from Figs. 3(b) and
7 with the nominal frequency � = 5 or 10, for � ∈ (�1,�2),
we observe that there exist two types of amplitude death is-
lands: the smaller-size islands periodically occur several times
with respect to τ , but the larger-size island occurs only once.
However, for the higher nominal frequency (e.g., � = 20 or
30), we have observed that both islands occur periodically
several times.

V. EXTENSION TO COMPLETE BIPARTITE NETWORKS

This section shows that the analytical results obtained
in the preceding section can be extended to delay-coupled
oscillator networks with complete bipartite topologies (see
Fig. 8).

4The rightmost roots are numerically obtained by the function
eigAM [56] in MATLAB.

FIG. 7. Real part of rightmost roots with � = 1.9 in (τ, K ) space
for (a) � = 5 and (b) � = 10. The white areas represent the param-
eter sets with the positive real part.

Consider the delay-coupled oscillator networks

Ż j (t ) = {1 + i�1 − |Zj (t )|2}Zj (t )

+ K

{
1

n2

n1+n2∑
k=n1+1

Zk (t − τ ) − Zj (t )

}
, (18)

for j = 1, . . . , n1,

Ż j (t ) = {1 + i�2 − |Zj (t )|2}Zj (t )

+ K

{
1

n1

n1∑
k=1

Zk (t − τ ) − Zj (t )

}
, (19)

for j = n1 + 1, . . . , n1 + n2, where n1 � 1 and n2 � 1 are the
numbers of oscillators with frequencies �1 and �2, respec-
tively. The networks (18) and (19) have complete bipartite
topologies, i.e., every oscillator with �1 is connected to every
oscillator with �2, as illustrated in Fig. 8.

The oscillator networks have the equilibrium point

Z∗
j = 0,∀ j ∈ {1, . . . , n1 + n2}. (20)
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FIG. 8. A sketch of delay-coupled oscillator networks with a
complete bipartite topology: every oscillator with �1 (1, . . . , n1) is
connected to every oscillator with �2 (1, . . . , n2).

The linearized dynamics of the networks at equilibrium point
(20),[

ż1(t )

ż2(t )

]
=

[
a1In1 0

0 a2In2

][
z1(t )

z2(t )

]

+
[

0 (K/n2)1n1×n2

(K/n1)1n2×n1 0

][
z1(t−τ )

z2(t−τ )

]
,

(21)
has the parameters

a1,2 := 1 − K + i�1,2. (22)
The state variables z1(t ) := [z1(t ) · · · zn1 (t )]T and z2(t ) :=
[zn1+1(t ) · · · zn1+n2 (t )]T consist of small perturbations
around equilibrium point (20), z j (t ) := Zj (t ) − Z∗

j , ∀ j ∈
{1, . . . , n1 + n2}. The symbol 1n×m denotes an n × m ones
matrix. The stability of linear system (21), which is equivalent
to the local stability of equilibrium point (20) of the networks,
is governed by the characteristic function

G(s) = det

[
(s − a1)In1 −(K/n2)e−sτ 1n1×n2

−(K/n1)e−sτ 1n2×n1 (s − a2)In2

]
. (23)

The function (23) and Theorem 1 yield the following simple
result.

Corollary 1. Equilibrium point (20) of delay-coupled os-
cillator networks (18) and (19) under n1 + n2 � 3 is locally
stable for τ belonging to the following intervals:

τ ∈

⎧⎪⎨
⎪⎩

	2 for (�, K ) ∈ �	2 ,

	3 for (�, K ) ∈ �	3 ,

[0,+∞) for (�, K ) ∈ �	inf .

Proof. Some facts on determinants [57] can be used to
simplify function (23) as follows:

G(s) = (s − a1)n1

det

[
(s − a2)In2 − K2e−2sτ

n1n2(s − a1)
1n2×n1 In1 1n1×n2

]

= (s − a1)n1 (s − a2)n2

det

[
In2 − K2e−2sτ

n2(s − a1)(s − a2)
1n2×n2

]

0 20 40 60 80
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(i) (ii) (iii) (iv)

FIG. 9. Time series data of Re[Zj (t )] on complete bipartite
topologies (� = 10, � = 3.0, τ = 0.65, K = 1.30). The numbers of
oscillators with �1 and �2 are changed over time as shown at the
top.

