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Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model
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We study continuations of topological edge states in the Su-Schrieffer-Heeger model with on-site cubic
(Kerr) nonlinearity, which is a 1D nonlinear photonic topological insulator (TI). Based on the topology of the
underlying spatial dynamical system, we establish the existence of nonlinear edge states (edge solitons) for all
positive energies in the topological band gap. We discover that these edge solitons are stable at any energy
when the ratio between the weak and strong couplings is below a critical value. Above the critical coupling
ratio, there are energy intervals where the edge solitons experience an oscillatory instability. Though our paper
focuses on a photonic system, we also discuss the broader relevance of our methods and results to 1D nonlinear
mechanical TIs.
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I. INTRODUCTION

Topological insulators (TIs) are exotic materials that be-
have like an insulator in the bulk and a conductor on the edge
[1–3]. Prototypical TIs exhibit nontrivial topology in their
bulk wave functions, which guarantees the existence of robust
edge states in the bulk band gap(s) [4]. Though TIs were
originally proposed in 2D and subsequently generalized to
3D, the simplest TI already exists in 1D as the Su-Schrieffer-
Heeger (SSH) model [5]. Here we consider an orbital version
of the SSH model on a 1D lattice with two sites per unit cell
and different intra- (t) and intercell (t ′) hopping amplitudes
[6]; see Fig. 1. This model is described by the following
Hamiltonian with chiral symmetry:

Ĥ =
∞∑
j=1

t â j b̂
†
j + t ′â†

j+1b̂ j + H.c., (1)

where â†
j (b̂†

j) is the creation operator on the site a j (b j).
A standard calculation shows that the bulk wave functions
exhibit a phase � that is a function of the momentum k,
and the bulk spectrum consists of two bands ±(|t − t ′|, t + t ′)
separated by a gap. The winding number W of the phase
�(k) over the Brillouin zone can be shown to be a topological
invariant that is trivial (W = 0) for t > t ′ and nontrivial (W =
1) for t < t ′ [7]. The principle of bulk-edge correspondence
then guarantees that, in the latter case only, there exists a
topologically protected edge state in the semi-infinite chain in
Fig. 1 that terminates at a1. This edge state exists in the bulk
band gap with zero energy, and has an exponentially decaying
envelope |a j | ∼ � j and |b j | = 0, where � = t/t ′. Note that
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the chiral symmetry of the Hamiltonian in Eq. (1) is essential
for the existence of the winding number W as a topological
invariant [4].

The principles underlying quantum TIs have been fruitfully
adapted to photonic (electromagnetic) [8,9] and phononic
(mechanical) [10,11] systems. The governing differential
equations of these systems often exhibit nonlinearity, which
can interact with topology to create new dynamical effects. A
prominent feature of such nonlinear TIs is localized states
that bifurcate from the topologically protected edge state with
zero energy in the linear limit. Hereafter these are referred
to as topological edge solitons and will be the focus of this
paper. Though photonic TIs only gained popularity in recent
years, there are earlier studies on 1D waveguide arrays with
alternating spacings [12,13]. This setup is essentially identical
to the SSH model, but the topological properties of such
systems remain largely unexplored in these earlier studies.
In Ref. [12], bulk gap solitons are found in the SSH model
with on-site cubic (Kerr) nonlinearity, and their stability is
analyzed systematically. In Ref. [13], both bulk and surface
(edge) gap solitons are found in the SSH model with on-site
saturable nonlinearity, but there are no explicit discussions of
topological edge solitons.

More recently, there have been several proposals to in-
clude intersite or on-site nonlinearity in the SSH model,
with the latter considered particularly relevant to photonics
[9]. In Refs. [14,15], self-induced topological transitions are
achieved in SSH models whose intercell coupling depends
on the local dimer energy. In Ref. [16], topological gap soli-
tons with nontrivial chirality are found in the SSH model
with on-site cubic nonlinearity. This model reduces to the
nonlinear Dirac (NLD) model in the continuum limit, where
topological edge states and gap solitons are found to share
a common origin [17]. In the presence of chiral symme-
try breaking, this model is found to exhibit rich topological
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FIG. 1. Schematic representation of the semi-infinite one-
dimensional lattice in the SSH model.

physics that entail various edge and bulk solitons [18]. Topo-
logical gap solitons are also found in a mechanical SSH
model with on-site cubic nonlinearity [19] and a photonic SSH
model with on-site saturable nonlinearity [20]. Other non-
linearities also find prominent applications, including topo-
logical lasers [21,22] and topological circuits [23,24] among
others.

