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Number of solitons produced from a large initial pulse in the generalized
NLS dispersive hydrodynamics theory
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We show that the number of solitons produced from an arbitrary initial pulse of the simple wave type can
be calculated analytically if its evolution is governed by a generalized nonlinear Schrödinger (NLS) equation
provided this number is large enough. The final result generalizes the asymptotic formula derived for completely
integrable nonlinear wave equations such as the standard NLS equation with the use of the inverse scattering
transform method.
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I. INTRODUCTION

It is well known that if a nonlinear wave system supports
the propagation of solitons with some polarity (bright or dark
ones), then a large enough initial pulse with the same polarity
evolves at asymptotically large times to a sequence of N sep-
arate solitons with some amount of linear radiation. The num-
ber N of solitons depends on the initial data and, for N � 1,
the energy contained in linear radiation is negligibly small
compared with the solitons’ energy in the main approximation
with respect to the small parameter 1/N � 1. Consequently,
the number of solitons, N , is one of the most important char-
acteristics of the initial pulse. In addition, it is relatively easy
to measure N experimentally. Thus, the possibility to predict
the number of solitons from the initial data is an important
task in the theory of nonlinear waves.

If the dynamics of the system under consideration is de-
scribed by a completely integrable wave equation, then the
number of solitons is equal to the number of eigenvalues
of the associated linear spectral problem (see, e.g., [1,2]).
Consequently, for large number N � 1, one can apply the
quasiclassical Wentzel-Kramers-Brillouin (WKB) method to
the linear spectral problem and obtain the asymptotic formula
for N . For example, in case of the famous Korteweg-de Vries
(KdV) equation,

ut + 6uux + uxxx = 0, (1)

such a formula was first obtained by Karpman [3] and reads

N ≈ 1

π

∫ ∞

−∞

√
u0(x) dx, N � 1, (2)

where u0(x) is the initial distribution of the amplitude u, and
N is the number of eigenvalues of the Schrödinger spectral
problem [1,2,4] with the “potential” u0(x). A similar formula
was derived in Ref. [5] for the nonlinear Schrödinger (NLS)
equation,

iψt + 1
2ψxx − |ψ |2ψ = 0, (3)

associated with the Zakharov-Shabat spectral problem [6].
This formula is conveniently formulated in terms of the initial
data for the hydrodynamicslike form of Eq. (3) obtained by
means of the Madelung substitution,

ψ (x, t ) =
√

ρ(x, t ) exp[iφ(x, t )], φx = u(x, t ), (4)

so that the NLS equation reduces to the system

ρt + (ρu)x = 0, ut + uux + ρx +
(

ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0.

(5)
In the context of the Gross-Pitaevskii theory [7,8] of Bose-
Einstein condensates of diluted gases, ρ has the meaning of
the gas density and u is its flow velocity. This interpretation
becomes especially clear in the limit of large pulses with their
characteristic size l � 1. Then the space derivative has the
order of magnitude ∂x ∼ l−1 � 1 and the last term in the
second equation (5) can be neglected. Hence we arrive at
equations of Euler hydrodynamics,

ρt + (ρu)x = 0, ut + uux + ρx = 0, (6)

for a compressible fluid with the equation of state P = 1
2ρ2,

where P plays the role of “pressure.”
The dynamics of such a gas is conveniently described with

the use of the variables

r± = 1
2 u ± √

ρ, (7)

called Riemann invariants, so that Eqs. (6) acquire a diagonal
form,

∂r+

∂t
+ 1

2
(3r+ + r−)

∂r+

∂x
= 0,

∂r−

∂t
+ 1

2
(r+ + 3r−)

∂r−

∂x
= 0. (8)

The Gross-Pitaevskii equation has dark soliton solutions [9]
propagating in the form of dips along a uniform background
ρ = ρ, u = u. If the initial distributions ρ0(x), u0(x) cor-
respond to a large dip in the density, 0 < ρ0(x) < ρ and
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u0(x) → 0 as |x| → ∞, then we can transform them to
distributions of the Riemann invariants r±

0 (x) = u0(x)/2 ±√
ρ0(x). The asymptotic formulas for a number of dark soli-

tons moving in the positive or negative direction are given,
correspondingly, by the equations [5]

N± = 1

π

∫ ∞

−∞

√
[±r − r+

0 (x)][±r − r−
0 (x)]dx, (9)

where r = √
ρ.