= (s − a1)n1 (s − a2)n2

{
1 − K2e−2sτ

(s − a1)(s − a2)

}

= (s − a1)n1−1(s − a2)n2−1g(s). (24)

The analytical results for function g(s) given by Eq. (3) were
provided in the preceding section. Function (s − a1)n1−1(s −
a2)n2−1 with Eq. (22) under n1 + n2 � 3 has at least one of
the roots s = 1 − K + i�1,2. These roots are stable if and
only if K > 1. As a consequence, Theorem 1 is not valid for
the region with K � 1, which is the sum of �	1 and K = 1.
However, the other regions are still valid for networks (18)
and (19).

This corollary indicates that, except for region �	1 , The-
orem 1 can be used to design the coupling parameters for
inducing amplitude death in networks (18) and (19). In ad-
dition, note that the boundary curves τ++,+−,−−,−+ provided
in Lemma 3 are still valid, because they are based on g(s) in-
cluded in Eq. (24). It should be noted that Corollary 1 does not
depend on the number of oscillators under n1 + n2 � 3. Thus,
if the coupling parameters are designed with this corollary,
then amplitude death can remain, even when some oscillators
are deleted or added under n1 + n2 � 3.

Let us demonstrate a numerical example of delay-coupled
oscillator networks with complete bipartite topologies. In or-
der to confirm Corollary 1 on numerical simulations, this
example deals with the networks, in which some oscillators
are deleted or added (i.e., n1 and n2 are changed with time).
The nominal frequency is fixed at � = 10 and the frequency
mismatch is given as � = 3.0. The delays τ++,+−,−−,−+ for
K > 1 in Lemma 3 and the intervals 	2,3 are plotted in space
(τ, K ) with an increase in K from 1. These plots can be seen
in Fig. 3(b) for K > 1. For K < 1, Corollary 1 shows that
amplitude death never occurs in the networks. The coupling
parameters are set to τ = 0.65 and K = 1.30 in this example.
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Figure 9 shows time series data of the oscillator network. As
shown at the top of Fig. 9, the numbers of oscillators with �1

and �2 are varied in time as follows: for (i) t ∈ [0, 5), n1 = 0
and n2 = 0 (the oscillators are uncoupled), for (ii) t ∈ [5, 30),
n1 = 2 and n2 = 3, for (iii) t ∈ [30, 55), n1 = 2 and n2 = 2,
and for (iv) t ∈ [55, 80], n1 = 3 and n2 = 2. The color of the
time series data corresponds to that of the oscillators shown at
the top. Even if n1 and n2 are changed with time, amplitude
death is maintained, while deleted oscillators from the net-
work [i.e., oscillator 3 in (ii) and (iii), and oscillator 6 in (iii)
and (iv)] behave in an oscillatory manner. These data agree
with Corollary 1.

VI. DISCUSSION

This section briefly clarifies the relation of the present
paper to related previous studies and discusses the possibility
of using our analytical results for thermoacoustic systems.

We dealt with the delay-induced amplitude death in oscil-
lators that have frequency mismatch, but do not have other
mismatches. The influences of several mismatches, except
for frequency mismatch, on amplitude death were investi-
gated. Thakur, Sharma, and Sen have considered oscillator
networks with amplitude mismatch: the networks consist of
inactive oscillators with zero amplitude and active oscillators
with nonzero amplitude [58]. Zou et al. focused on oscilla-
tors with coupling-strength mismatch: the coupling strength
depends on the coupling direction [59,60]. Furthermore, the
following oscillators with delay time mismatches were con-
sidered: globally coupled oscillators, in which some of the
oscillators are coupled by a delay connection and other oscil-
lators are coupled by a nondelay connection [22]; Cartesian
product oscillator networks consisting of two subnetworks,
each of which has a different delay [61]; and tree-graph os-
cillator networks having asymmetric connection delays [47].
These previous studies on delay-induced amplitude death did
not deal with frequency mismatch. In contrast, Zou, Zhan,
and Kurths investigated the effect of frequency mismatch on
amplitude death, but time delays were not included in connec-
tions (i.e., amplitude death induced by nondelay connections)
[62]. In conclusion, the analytical treatment of amplitude
death both with frequency mismatch and with delayed cou-
pling remained an open research problem.

