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Mobility-limiting antipredator response in the rock-paper-scissors model
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Antipredator behavior is present in many biological systems where individuals collectively react to an
imminent attack. The antipredator response may influence spatial pattern formation and ecosystem stability
but requires an organism’s cost to contribute to the collective effort. We investigate a nonhierarchical tritrophic
system, whose predator-prey interactions are described by the rock-paper-scissors game rules. In our spatial
stochastic simulations, the radius of antipredator response defines the maximum prey group size that disturbs
the predator’s action, determining the individual cost to participate in antipredator strategies. We consider that
each organism contributes equally to the collective effort, having its mobility limited by the proportion of energy
devoted to the antipredator reaction. Our outcomes show that the antipredator response leads to spiral patterns,
with the segregation of organisms of the same species occupying departed spatial domains. We found that a less
localized antipredator response increases the average size of the single-species patches, improving the protection
of individuals against predation. Finally, our findings show that although the increase of the predation risk for
a more localized antipredator response, the high mobility constraining benefits species coexistence. Our results
may help ecologists understand the mechanisms leading to the stability of biological systems where locality is
crucial to behavioral interactions among species.
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I. INTRODUCTION

There is plenty of evidence that spatial segregation of
species is fundamental to the formation and stability of
ecosystems [1–3]. For example, experiments with bacteria
Escherichia coli revealed the role of space in the preservation
of biodiversity [4]. The authors demonstrated that the cyclic
dominance among three bacteria strains could be described
by the spatial rock-paper-scissors game rules [5]. However,
they observed that the cyclic selection interactions were not
sufficient to guarantee coexistence unless individuals interact
locally. Their studies revealed that the spatial interactions
result in departed spatial domains occupied by individuals of
the same species; similar spatial patterns appear in groups of
lizards and coral reefs [6,7].

It is well known that behavioral strategies play a vital role
in evolutionary biology [3]. For example, movement strategies
may be decisive to the success of individuals to guarantee
natural resources or refuges against enemies [8–12]. Another
common animal behavior is the resistance against predation
[13]. It has been reported that vertebrates and invertebrates
perform an antipredator tactic called Thanatonis, i.e., death
feigning [14,15]. Prey mites Tetranychus urticae emit an odor
when exposed to the predatory mite Phytoseiulus persimilis to
reduce the oviposition and the consequent predator population
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growth [16]. Several other examples of antipredator behavior
of mites, like the variation of the nest size and web density,
have been studied [17–19]. It has been reported that antipreda-
tor behavior leads individuals to join efforts to respond to
predation threats [20–22]. The herd behavior allows individu-
als to be less vigilant for imminent attacks because grouping
increases the probability of predator detection, which may sta-
bilize the predator-prey system at a population level [23–25].
Furthermore, it has been reported that as the prey group
size increases, more eyes oversee the environment, increasing
the collective response to an imminent onslaught from any
predator that approaches the group [26,27]. Although there
are benefits of the collective defense strategies, there is a cost
associated with the antipredator behavior that brings conse-
quences, for example, on the individual mobility [28–31]. The
cost depends on the individual effort expended by a single
prey to contribute to the collective antipredator activity, de-
creasing as the number of collaborators grows [32,33].

Stochastic simulations of the rock-paper-scissors game
have been a tool to comprehend how spatial patterns influence
biodiversity in cyclic models [34,35]. There are two imple-
mentation versions: with or without a conservation law for the
total number of individuals. Namely, Lotka-Volterra [36–42]
and May-Leonard realizations [43–46], respectively. In the
Lotka-Volterra implementation—where the interactions are
predation and random mobility—spiral patterns are formed
when prey respond to the predator’s action. According to
the outcomes presented in Ref. [47], the spiral waves ap-
pear because the predation mostly happens on the borders of
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predator-dominated spatial domains. Moreover, the strength
of the antipredator reaction controls the characteristic length
of the spatial patterns and the coexistence probability.

In this paper, we investigate a mobility-limiting local
antipredator response in nonhierarchical tritrophic systems
described by the rock-paper-scissors game rules. We introduce
a cost for an organism to perform antipredator behavior that
limits its mobility probability. The cost depends on the radius
of the antipredator response that determines the maximum
prey group size that can influence the predator’s action. We
study how the locality of the antipredator response influ-
ences predation risk and, consequently, the size of the spatial
domains. Our main goal is to comprehend what changes if
the local antipredatory response is limited to individuals lo-
cated at different distances from the predator. In our model,
(1) in the imminence of a predator’s attack, individuals of
every species have the same strength to resist predation;
(2) whenever an individual is in danger, it counts on its
conspecifics to react to the predation threat; (3) the radius
of the antipredator response limits the maximum prey group
size disturbing the predator action; (4) antipredator action
involves permanent vigilance to scan the environment aiming
to detect predator presence; (5) the cost for an organism to
perform antipredator behavior is the same for every species
and depends on the maximum prey group that can join the
collective resistance; and (6) the cost for antipredator defense
tactics constrains the individuals’ mobility probability. We
aim to discover how the radius of the antipredator response
impacts the population dynamics and jeopardizes biodiversity.

