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Understanding how the dynamics of a given quantum system with many degrees of freedom is altered by
the presence of a generic perturbation is a notoriously difficult question. Recent works predict that, in the over-
whelming majority of cases, the unperturbed dynamics is just damped by a simple function, e.g., exponentially
as expected from Fermi’s golden rule. While these predictions rely on random-matrix arguments and typicality,
they can only be verified for a specific physical situation by comparing to the actual solution or measurement.
Crucially, it also remains unclear how frequent and under which conditions counterexamples to the typical
behavior occur. In this work, we discuss this question from the perspective of projection-operator techniques,
where exponential damping of a density matrix occurs in the interaction picture but not necessarily in the
Schrodinger picture. We show that a nontrivial damping in the Schrodinger picture can emerge if the dynamics
in the unperturbed system possesses rich features, for instance due to the presence of strong interactions. This
suggestion has consequences for the time dependence of correlation functions. We substantiate our theoretical
arguments by large-scale numerical simulations of charge transport in the extended Fermi-Hubbard chain, where

the nearest-neighbor interactions are treated as a perturbation to the integrable reference system.
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I. INTRODUCTION

Questions of equilibration and thermalization in isolated
quantum systems have experienced a renaissance in re-
cent years [1-3]. However, notwithstanding the significant
progress that has been made [4], describing the precise dy-
namics of a given quantum many-body system still remains
a very challenging task. “Universal” principles, which pro-
vide a faithful understanding of a wide class of models in
various nonequilibrium situations, are therefore highly desir-
able [5-10]. A particularly successful strategy in this context
has been the usage of random-matrix ensembles which
mimic certain aspects of the full many-body problem [11].
Prominent examples include the eigenstate thermalization hy-
pothesis [12—14], which asserts that the matrix structure of
observables becomes essentially random in the eigenbasis
of chaotic Hamiltonians [15-18], as well as random-circuit
models [19-21], which have led to new insights into the
emergence of hydrodynamics and information scrambling in
isolated quantum systems.

A particularly intriguing and omnipresent question in
physics is how the dynamics of a given quantum system is
affected by the presence of a perturbation [12,22-26], i.e.,
scenarios where the Hamiltonian H of the full system can be
written as
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with Ho being an unperturbed reference system and e denot-
ing the strength of the perturbation V. This includes, e.g., the
phenomenon of prethermalization [27-32], where ) weakly
breaks a conservation law of the (usually integrable) o,
and also the analysis of imperfect echo protocols [33,34],
where the respective Hamiltonians governing the forward and
backward time evolutions are different. In an even broader
context, the impact of perturbations also plays an important
role for simulations on today’s noisy intermediate-scale quan-
tum devices [35], where V can be interpreted as the inevitable
imperfections of elementary gates which alter the desired
circuit [36].

Given a quantum system with many degrees of free-
dom, the impact of a perturbation can clearly be manifold.
It is therefore quite remarkable that a series of recent
works predicts that, in the overwhelming majority of cases,
the reference dynamics is just damped by a simple func-
tion [24,25], e.g., exponentially as expected from Fermi’s
golden rule [26,37,38]. In essence, these works rely on
random-matrix theory as V' is modeled by (an ensemble of)
random matrices with respect to the eigenstates of Hy [24],
as well as on the concept of typicality [39-42], as a given
perturbation is shown to behave very similarly to the ensem-
ble average. However, while these predictions were found to
compare favorably to a variety of experimental and numerical
examples [24], it yet remains unclear how frequent and un-
der which conditions counterexamples to the typical behavior
occur.