In the present paper, we analytically investigated ampli-
tude death both with frequency mismatch and with delayed
coupling. Frequency mismatch is one of the most important
and fundamental mismatches. Delayed coupling is the natural
diffusive connection with finite-speed propagation of infor-
mation. Therefore, our analytical results can contribute to
the development of the stability analysis reported in previous
studies on delay-induced amplitude death. In addition, our
analytical results may provide useful knowledge of how to
make positive use of frequency mismatch for the following
purposes: (i) enlargement of the stability regions, (ii) reduc-
tion of the coupling strength [see the stability regions in
Figs. 3(b) and 7], or (iii) increase of the delay time [see
also the stability regions in Figs. 3(b) and 7]. Such knowl-
edge might be applied to suppress undesired oscillations that
emerge in thermoacoustic systems. For (i), the enlargement
of the stability regions is useful for systems to be robust

against parameter shifts and errors. For (ii), the reduction
of the coupling strength suggests that the diameter of the
pipes or tubes for connecting thermoacoustic oscillators can
be reduced. For (iii), the increase of the delay time means
that the length of these pipes or tubes can be extended. As
it has been well known that amplitude death often occurs with
a strong coupling strength and short delays, the features in
(ii) and (iii) could contribute to a wide range of choices for
diameter and length.

The following are the limitations of the present paper.
Although we were able to analytically obtain the effects of
frequency mismatch on the delay-induced amplitude death,
these results were valid only for a pair of oscillators and for
oscillator networks with complete bipartite topologies. For
our results to be applied to various situations, future research
should extend our results to oscillator networks with other
topologies, such as ring, path, and scale-free topologies. On
the other hand, it is interesting to analytically derive the sta-
bility boundaries and regions in (�, K ) space for a fixed τ .
However, the key factor of the present paper, which is based
on the four crossing points corresponding to the critical delay
times (i.e., Lemmas 2 and 3), cannot be directly used to derive
them in (�, K ) space due to the fixity of τ .

VII. CONCLUSIONS

The present paper has analytically dealt with the stability
of the equilibrium point within a pair of Stuart-Landau os-
cillators coupled by a delay connection. The relation of the
frequency mismatch and the coupling strength with the stabi-
lizing and destabilizing points located on the imaginary axis
was revealed. The directions of the roots crossing these points
and the delays at these points were analytically provided.
These analytical results and delays that are shorter than a
certain delay permit the design of the coupling parameters and
frequency mismatch for amplitude death. Furthermore, it was
demonstrated that we can induce amplitude death with strong
stability by weak coupling if the frequency mismatch and the
delay time are appropriately designed. In addition, we showed
that the parts of analytical results for the pair of oscillators
can be extended to delay-coupled oscillator networks with
complete bipartite topologies.
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APPENDIX A: PROOF OF LEMMA 1

This proof deals with the following three conditions: (i)
q(�, K ) > 0, (ii) p+(�, K ) > 0, and (iii) p−(�, K ) > 0. For
condition (i), we can rewrite q(�, K ) > 0 as

(K − K−1)(K − K1)(K − K2)(K − K3) > 0, (A1)

where K−1 := −(� + √
�2 + 4�)/2. We have nonpositive

real K−1 � 0 for � � 0, non-negative real K1 − 0 for � �
0, positive real K2,3 > 0 for � � �2, and nonreal K2,3 for
� < �2. Then, a property of the left-hand side of inequality
(A1), a polynomial in K of degree 4, allows us to see that the
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condition for (�, K ) to satisfy inequality (A1) is described by
Eq. (8).