A less rigorous simple approach to this problem was
suggested in Ref. [10] for the whole Ablowitz-Kaup-Newell-
Segur (AKNS) hierarchy [11] associated with the 2×2-matrix
spectral problem written in an equivalent scalar form [12].
Naturally, in the case of Eq. (3), it reproduces Eq. (9) (see
Ref. [13]). The approach of Refs. [10,13] is based on the
supposition that the solution of the linear spectral problem (the
Baker-Akhiezer function) corresponding to the periodic non-
linear wave keeps its form for slightly modulated waves and
can be formally continued to the initial state where it becomes
a quasiclassical eigenfunction of the spectral problem.

For not completely integrable equations, the associated
linear spectral problem does not exist and the above approach
becomes impossible. Since the process of the formation of
solitons from an initially smooth pulse is universal from a
physical point of view and, generally speaking, does not
depend on whether or not the wave equation is completely
integrable, other ideas are necessary. An alternative ap-
proach was suggested in Refs. [14,15] and it was based
on the Gurevich-Pitaevskii theory of dispersive shock waves
(DSWs). According to this theory, the transformation of an
initially smooth pulse goes through several stages. In the first
stage, the pulse changes its form, remaining smooth up to the
moment of wave breaking when the dispersionless approxi-
mation breaks down due to the appearance of infinite space
derivatives (“gradient catastrophe”). After the wave breaking
moment, the second stage starts during which the pulse in
the simplest case consists of two parts—a smooth part for
which the dispersionless approximation remains correct, and
the DSW part represented by a modulated periodic solution
of the nonlinear wave equation under consideration where
the modulation parameters obey the Whitham modulation
equations [16,17] (see, also, review articles [18,19] for more
details). In the Whitham approximation, the boundary be-
tween the two parts is sharp and is called the small-amplitude
edge of the DSW. At last, in the third asymptotic stage of the
pulse’s evolution, its smooth part becomes negligibly small
and the whole pulse evolves to a sequence of separate solitons.
The method of Refs. [14,15] was based on the assumption that
the solution of the Whitham equations at the small-amplitude
edge of the DSW can be formally prolonged to the smooth
part of the pulse. The necessary parameters of the DSW at its
small-amplitude edge can be obtained in the important case
of initial simple waves with one of the Riemann invariants
constant by El’s method [20]. The results of this approach
were confirmed in several particular cases by their comparison
with the results of numerical solutions. In addition, they agree
very well with the recent experiments on fission of large initial
disturbances in a viscous fluid conduit [21]. Nevertheless, the
formal prolongation of the Whitham equations on the smooth

part of the pulse can hardly be considered as obvious because
the Whitham equations are obtained by averaging over fast
nonlinear wave oscillations, whereas there are no oscillations
in the pulse’s smooth part. Therefore, other theoretical ap-
proaches to this problem seem very desirable.

Recently, a different approach has been suggested in
Refs. [19,22]. It is based on an old remark of Gurevich and
Pitaevskii [23] that at the second stage of evolution mentioned
above, the number N (t ) of oscillations (wave crests) inside the
DSW part increases with time according to the equation

dN

dt
= 1

2π
k(vg − vph), (10)

where k is the wave number and vg, vph are the group and the
phase velocities, correspondingly, of the wave at the small-
amplitude edge of the DSW. If we denote the background
amplitude at this edge as u, then the dependence k = k(u)
can be found by El’s method and the dependence t = t (u)
along the path of the small-amplitude edge can be found
by the method of Ref. [24]. As a result, Eq. (10) can be
integrated along the path of the small-amplitude edge and,
in the limit t → ∞, we obtain the total number of crests in
the DSW which eventually evolve into separate solitons. As
was shown in Refs. [22,25] for several simple particular cases,
this method yields the formulas for the number of solitons
coinciding with those derived by the method of Refs. [14,15],
so in these cases the formulas are justified by a more reliable
approach.

In this paper, we consider the problem of the calculation
of the number of solitons produced from a simple-wave type
of an initial pulse which evolves according to the generalized
NLS (gNLS) equation,

iψt + 1

2
ψxx − 1

p
|ψ |2pψ = 0. (11)

It reduces to the standard NLS equation (3) for p = 1, but for
p 	= 1 it is not completely integrable. Various forms of non-
linearity in the gNLS equation are used in nonlinear physics.
In particular, the regime 2/3 < p < 1 describes the superfluid
BEC-Bardeen-Cooper-Schrieffer transition in ultracold Fermi
gases [26] and the case p = 2/3 of the so-called unitary limit
has drawn considerable attention (see, e.g., [27] and reference
therein). In addition, Eq. (11) with different values of p is
very useful and convenient for the study of various properties
of dispersive Euler hydrodynamics [28] since it models both
integrable and nonintegrable situations amenable to analytical
study. Here we show that the formula for the number of soli-
tons can be derived by the direct method of Refs. [19,22] and
this formula can be used in applications and general nonlinear
physics investigations.