The SSH model with on-site Kerr nonlinearity can be
regarded as the prototypical model for realizing nonlinear
topological localized states. Here we explain the origin of
topological gap solitons in this model, including both bulk
and edge solitons, based on the phase space geometry of the
underlying discrete spatial dynamical system (DS). We use
numerical continuation to obtain the complete set of topolog-
ical edge solitons, and compute their stability to reveal the
inherent limit of energy storage on the edge. We also present
analytical approximations in the small coupling ratio limit and
the continuum limit. Our aim is to characterize edge solitons
systematically, since only particular instances of this solution
set have been reported to our knowledge [17,18]. Our method
can be generalized to many other nonlinear TIs to expand their
tunability through the discovery of more solutions.

II. SPATIAL DYNAMICS

The governing equation of the SSH model Eq. (1) with
Kerr nonlinearity is

iȧ j = tb j + t ′b j−1 + |a j |2a j,

iḃ j = ta j + t ′a j+1 + |b j |2b j, (2)

j ∈ Z+, b0 = 0, and �̇ denotes derivative in the propagation
distance (time) z. By scaling, we have taken the nonlinear
coefficient to be 1 and will take t ′ = 1 in our numerical
computations below. Equation (2) conserves the power P =∑

j |a j |2 + |b j |2 and the Hamiltonian

H =
∑

j

t (a∗
j b j + b∗

ja j ) + t ′(a∗
j b j−1 + b∗

ja j+1)

+ 1

2
(|a j |4 + |b j |4).

Hereafter we assume t < t ′ such that the linear limit of Eq. (2)
is topologically nontrivial.

We look for standing waves of Eq. (2) in the form of
a j = Aj exp(−iEz), b j = Bj exp(−iEz), where E is the prop-
agation constant (energy). Assuming that Aj and Bj are both
real without loss of generality [25], Eq. (2) reduces to the

following 2D invertible map in j:

EAj = tB j + t ′Bj−1 + A3
j , EBj = tA j + t ′Aj+1 + B3

j . (3)

Due to Hermiticity, Eq. (3) is reversible under the trans-
formation R : ( j, A, B) → (− j, B, A), which implies that its
phase portrait in the (A, B) plane is symmetric with respect to
the section fix(R) := {(A, B)|A = B} [26,27]. In the band gap
|E | < t ′ − t , the only equilibrium on the fix(R) section is the
origin O : (0, 0) with eigenvalues

λ1 = − tan(θ/2), λ2 = − cot(θ/2), (4)

and the corresponding eigenvectors

v1 = (− cot(φ/2), 1), v2 = (− tan(φ/2), 1), (5)

where

θ = arcsin

(
2t ′t

t ′2 + t2 − E2

)
,

φ = arcsin

(
2tE

t ′2 − t2 − E2

)
.

Since θ ∈ (0, π/2), the equilibrium O is a saddle whose stable
and unstable eigenspaces are, respectively, defined by (λ1, v1)
and (λ2, v2). The polar angle −φ/2 of v1 lies in (−π/4, 0) for
E ∈ (0, t ′ − t ) and (0, π/4) for E ∈ (t − t ′, 0).

The origins of both bulk and edge solitons can be explained
in the (A, B) phase plane. In Fig. 2, we show the stable
manifold W s and the unstable manifold W u of the saddle O at
E < 0 (top panel) and E > 0 (bottom panel). A bulk soliton is
a reversible homoclinic orbit consisting of the backward and
forward iterates of a transverse intersection between W s(O)
and fix(R) [28], while an edge soliton consists of the forward
iterates of a transverse intersection between W s(O) and the
section B = 0 that represents the boundary condition. For
both E < 0 and E > 0, W s(O) emanates from O along the
v1 direction and bends toward fix(R) to form a bulk soli-
ton represented by B. For E > 0 only, B = 0 is sandwiched
between v1 and fix(R), so W s(O) crosses B = 0 to form an
edge soliton represented by E . This sandwiching property
provides a simple topological criterion for the existence of
edge solitons in nonlinear TIs in general.