For condition (ii), we deal with p+(�, K ) > 0, which is
equivalent to

(1 − K )2 − �2

4
<

√
K4 − (1 − K )2�2, (A2)

under q(�, K ) > 0. Let us consider the following two cases:
(ii-a) the left-hand side of inequality (A2) is negative or
zero (i.e., 1 − �/2 � K � 1 + �/2, which corresponds to
the closed region bounded by the two red lines illustrated
in Fig. 2); (ii-b) it is positive or zero (i.e., K � 1 − �/2 or
K � 1 + �/2, which corresponds to the closed region under
the lower red line or the closed region over the upper red line).
For case (ii-a), inequality (A2) (i.e., p+(�, K ) > 0) always
holds. This is because its right-hand side is positive real for all
(�, K ) satisfying q(�, K ) > 0 [i.e., Eq. (8)]. Then, for case
(ii-a) (i.e., the closed region bounded by the two red lines),
the necessary and sufficient condition for (�, K ) to satisfy
p+(�, K ) > 0 is described by Eq. (8). For case (ii-b) with
q(�, K ) > 0, inequality (A2) can be written as f (�, K ) > 0,
where

f (�, K ) := (K − K4)
(
2K2 − 2K + 1 + �2/4

)
. (A3)

The second factor of the right-hand side of Eq. (A3) is positive
for all (�, K ). Then, f (�, K ) > 0 is equivalent to

K > K4.

Let us reconsider case (ii-b) for K � 1 − �/2 and for K �
1 + �/2. For K � 1 − �/2 (see the region below the lower
red line), it is easily seen that, with � ∈ [0,�1], there exists K
such that both f (�, K ) > 0 and K � 1 − �/2 hold. For K �
1 + �/2 (see the region above the upper red line), we see that,
with � ∈ [�3,+∞), there exists K such that both f (�, K ) >

0 and K � 1 + �/2 hold. As a result, we can say that, for
case (ii-b), the condition for (�, K ) to satisfy f (�, K ) > 0 is
described by K > K4 with � ∈ [0,�1] and � ∈ [�3,+∞).
These discussions are summarized by condition (9).

For condition (iii), p−(�, K ) > 0, which is equivalent to

�2

4
− (1 − K )2 >

√
K4 − (1 − K )2�2, (A4)

is dealt with under q(�, K ) > 0. The following two cases
are considered: (iii-a) the left-hand side of inequality (A4)
is negative (i.e., K < 1 − �/2 or K > 1 + �/2, which cor-
responds to the regions below the lower red line or above
the upper red line illustrated in Fig. 2); (iii-b) it is positive
or zero (i.e., 1 − �/2 � K � 1 + �/2, which corresponds to
the closed region bounded by the two red lines). For case (iii-
a), inequality (A4) [i.e., p−(�, K ) > 0] never holds, because
the right-hand side is positive real for all (�, K ) satisfying
q(�, K ) > 0 [i.e., Eq. (8)]. Thus, there does not exist (�, K )
satisfying inequality (A4) outside the closed region bounded
by the two red lines. For case (iii-b) (i.e., the closed region
bounded by the two red lines) with q(�, K ) > 0, inequality
(A4) can be written as f (�, K ) < 0. The second factor of the
right-hand side of Eq. (A3) is positive for all (�, K ). Then,
f (�, K ) < 0 is equivalent to

K < K4. (A5)

It is straightforward to see that, with � ∈ [�1,�3], there
exists K such that both inequalities (A5) and 1 − �/2 �
K � 1 + �/2 hold. Thus, the condition for (�, K ) to satisfy
f (�, K ) < 0 is K < K4 and q(�, K ) > 0 with � ∈ [�1,�3].
The discussions on case (iii-b) are summarized by condition
(10).

APPENDIX B: PROOF OF LEMMA 3

This proof analytically derives the critical delay τ++ sat-
isfying Eq. (13) [i.e., s(τ++) = iω++]. Substituting τ = τ++
and ω = ω++ defined in Eq. (5) into Eq. (4a) yields

2ω++τ++ =
{

2lπ + ψ−,

2lπ + 2π − ψ−,
(B1a)

(B1b)

for l ∈ Z+
0 . Furthermore, ω++ and τ++ satisfy Eq. (4b),

2(1 − K )(ω++ − �) = K2 sin 2ω++τ++. (B2)

For K � 1 (K � 1), the sign of the left-hand side of Eq. (B2)
allows us to see that Eq. (B1a) [Eq. (B1b)] holds, but
Eq. (B1b) [Eq. (B1a)] does not hold. As a result, τ++ in
Lemma 3 can be given by Eq. (B1a) for K � 1 and Eq. (B1b)
for K � 1 with ω++ := � + √

p+ defined in Eq. (5). A sim-
ilar procedure is valid for the other critical delays τ+−,−−,−+.
As such, the derivations for the other delays are omitted in this
proof.