II. BASIC FORMULAS

We shall present here the basic formulas necessary for
derivation of the expression for the number N of solitons.

A. Simple waves

We assume that at the dispersionless stage of evolution
before the wave breaking moment, the pulse has a form of
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a simple wave. Actually, this is not a serious restriction im-
posed on the form of the pulse since, for quite arbitrary initial
conditions, the dispersionless evolution leads in a natural way
to splitting the pulse to two pulses propagating in opposite
directions and they both are of the simple-wave type. In ad-
dition, simple-wave pulses can be created by a proper choice
of the initial conditions as it happens, for example, in the flow
caused by a unidirectional motion of a piston (see, e.g., [29]).

Equations of the dispersionless approximation for Eq. (11)
can be obtained by means of substitution (4) into it, separation
of real and imaginary parts, and neglecting the dispersive
terms with higher-order space derivatives. As a result, we
obtain the Euler equations,

ρt + (ρu)x = 0, ut + uux + ρ p−1ρx = 0, (12)

corresponding to the equation of state, P = ρ p+1/(p + 1). It
is convenient to define the “sound velocity” variable,

c =
√

dP/dρ = ρ p/2. (13)

Then, for the Riemann invariants,

r± = u

2
± c

p
, (14)

Eqs. (12) transform into

∂t r± + (u ± c)∂xr± = 0, (15)

where the characteristic velocities v± = u ± c have a sim-
ple physical meaning—they correspond to waves propagating
with the sound velocity c = c(ρ) downstream or upstream,
correspondingly.

In a simple wave, one of the Riemann invariants is constant
and, to be definite, we assume that r− = u/2 − c/p = −c0/p,
where c0 is the sound velocity far from the localized initial
pulse. Then the flow velocity u(x, t ) is expressed in terms of
the distribution c(x, t ) of the local sound velocity,

u(x, t ) = 2

p
[c(x, t ) − c0], (16)

and hence r+ = [2c(x, t ) − c0]/p and Eq. (15) for r+ is trans-
formed into the equation

∂c

∂t
+ 1

p
[(2 + p)c − 2c0]

∂c

∂x
= 0. (17)

This is the well-known Hopf equation (see, e.g., [30]) and its
solution reads

x − 1

p
[(2 + p)c − 2c0]t = x(c), (18)

where x(c) is the function inverse to the initial distribution c =
c(x) of the sound velocity (13). We are interested in the initial
distributions in the form of localized dips in the uniform state
with c = c0 [see Fig. 1(a)]. Hence, the inverse function has
two branches x = x1,2(c) [see Fig. 1(b)] and each branch gives
the solution (18) which defines in implicit form the function
c = c(x, t ). The evolution of the profile c = c(x, t ) leads to
wave breaking and, to simplify the notation, we assume that
the wave breaking moment corresponds to t = 0.

x

c(x)

c0

cm

xm

(a)

c

x(c)

c0

x(cm)

cm

x1

x2

(b)

FIG. 1. (a) The initial distribution of the local sound velocity
c(x). (b) The inverse function x(c) has two branches, x1(c) and x2(c).

B. Dispersion relation and El’s equation

After the wave breaking moment, a DSW is generated and
its small-amplitude edge starts its motion along the smooth
part of the pulse. Actually, this edge is represented by a linear
wave packet propagating with the group velocity of linear
waves. The corresponding dispersion relation can be easily
found after linearization of Eq. (11) and it can be written in
the form (see, e.g., [28])

ω(k, c) = k(u ±
√

c2 + k2/4). (19)

The background distribution c = c(x, t ) is changing according
to the Hopf equation (17), which should be combined with the
Hamilton equations,

dx

dt
= ∂ω

∂k
,

dk

dt
= −∂ω

∂x
, (20)

for the packet’s motion. As a simple consequence of these
three equations, we easily obtain [22] the equation

dk

dc
= (∂ω/∂c)k

u + c − (∂ω/∂k)c
. (21)

This equation was first obtained by El [20] from the small-
amplitude limit of the Whitham equations which lead to the
wave number conservation law

∂k

∂t
+ ∂ω

∂x
= 0,

so that the second Hamilton equation is its characteristic form
along the path of the small-amplitude edge of the DSW. The
derivation of Eq. (21) from the Hamilton equations demon-
strates its much wider applicability region. For example, it
was applied in Ref. [31] to the propagation of localized wave
packets along arbitrary large-scale smooth simple waves. In
the case of motion of the small-amplitude edge of a DSW, it
should be solved with the initial condition

k(c0) = 0, (22)

which means that the wave breaking occurs at the boundary
with the undisturbed region where c = c0 and, in the Whitham
approximation, the DSW at the initial wave breaking moment
shrinks to a point without any oscillations inside.