The outline of this paper is as follows. In Sec. II we
introduce the stochastic rules of the tritrophic system with
antipredator behavior. In Sec. III we focus on the changes
of the spatial patterns for several radii of the antipredator
response. In Sec. IV we investigate the dynamics of the spatial
densities, while the impact of the antipredator reaction on an
individual’s predation risk appears in Sec. V. The analysis of
the autocorrelation function is realized in Sec. VI, whereas the
coexistence probability in terms of the individual’s mobility is
addressed in Sec. VII. Finally, our comments and conclusions
appear in Sec. VIII.

II. THE MODEL

We investigate a tritrophic system where species domi-
nate each other according to the popular rock-paper-scissors
game rules. Species are labeled by i with i = 1, . . . , 3, with
the cyclic identification i = i + 3 α where α is an integer.
Accordingly, organisms of species i prey upon individuals
of species i + 1. In our model, individuals of every species
perform antipredator behavior: a prey group surrounding the
predator opposes predation, causing a decrease in the pre-
dation probability that depends on the group size and the
strength of the antipredator response. The cost of the an-
tipredator behavior depends on the maximal size of the prey
group that may join the effort in the reaction; this is modeled
by reducing the individuals’ probability mobility, and it de-
pends on the maximal size of the prey group that may join the
effort in the reaction.

Our stochastic simulations are performed in square lattices
with periodic boundary conditions. We assume a conservation
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FIG. 1. Illustration of interaction rules in our cyclic tritrophic
system. Red solid lines indicate that organisms of every species
compete equally for space. Black, orange, and gray arrows illustrate
the cyclic predator-prey interactions.

law for the total number of individuals, following the Lotka-
Volterra numerical implementation of the rock-paper-scissors
game [37,38]. Each grid point contains one individual; thus,
the total number of individuals is always equal to N , the total
number of grid points.

The possible interactions are:
Predation: i j → i i , with j = i + 1. When one preda-

tion interaction occurs, a organism of species i (the predator)
replaces the grid point filled by the by the individual of species
i + 1 (the prey).

Mobility: i � → � i , where � means an individual of
any species. When moving, an individual of species i switches
positions with another organism of any species.

Figure 1 illustrates our stochastic model’s predation and
mobility rules. The arrows indicate a cyclic trophic dominance
among the species; the solid lines show that species equally
compete for space.

To explore the local aspects of antipredator behavior, we
define the the radius of the antipredator response R as the max-
imum distance from the predator at which prey can interfere
with the predator’s action. Figure 2 illustrates the numerical
implementation of the radius of the antipredator reaction in a
predator’s neighborhood. For R = 1, a predator, located at the
black dot, feels the opposition only of prey in the ruby grid
sites; predation is impacted by the reaction of prey in the ruby
and red positions for R = 2; in the case of R = 3, prey in ruby,

FIG. 2. Illustration of the radius of the antipredator response in
a predator’s neighborhood. Ruby indicates the grid sites for R = 1;
ruby and red show the positions for R = 2; ruby, red, and pink dots
form the set of grid sites for R = 3. The black dot represents the
predator.
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FIG. 3. Snapshots of simulations of the rock-paper-scissors game illustrated in Fig. 1 running in square lattices with 3002 grid points. Each
dot shows an individual according to the color scheme in Fig. 1. From left to right, the panels show the results for the standard model, R = 1,
R = 3, and R = 5, respectively. The simulations started from the same random initial conditions.

red, and pink dots can disturb predation. The prey effort may
be devoted to surveillance or participation in any collective
defense strategy against the predator. This behavior has an
intrinsic individual cost c that is demanded of each organism,
defined as the fraction of the maximum antipredator response
suffered by a predator [26,27,32]. The descending colors in
Fig. 2 indicate the decreasing individual effort to the collective
antipredator resistance against predation. Specifically, for R =
1, R = 2, and R = 3, each individual contributes with c =
1/4, c = 1/12, and c = 1/28 of the maximal antipredator
response, respectively.