APPENDIX C: DERIVATIONS OF THE NUMBERS
OF CRITICAL DELAYS

Let us focus on the derivation of l (a)
++(τ ) in Eq. (15a). The

largest integer l satisfying τ++(l ) < τ is described by

l = lmax :=
⌊

� + √
p+

π
τ − ψ−

2π

⌋
.

Since τ++(−1) < 0 and τ++(0) > 0 hold, we see that the left-
most positive critical delay in (τ, K ) space is τ++(0). Hence,
the critical positive delays that are less than a certain value of
τ are given by

τ++(l ), l ∈ {0, . . . , lmax}.
As a result, the number of delays is described by Eq. (15a). A
similar derivation can be used for the other numbers of delays
in Eqs. (15) and (16).

APPENDIX D: PROOF OF THEOREM 1

This proof considers the behavior of the roots of the charac-
teristic function g(s, τ ) when τ increases from zero. We now
focus on the three regions, �1,2,3, illustrated in Fig. 4.

First, for the region �2 (=�c), Lemma 4 shows that g(s, 0)
at τ = 0 has one root with a positive real part and another root
with a negative real part. In addition, for region �c (=�2),
Lemma 2 shows that, when τ increases from zero, the root
with the positive real part passes the stabilizing point iω−+ at
τ = τ−+ from right to left and then returns to the right via the
destabilizing point iω++ at τ = τ++. Here, we focus on the
numbers of positive τ−+ and τ++ that are lower than a certain
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value of τ . It is easy to see that, if the number of positive
τ−+ [i.e., l (a)

−+(τ ) or l (b)
−+(τ )] is equal to the sum of the number

of unstable roots at τ = 0 (i.e., 1) and the number of τ++
[i.e., l (a)

++(τ ) or l (b)
++(τ )], then we do not have unstable roots

at the specific value of τ . Note that, for K � 1, there does not
exist τ satisfying this relation, because the leftmost positive
τ−+ and τ++ satisfy τ−+(1) > τ++(0) and the periods of τ−+
and τ++ have the relation π/(� − √

p+) > π/(� + √
p+).

Consequently, note that g(s, τ ) for (�, K ) ∈ �	2 , which is the
product set of �c (=�2) and �K>1, is stable (i.e., Z∗

1 = Z∗
2 =

0 is locally stable) for τ belonging to 	2, which is the set of τ

satisfying this relation.
Second, for the region �1, we see from Lemmas 4 and 2

that g(s, 0) has two unstable roots. For region �d, there exist
stabilizing points iω−+,+− and destabilizing points iω++,−−,
but for �a,b, no points exist. Hence, we only have to con-
sider region �	1 , which is the product set of �d and �1.
This set can be written as �d ∩ �K<1. Now we focus on

the numbers of positive τ++,+−,−−,−+ [i.e., l (a)
++,+−,−−,−+(τ )]

that are lower than a certain value of τ . If the sum of the
numbers of positive τ+− and τ−+ [i.e., l (a)

+−(τ ) + l (a)
−+(τ )] is

equal to the sum of the number of unstable roots at τ =
0 (i.e., 2) and the number of positive τ++ and τ−− [i.e.,
l (a)
++(τ ) + l (a)

−−(τ )], then unstable roots at a specific value of
τ do not exist. As a result, g(s, τ ) for (�, K ) ∈ �	1 is stable
for τ belonging to 	1, which is the set of τ satisfying this
relation.

Third, for region �3, Lemma 4 shows that g(s, 0) has
two stable roots. From Lemma 2, we see that, for �	inf in-
cluded in �3, stabilizing or destabilizing points do not exist.
Consequently, for �	inf , the rightmost roots never pass the
imaginary axis for any τ ∈ [0,+∞). On the other hand, for
�	3 included in �3, Lemma 2 shows that there exist stabi-
lizing points iω−+,+− and destabilizing points iω++,−−. It is
straightforward to see that a similar approach to region �	1

can be used to obtain the intervals for �	3 .
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