We note that for E > 0, although the bulk soliton B and the
edge soliton E belong to the same invariant manifold W s(O),
their spatial profiles generally do not coincide except in the
continuum limit [17]. We also note that for E < 0, W s(O)
wiggles after crossing fix(R) at B and intersects fix(R) and
B = 0 to form additional bulk and edge solitons, some of
which have been discovered computationally in Ref. [18].
Finally, we note that Eq. (2) with t ′ = t is simply the fo-
cusing discrete nonlinear Schrödinger (NLS) equation [29].
Therefore, our analysis shows that topologisation of classical
models in nonlinear waves can greatly enrich their solution
sets.

III. NUMERICAL CONTINUATION

Hereafter we focus on the primary family of edge solitons
E that bifurcate toward E > 0. We can use numerical con-
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FIG. 2. Phase portrait of the 2D map given by Eq. (3) at t = 0.6
and (top panel) E = −0.2; (bottom panel) E = 0.2. The solid curves
are the stable manifold W s(O) and the unstable manifold W u(O), the
dashed line is the symmetry section fix(R), the dot-dashed line is the
boundary section B = 0, and the arrow is the stable eigenvector v1.
The points B and E , respectively, represent a bulk soliton and an edge
soliton.

tinuation to obtain these solutions, which essentially tracks
E as E varies without explicitly computing W s(O). Once
a solution is found, its linear stability is computed through
solving the corresponding eigenvalue problem obtained from
substituting aj = [Aj + εâ j exp(λz)] exp(−iEz), b j = [Bj +
εb̂ j exp(λz)] exp(−iEz) and linearizing about ε = 0. In Fig. 3,
we present the power P for varying E with t = 0.1. An ex-
ample profile and its spectrum in the complex plane are also
shown. As E increases from 0 to t ′ − t , the stable spatial
eigenvalue λ1 in Eq. (4) decreases from −t/t ′ to −1. This
implies that the edge soliton decays more slowly in space as E
increases and becomes a bulk state as E tends to t ′ − t , where
the solution branch terminates as shown in Fig. 3. Here we
note the different conventions that we have used for defining

FIG. 3. Power P versus energy E of edge solitons with t = 0.1.
The solid and dashed curves are from numerics and approximation
(7), respectively. The insets show the solution profile and its spectrum
for E = 0.5 [lines are from numerics, and circles are from approxi-
mation (6)].

the spectrum: the spectrum of an edge soliton consists of
growth rates λ, while the spectrum of the Hamiltonian Ĥ in
Eq. (1) consists of angular frequencies; these are consistent
with the standard conventions in the nonlinear waves and
quantum physics literature. Thus, in the limit E → 0, the
spectrum of the edge soliton reduces to i times the spectrum
of the Hamiltonian Ĥ in Eq. (1).

We also study the effect of varying the coupling t and the
energy E in general. For every t ∈ (0, t ′) and E ∈ (0, t ′ − t ),
there exists a unique edge soliton. We show in Fig. 4 the
critical spectrum of these edge solitons in the (t, E ) plane,
defined as the maximum of the real part of the spectrum. The

FIG. 4. The maximum of the real part of the spectrum of edge
solitons in the (t, E ) plane. Region with nonzero spectrum corre-
sponds to unstable solutions. Edge solitons only exist below the
dashed white line E = t ′ − t . The inset shows the spectrum of an
edge soliton at E = 0.5 and t = 0.43, i.e., it suffers oscillatory
instability.
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FIG. 5. Time dynamics of an edge soliton corresponding to the
inset of Fig. 4, i.e., t = 0.43. Shown is the intensity |aj |2 (top panel)
and |bj |2 (bottom panel). The oscillatory nature of the instability is
eminent, where radiation in the form of a localized packet traveling
toward the bulk can be clearly seen.

edge soliton is stable for all E when t < tc ≈ 0.35, but be-
comes unstable over certain interval(s) of E when t > tc. The
nature of the instability is oscillatory as seen in the inset of
Fig. 4. The critical eigenvalue appears following the collision
of two eigenvalues that bifurcate from the lower edge of the
uppermost band and the upper edge of the next-uppermost
one. This is typical of the oscillatory instability appearing in
gap solitons [30,31]. As t increases, we obtain more and more
unstable eigenvalues appearing.