Therefore, for a given predator of species i, the effective
predation probability is a function of the fraction of individu-
als of species i + 1 within a disk of radius R, centered at the
predator is

p = p0 e−κ G
Gmax (1)

with p0 being the predation probability in the standard model,
without antipredator behavior. In Eq. (1), Gmax is the maxi-
mum group size (the number of individuals that fit within a
disk of radius R); G is the actual group size; κ is the antipreda-
tor strength factor, a real parameter defined as κ � 0, where
κ = 0 represents the standard model, that is, p = p0.

The individual cost of a lonely prey to contribute to col-
lective antipredator response is c = 1/Gmax. In this scenario,
for κ > 0, a lonely prey’s opposition reduces the predation
probability to p = p0 e−c κ while p is minimal when G =
Gmax, i.e., p = p0 e−κ . We investigate the local effects of the
antipredator response for 1 < R < 5, where R is measured in
units of the lattice spacing. Furthermore, as we are interested
in understanding the effects of the locality of the antipredator
response, we assume a fixed κ = 2.0 so that our results are
independent of the strength of the antipredator reaction. How-
ever, we have verified that the main conclusions presented in
this paper hold for other values of κ .

Our simulations begin with random initial conditions,
where each grid point is given an organism of an arbitrary
species. Initially, the total numbers of individuals of every
species are the same: Ii = N /3, for i = 1, 2, 3. The interac-
tions were implemented with the Moore neighborhood, i.e.,
individuals may interact with one of their eight immedi-
ate neighbors. The simulation algorithm follows three steps:
(1) randomly selecting an individual to be the active one;
(2) drawing one of its eight neighbor sites to be the passive

individual; and (3) randomly choosing an interaction to be
executed by the active individual. One timestep is counted if
the active and passive individuals (steps 1 and 2) allow the
the selected interaction interaction (step 3) to be executed.
Otherwise, the three steps are repeated. Our time unit is called
generation, which is the necessary time to N interactions to
occur.

In the absence of the antipredator behavior, predation and
mobility probabilities are denoted by m0 and p0, respec-
tively, with m0 + p0 = 1. Nonetheless, if organisms perform
antipredator response, two changes are implemented. First,
because of the cost of the antipredator strategy, mobility prob-
ability is limited due to the individual cost of cooperating
with the group: m0 = c + m, where m is the effective mobility
probability. Second, the effect of the collective antipredator
response reduces the chances of a predation interaction being
implemented according to Eq. (1): p < p0.

III. SPATIAL PATTERNS

To observe the spatial patterns, we first run a single realiza-
tion for different values of R to be compared with the standard
model (without antipredator behavior). The simulations run
in square lattices with 3002 sites for a timespan of 3000
generations, assuming p = m = 1/2. From left to right, the
snapshots in Fig. 3 show the spatial patterns at the end of the
simulations for the standard model, R = 1, R = 3, and R = 5,
respectively. The colors follow the scheme in Fig. 1: black,
orange, and gray dots depict individuals of species 1, 2, and 3,
respectively.

In the absence of antipredator opposition, predators con-
sume prey everywhere. This provokes a continuous change
in the local species segregation, as depicted in the first panel
of Fig. 3 that shows irregular groups of individuals of the
same species. If organisms perform antipredator response,
each predator faces its local reality: the larger the prey group
size in the predator’s vicinity, the more difficult consuming
the prey. Therefore, predators positioned close to conspecifics
have more chances of feeding, which causes the arising of
spirals: individuals of the same species congregate in spatial
domains forming the spiral arms [47].

To understand the influence of the radius of the antipreda-
tor response on spiral patterns, let us suppose a spatial domain
of species 2 (predator) invading a region inhabited by indi-
viduals of species 3 (prey), as illustrated in Fig. 4. In this
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FIG. 4. Illustration of prey group size around a predator. Gray
and orange dots indicate predators and prey, respectively. The radius
of the antipredator response R shows the maximum distance a prey
can interfere with the predator, whereas the blue descending circles
indicate the decrease in predation probability as the predator moves
away from the domain interface.

hypothetical case, a predator on the border of the spatial
domains faces the opposition of a prey group with size G =
Gmax/2. In contrast, another predator distant from R grid sites
to the border copes with the resistance of a prey team with size
G = Gmax. This means that as a predator moves away from
the orange area, its effective predation probability decreases,
as illustrated by the blue descending circles on the bottom of
Fig. 4. Namely, pe f f varies from p/e on the border to p/e2

on distances equal or larger than R.
When it comes to the spiral patterns in Fig. 3, a predator

deals with an increasing antipredator response when moving
away from the border between two spiral arms. However, if
R increases, the predator can go further, struggling with less
prey resistance. This means that, for larger R, the antipredator
response is less localized, making it less difficult for a predator
away from the boundaries of predator-dominated domains to
consume prey. The consequence is the increase of the average
spatial domain size observed in the third and fourth panels of
Fig. 3 (R = 3 and R = 5, respectively) compared to the second
one (R = 1).