To solve this equation, it is convenient to introduce the
variable [14]

α(c) =
√

1 + k2(c)

4c2
, k(c) = 2c

√
α2(c) − 1, (23)
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so that Eq. (21) transforms into

dα

dc
= − (1 + α)(2/p − 1 + 2α)

c(1 + 2α)
, (24)

which can be easily solved with the initial condition α(c0) = 1
to give [28]

c(α)

c0
=

(
2

1 + α

) p
3p−2

(
2 + p

2 − p + 2pα

) 2(p−1)
3p−2

. (25)

The function c = c(α) can be inverted in three particular
cases [28],

p = 1, α(c) = 2c0

c
− 1,

p = 2, α(c) = 1

2

⎡
⎣

√
1 + 8

(
c0

c

)2

− 1

⎤
⎦,

p = 1

2
, α(c) = 1

16

[
5

√
c0

c

(
25

c0

c
− 16

)
+ 25

c0

c
− 24

]
.

(26)

The substitution of these formulas into Eq. (23) yields explicit
expressions for the function k(c).

C. Path of the small-amplitude edge

The small-amplitude edge propagates with the group
velocity,

dx

dt
= dω

dk
= 2

p
(c − c0) + c[α(c) − α−1(c)]. (27)

According to Ref. [24], this equation must be compatible with
the solution (18), where c equals the local value of the sound
velocity at the point of location of the wave packet. This
condition leads to the linear equation

c(α − 1)(2α + 1)

α

dt

dc
− 2 + p

p
t = x′(c), (28)

which should be solved first with the initial condition t (c0) =
0. Easy integration yields

t = t1(c) = 1√
c[α(c) − 1]

[
α(c) + 1

2 − p + 2pα(c)

] 1
3p−2

×
∫ c

c0

dc′ x1(c′)√
c′[α(c′) − 1][2α(c′) + 1]

×
[

2 − p + 2pα(c′)
α(c′) + 1

] 1
3p−2

(29)

for the motion of the wave packet along the branch x1(c):
at the moment t , the small-amplitude edge is located at the
point with the local value of the sound velocity c. The ex-
pression (29) is correct up to the moment tm = t1(cm) when
the edge reaches the point with the minimal value cm of
the local sound velocity. It is worth noticing that the disper-
sionless solution (18) preserves the minimal value cm in the

distribution c = c(x, t ), so cm does not depend on t . For t >

tm, the edge propagates along the solution (18) corresponding
to the second branch x2(c). Accordingly, Eq. (28) should be
solved with the initial condition t (cm) = tm and the solution
reads

t = t2(c) = 1√
c[α(c) − 1]

[
α(c) + 1

2 − p + 2pα(c)

] 1
3p−2

×
{ ∫ cm

c0

dc′ x1(c′)√
c′[α(c′) − 1][2α(c′) + 1]

×
[

2 − p + 2pα(c′)
α(c′) + 1

] 1
3p−2

+
∫ c

cm

dc′ x2(c′)√
c′[α(c′) − 1][2α(c′) + 1]

×
[

2 − p + 2pα(c′)
α(c′) + 1

] 1
3p−2

}
. (30)

Substitution of the above two formulas into x(c) = x1,2(c) +
1
p [(2 + p)c − 2c0]t1,2(c) gives the coordinate of the edge at
the moment t (c), but we do not need these expressions here.

III. NUMBER OF SOLITONS

Integration of formula (10) with the use of the dispersion
relation (19) gives the total number of wave crests contained
in the DSW,

N = 1

8π

∫ ∞

0

k3√
c2 + k2/4

dt, (31)

so our task is to evaluate this integral. To this end, we pass to
integration over c and substitute (23) for k = k(c),

N = 1

π

∫
c2

α(c)
[α2(c) − 1]3/2 dt

dc
dc. (32)

In fact, this integral consists of two parts: first with integration
from c0 to cm with t = t1(c) and second with integration from
cm to c0 with t = t2(c). The derivative dt/dc can be excluded
with the use of Eq. (28) and as a result we obtain