We simulate the typical dynamics of the oscillatory in-
stability. Using an exact edge soliton as the initial condition
with random perturbation that is proportional to the field
amplitude, we show the time evolution of Eq. (2) in Fig. 5.

At t = 0.43, the initial edge soliton with E = 0.5, which is
inside the unstable region in Fig. 4, gradually loses energy by
releasing a localized wave packet into the bulk, and eventually
evolves into a stable edge soliton with smaller power, which is
just outside the unstable region in Fig. 4. This release process
approximately in 100 < z < 150 features temporal oscilla-
tions with an angular frequency of about 1.08, consistent with
the imaginary part of the unstable eigenvalues in the inset
of Fig. 4. This process is almost the exact opposite of the
mechanism discussed in Refs. [17,32], where a bulk soliton
is launched toward the edge to increase the energy of an edge
soliton. Our result implies that such proposals to couple the
bulk and edge modes are robust only when the edge soliton is
stable. We also note that a similar instability is observed using
a different realization of the Kerr nonlinearity in coupled fiber
loops that implement a discrete 1D quantum walk [33].

IV. ANALYTICAL APPROXIMATIONS

For the coupling ratio |�| 	 1, we can approximate the
edge state by

Aj ≈ Ã(−L) j−1, Bj ≈ B̃(−L) j, (6)

using the assumption that only the equation for a1 is nonlinear
and keeping the remaining sites linear,

L = t2 + t ′2 − E2 −
√

E4 − 2E2(t2 + t ′2) + (t2 − t ′2)2

2tt ′ ,

Ã =
√

E , B̃ = (t ′ − t/L)/
√

E .

In the limit E → 0, we can calculate that L → � = t/t ′.
Using (6), the power is given by

P ≈ (Ã2 + B̃2L2)/(1 − L2). (7)

This compares well with the numerics as seen in Fig. 3.
The stability in the limit � → 0 can be established using

perturbation theory, exploiting dimers of the system; see a
similar problem considered in, e.g., Ref. [34]. The method,
that has been standard by now, can be applied here to show
that in that limit the edge soliton is stable.

On the other hand, near the Dirac point (t, E ) = (t ′, 0),
the edge soliton becomes slowly varying, i.e., we have
the continuum limit [35]. In that case, denoting � = a, b,
we introduce a small parameter ε and take: t = t ′ − E −
εδ, � j = (−1) j√ε�̂ j exp(−iEz), �̂ j = �̂( jε) = �̂(x) such
that �̂ j±1 = �̂(x ± ε) = �̂(x) ± ε�̂x + O(ε2), E = εÊ , and
a slow timescale ẑ = εz. After dropping the hats, Eq. (2)
becomes the NLD equation [36]

iȧ + Ea = (−E − δ)b + t ′bx + |a|2a,

iḃ + Eb = (−E − δ)a − t ′ax + |b|2b,
(8)

with boundary conditions b(0) = 0 and limx→∞ a(x) = 0.
As shown in Ref. [17], Eq. (8) admits an exact analytical

solution on the infinite domain that describes traveling bulk
solitons. At zero velocity, the stationary bulk soliton has a
spatial orbit that passes through b = 0, so part of this orbit
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FIG. 6. Top panel: Bulk soliton of (8) at E = 0.5 and δ = 0.1.
Solid and dashed lines are the fields a and b, respectively. The part
of the profile that makes an edge soliton is highlighted as thick
lines. Bottom panel: Spectrum of the edge soliton in the complex
plane, showing that it is highly unstable in the sense that there is a
continuous unstable spectrum.

describes a stationary edge soliton. An example of stationary
profiles of bulk and edge solitons is plotted in Fig. 6(a); note
that the bulk soliton can be identified as a reversible homo-
clinic orbit invariant under (x, a, b) → (−x, b, a) [28].