IV. DYNAMICS OF SPECIES DENSITIES

We calculate the spatial species densities ρ, i.e., the frac-
tion of the grid occupied by individuals of the species i in the
single realizations shown in Fig. 3. For this, we focus only on
the spatial density of species 1, which is a function of time
t , i.e., ρ(t ) = I1(t )/N , because of the tritrophic chain’s sym-
metry of the rock-paper-scissors model, the average spatial
densities are the same irrespective of the species.

Figure 5 shows the dynamics of the species densities in
the simulations presented in Fig 3. The gray line shows the
dynamics of ρ for the standard model, while the yellow,
blue, and red lines represent the results for R = 1, R = 3,
and R = 5, respectively. Our findings reflect the cyclic territo-
rial dominance of species i (i = 1, 2, 3), characteristic of the
rock-paper-scissors models [37,38]. The growth in the average
spatial domain size is responsible for increasing the amplitude
and frequency of the species densities for larger R.

FIG. 5. Temporal changes of spatial species densities ρ in the
simulations presented in Fig. 2. The gray, yellow, blue, and red lines
represent the results for antipredator strength factor κ = 0 (standard
model), R = 1, R = 3, and R = 5, respectively.

V. PREDATION RISK

We aim to understand how the risk of an organism being
consumed depends on the radius of the antipredator response.
Having assumed the same predation probability p0 for every
species, we focus on computing the predation risk for species
1. For this purpose, we first counted the total number of
individuals of species 1 at the beginning of each generation.
Subsequently, we computed how many individuals of species
1 are preyed on during the generation. We define the predation
risk, ζ , as the ratio between the number of consumed indi-
viduals and the initial amount. To avoid the noise inherent in
the pattern formation stage, we calculated the predation risk
considering only the second half of the simulation. Also, we
averaged the results every 30 generations.

We performed 100 realizations with different random ini-
tial conditions for each value of R. The mean value of the
predation risk, 〈 ζ 〉 is depicted in Fig. 6 for 1 � R � 5,
where the error bars show the standard deviation. Figure 6
also shows the percentage relative predation risk ξ = (〈 ζ 〉 −
〈 ζ0 〉)/〈 ζ0 〉, where ζ0 is the predation risk in the absence
of the antipredator behavior: ζ0 = 0.123 [47]. The outcomes
revealed that the predation risk reduction is 3.6% (yellow
dashed line) for R = 1 in comparison with the standard model
(gray dashed line). However, when the radius of antipredator

FIG. 6. Mean predation risk 〈 ζ 〉 in terms of the radius of the
antipredator response R. The results were averaged from a set of
100 simulations of squares lattices with 3002 points. The right axis
shows the relative change in the predation risk in comparison with the
standard model (horizontal gray dashed line). The horizontal yellow,
purple, and red dashed lines depict ξ (%) for R = 1, R = 2, and
R = 5, respectively.
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response increases, predation risk decreases. For example,
according to the results presented in Fig. 6: for R = 2, the
reduction in the predation risk is 48.5% (purple dashed line).
Our findings also indicate that for R � 3, the reduction pre-
dation risk does not change substantially: ξ = 56.0%, ξ =
58.1%, and ξ = 59.2% (red dashed line), for R = 3, R = 4,
and R = 5, respectively. This means that the benefits of the
mobility-limiting antipredator response do not grow signifi-
cantly for R > 5; for this reason, we have concentrated our
investigation in simulating the cases for 1 � R � 5.

Generally speaking, we conclude that the less localized
the antipredator opposition is, the more probable the prey
escaping predation. This happens because for larger R, the
average size of the single-species spatial domains increases,
as shown in Fig. 3. Because a predation interaction is imple-
mented when a predator has prey as one of its eight immediate
neighbors, a less localized antipredator response provides bet-
ter topological protection to most prey that stays away from
the borders of the single-species domains.

VI. AUTOCORRELATION FUNCTION

Now we investigate the scale of spatial aggregation of
organisms of the same species. For this, we compute the spa-
tial autocorrelation function. Again, assuming the symmetry
among the species, we focus only on the spatial segregation
of species 1.