N = 1

π

∫ cm

c0

c(α − 1)1/2(α + 1)3/2

2α + 1

×
[

2 + p

p
(t2 − t1) + x2 − x1

]
dc. (33)

Integration over c can be replaced by integration over α with
the help of Eq. (24),

N = p

π

∫ αm

1

c2(α)(α2 − 1)1/2

2 − p + 2pα

×
{

2 + p

p
[t2(α) − t1(α)] + 	2(α) − 	1(α)

}
dα, (34)

where αm = α(cm) and 	(α) ≡ x′(c)|c=c(α).
When we substitute here the expressions (29) and (30)

for t1(α) and t2(α) as integrals over c, we obtain the double
integral

∫∫
. . . dcdα. With the use of Eq. (25) for c(α), we
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can simplify the resulting expression by integration by parts
to obtain

2 + p

π

∫ αm

1

c2(α)(α2 − 1)1/2

2 − p + 2pα
[t2(α) − t1(α)]dα

= 1

π

∫ c0

cm

cα
√

α2 − 1[x′
2(c) − x′

1(c)]

2α + 1
dc.

The remaining terms are transformed to

p

π

∫ αm

1

c2(α)(α2 − 1)1/2

2 − p + 2pα
[	2(α) − 	1(α)]dα

= 1

π

∫ c0

cm

c(α + 1)
√

α2 − 1[x′
2(c) − x′

1(c)]

2α + 1
dc,

and the sum of the above two expressions yields

N = 1

π

∫ c0

cm

c[α2(c) − 1]1/2[x′
2(c) − x′

1(c)]dc. (35)

At last, we replace integration over the interval cm � c � c0

by integration over x and take into account Eq. (23) to obtain
the final formula,

N = 1

2π

∫ ∞

−∞
k[c(x)]dx, (36)

where c(x) is the initial distribution of the local sound ve-
locity. In this expression, the function k(c) is obtained by
substitution of the function α(c) into Eq. (23). For example,
in the case p = 1 of the standard NLS equation, we have,
for α(c), the first expression in Eq. (30), and hence k(c) =
4
√

c0(c0 − c) and Eq. (36) reduces to

N = 2

π

∫ ∞

−∞

√
c0[c0 − c(x)]dx. (37)

This formula coincides with formula (9) for N+ since, for
the simple-wave initial conditions, we have r− = −c0, r+ =
2c(x) − c0.

We have obtained Eq. (36) by direct calculation without
artificial introduction of the distribution of wave num-
bers k(c(x)) along a smooth initial state, as was done in
Refs. [14,15]. Thus, our derivation makes the assumption
about the existence of such a distribution quite plausible
(see [22]).

IV. COMPARISON WITH NUMERICAL SOLUTIONS

Here we support our analytical theory by comparison of
its predictions with the results of numerical solutions of the
gNLS equation. We take the initial distribution of the local
sound velocity c = ρ p/2 in the form

c(x) =
[

1 − a

cosh2(x/l )

]p/2

, (38)

where a denotes the depth of the initial dip in the density
distribution and l is its half length. The initial disturbance
must be a simple wave in our approach, so we define the initial

FIG. 2. The number of solitons produced from the initial
pulse (38) for l = 20 and different values of a. Solid lines correspond
to (a) p = 1/2, (b) p = 1, and (c) p = 2 calculated according to the
analytical formula (36).

distribution of the flow velocity by the formula

u0(x) = 2

p
[c(x) − c0]. (39)

Equations (4) allow us to find the initial field ψ (x, 0).
In our numerical experiments, we choose l = 20 and

change a in the interval 0.1 � a � 0.9 with the step 
a=0.1.
Such a choice makes the numerical calculations not too time
consuming and clearly demonstrates the dependence of the
number of solitons on a. We have done these calculations for
p = 1/2, 1, and 2, when the function k(c(x)) is given by the
explicit formulas (23) and (26). The results of our calculations
are presented in Fig. 2. As one can see, the agreement is very
good.

V. CONCLUSION

We have shown that the method of calculation of the
number of solitons produced from an initial pulse of the
simple-wave type works very well for the generalized NLS
equation having various physical application. The result-
ing formula (36) has the structure suggested earlier in
Refs. [14,15] on the basis of some suppositions about the
properties of solutions of Whitham modulation equations and
our derivation makes these suppositions quite plausible. Thus,
the developed method and the general formula (36) become a
useful tool for predictions of the number of solitons in experi-
ments performed with media whose evolution is described by
nonlinear wave equations not belonging to a specific class of
completely integrable equations.
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