The stability of solitons in the NLD Eq. (8) is harder
to analyze than in the NLS equation due to the absence
of the Vakhitov-Kolokolov criterion [37]. This task can be
challenging even numerically because simple discretization
(finite difference) of the eigenvalue problem can generate
a large number of spurious unstable eigenvalues; see, e.g.,
Refs. [30,38] for the stability of gap solitons in a similar
system. Delicate methods, such as the Chebyshev interpo-
lation method [39] and Evans function techniques [31], can
be used to capture the actual instability. Here, we have used
the Chebyshev method to solve the eigenvalue problem cor-
responding to Eq. (8). We show the spectrum in Fig. 6(b),
where we obtain that the edge soliton in Fig. 6(a) experiences

an oscillatory instability, which is consistent with the top left
corner of Fig. 4.

V. COMPARISON WITH MECHANICAL SYSTEMS

In view of recent work on edge and/or interface solitons
in 1D nonlinear mechanical TIs [19,40], we compare our
1D nonlinear photonic TI with its mechanical counterpart,
namely, the mechanical SSH model with on-site cubic non-
linearity [19]. The key difference is that a photonic system
can be reduced to a spatial DS using a simple ansatz with
a single harmonic in time (with angular frequency E in our
notation) even for strong nonlinearity, but this is generally
impossible in a mechanical system except for weak nonlin-
earity. In particular, edge solitons in Ref. [19] (referred to
as nonlinear normal modes in Ref. [40]) generally consist of
infinitely many harmonics in time.

Still, the model in Ref. [19] can be viewed as a spatial DS
for the Fourier components in time on each lattice site. After
a Galerkin truncation that keeps only the lowest harmonic,
the resulting spatial DS is similar to Eq. (3) in our model.
Without this truncation, the spatial DS in Ref. [19] is higher
dimensional and therefore exhibits bifurcation diagrams dif-
ferent from Eq. (3) in our model. Most notably, the branches
of edge solitons in Figs. 2 and 3 of Ref. [19] penetrate into
the bulk bands, while edge solitons in our model exist strictly
within the band gap.

Though the concept of spectral stability of nonlinear
waves is similar in photonic and mechanical systems, the
details of the analyses are different. The stability of an edge
soliton in our model depends on the eigenvalues of a time-
independent linear operator, while the stability of an edge
soliton in Ref. [19] depends on the Floquet multipliers of a
time-periodic linear operator. Interestingly, the stability trend
is exactly opposite between our model and the model in
Ref. [19] with stiffening nonlinearity: edge solitons in our
model are generally stable below a critical energy (frequency),
while edge solitons in Ref. [19] are generally stable above a
critical energy (frequency) as shown in Fig. 3 of Ref. [19].
Thus, a natural question is whether edge solitons can be sta-
bilized for all energies (frequencies) using a hybrid between
these two models.

VI. CONCLUSION AND OUTLOOK

We have studied the existence and stability of topological
edge solitons in the SSH model with on-site Kerr nonlinearity.
The phase space topology implies that edge solitons exist for
all positive energies in the topological band gap. These edge
solitons are completely stable below a critical coupling ratio,
but can experience an oscillatory instability above it. Our
results are pertinent to photonic experiments using, for ex-
ample, 1D topological arrays of coupled nonlinear resonators
[41]. Our results can also be realized in the 1D Gross-
Pitaevskii equation with a periodic dimer potential, which
reduces to the nonlinear SSH model in the tight-binding limit
[16].

The topological edge solitons in the nonlinear SSH model
correspond directly to extended edge states in 2D nonlin-
ear TIs such as nonlinear photonic graphene [42]. These 2D
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extended edge states inherit the instability of their 1D counter-
parts longitudinally, but are subject to an additional transverse
instability [43]. In addition to these essentially 1D localized
states, we expect that more intrinsically 2D localized states
in 2D nonlinear TIs can also be discovered using numerical
continuation in the spatial dynamics framework.
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