The autocorrelation function is computed from the inverse
Fourier transform of the spectral density as

C(�r′) = F−1{S(�k)}
C(0)

, (2)

where S(�k) is given by

S(�k) =
∑

kx,ky

ϕ(�κ ), (3)

and ϕ(�κ ) is Fourier transform

ϕ(�κ ) = F {φ(�r) − 〈φ〉}. (4)

The function φ(�r) represents the spatial distribution of in-
dividuals of species 1 (φ(�r) = 0 and φ(�r) = 1 indicate the
absence and the presence of an individual of species 1 in at
the position �r in the lattice, respectively). The spatial autocor-
relation function is given by

C(r′) =
∑

|�r′|=x+y

C(�r′)
min[2N − (x + y + 1), (x + y + 1)]

. (5)

Moreover, we compute the spatial domains’ scale for C(l ) =
0.15, where l is the characteristic length.

Figure 7 depicts the spatial autocorrelation function as a
function of the radial coordinate r, for the standard model
(gray line), R = 1 (yellow line), R = 3 (blue line), and R = 5
(red line). The results were averaged from a set of 100 sim-
ulations with different random initial conditions, running in
lattices with N = 3002. The spatial configuration was cap-
tured after 3000 generations, for p = m = 1/2.

The horizontal black line represents the threshold consid-
ered to calculate the length scale, C(l ) = 0.15. The outcomes
reveal that the spatial clustering of individuals of the same

FIG. 7. Autocorrelation functions C(r). The gray, yellow, blue,
and red lines depict the results for the standard model, R = 1, R = 3,
and R = 5, respectively. The horizontal dashed black line shows the
threshold assumed to calculate the characteristic length. The inset
shows the characteristic length in terms of R.

species grows with R, as depicted in the inset figure; for the
standard case, l = 4.74. This result confirms that the less
localized the antipredator is, the larger the spatial domain’s
average size.

VII. COEXISTENCE PROBABILITY

Finally, we aim to discover how the locality of the an-
tipredator response affects species diversity. To this purpose,
we performed 1000 simulations in lattices with 1202 grid
points for 0.05 < m0 < 0.95 in intervals of 	 m0 = 0.05;
predation probability was set to p0 = 1 − m0. The simula-
tions started from different random initial conditions and ran
until 1202 generations. Coexistence occurs if all species are
present at the end of the simulation. In other words, at least
one individual of each species must be present: Ii(t = 1202) �=
0 with i = 1, 2, 3. Otherwise, the simulation results in extinc-
tion. We define the coexistence probability as the fraction of
realizations resulting in coexistence.

The outcomes are presented in Fig. 8, where the yel-
low, blue, and red lines show the coexistence probability for
R = 1, R = 3, and R = 5, respectively. Overall, species bio-
diversity is more threatened for higher mobility probabilities.
However, the results revealed that for m0 � 0.5, coexistence
is less probable for a long-range antipredator response. This
happens because a short-range antipredator reaction demands

FIG. 8. Coexistence probability as a function of the mobility
probability m. The yellow, blue, red, and green lines show the results
for R = 1, R = 3, R = 5, respectively. The results were obtained by
running 1000 simulations in lattices with 1202 grid points running
until 1202 generations.
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a higher individual cost, imposing more substantial limits on
the organism’s mobility probability.

VIII. COMMENTS AND CONCLUSIONS

We studied the impact of a mobility-limiting antipredator
response on nonhierarchical tritrophic predator-prey systems.
Performing stochastic simulations of the rock-paper-scissors
model, we assumed that predation probability decreases
exponentially with the prey group size. The individual ef-
fort devoted to vigilance and collective antipredator tactics
decreases an organism’s effective mobility probability. Con-
sidering the cost depends on the radius of antipredator
response, we investigated the effects on the spatial patterns,
population dynamics, and species persistence.

Our results unveiled that the characteristic length of the
spatial domains increases for a less localized antipredator
response, where individuals can affect the predator’s action
from longer distances. This means that the average size of the

single-species areas increases for a long-range antipredator
response. Calculating the predation risk, we found that if the
antipredator response is less localized, the prey’s vulnerability
decreases because more prey may stay away from predators.

Finally, we studied the influence of the mobility-limiting
antipredator response on species diversity. Overall, bio-
diversity is jeopardized for higher mobility probabilities,
irrespective of how localized is the antipredator response is.
Moreover, we found that that a more localized antipredator
reaction, which demands a higher individual cost in terms
of limiting mobility, benefits the maintenance of biodiversity.
However, our findings show that the positive effects on the
coexistence probability due to the constraining of individuals’
fitness do not hold for high mobility probability.
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