In this work, we discuss exactly this question from the
perspective of projection-operator techniques, which are well
established in the realm of open quantum systems [43]. In
this way, we provide a fresh insight and show that, within
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these techniques and under mild assumptions, the “standard”
case of exponential damping emerges for the density matrix in
the interaction picture but not necessarily in the Schrodinger
picture. We particularly suggest that a nontrivial damping in
the Schrodinger picture can emerge if the dynamics in the
unperturbed system possesses rich features. This suggestion
has consequences for the time dependence of correlation func-
tions. It is substantiated by large-scale numerical simulations
of charge transport in the extended Fermi-Hubbard chain,
where the nearest-neighbor interactions are treated as a per-
turbation to the integrable reference system.

This paper is structured as follows. In Sec. II we first
establish the setup by introducing an exemplary model and
observable, and then turn to a description of our projection-
operator approach and its implications on the relaxation
dynamics in perturbed many-body quantum systems. We
show illustrating numerical results in Sec. III and conclude
in Sec. IV.

II. SETUP AND PROJECTION-OPERATOR APPROACH
A. Model and observable

Even though our analytical reasoning can be applied to
arbitrary operators and Hamiltonians, we here consider for
concreteness the dynamics of the particle current in the ex-
tended Fermi-Hubbard chain, which constitutes a physically
relevant many-body quantum problem (see Refs. [44-46] and
references therein). The Hamiltonian of this model reads H =
Sk h, and is a sum over L local terms

t 1 1
hy = —ty Z (¢6Cri1.o T He)+ U(nm - 5) <nw - 5)

o=t

1 1
+U/ Z (nr,a - E) <nr+l,<7’ - 5)’ (2)

where we assume periodic boundary conditions; i.e., we have
L+1=1.c, (c,,) creates (annihilates) a fermion with
spin o at lattice site r and n,., = [ ¢, is the occupation-
number operator. f, is the hopping matrix element and
U,U’ > 0 denote the strengths of the repulsive on-site and
nearest-neighbor interactions, respectively. While the model
is noninteracting for U, U’ = 0, it in fact remains integrable
in terms of the Bethe ansatz also for finite on-site interactions
U > 0 [47]. In contrast, this integrability is broken for any
U’ > 0. Note that H preserves the number of each fermion
species.

As an observable, we consider the particle current. It can
be derived from a continuity equation and takes on the well-
known form (see Refs. [44-46] and references therein) J =

L .
Zr:l Jrs

jr = —h Z [(l ciacr—kl,a + HC)] (3)
o=1.

While the particle current does not depend on U and U’ its dy-
namics does. Only in the case U = U’ = 0, we have [[7, H] =
0. Generally, tr[ 7] = 0 and tr[ 2] = DLt? /4, where D = 4*
is the dimension of the Hilbert space. In this paper, we will be
particularly concerned with the dynamics of current-current
correlation functions. However, as already stated above, all

that follows now carries over to other choices of observable
and Hamiltonian.

B. Projection-operator approach

To apply projection-operator techniques, we first de-
compose the full system H according to Eq. (1) into an
unperturbed system 7 and a perturbation ¢ V. For instance,
for the Fermi-Hubbard chain (2), we will later consider two
different reference systems Hy, i.e., the noninteracting Hy =
H(U = U’ = 0) and the interacting integrable Ho = H(U #
0,0 =0).

After this decomposition, we then define a projection su-
peroperator P, which projects a density matrix p(¢) at time ¢
onto a set of relevant degrees of freedom. This set should at
least include the identity and the observable of interest,

1 C
Poi=5+ (73

where (o) = tr[e]/D. Due to (7) = 0, P> = P. In this work,
we are interested in the time-dependent part C(¢) of the pro-
jected density matrix. It is important to note that, using the
projection in Eq. (4), C(¢) is not identical in the Schrodinger
and interaction picture. Even though C(¢) is a coefficient and
not an expectation value, it will turn out below that C(¢) can
be expressed in terms of certain types of correlation functions.
Importantly, throughout this paper, the notions of Schrédinger
or interaction picture should be understood with respect to the
dynamics of the density matrix. This wording should not be
confused with the fact that expectation values of observables
are the same in both pictures.

While taking into account more degrees of freedom is pos-
sible, this will not be necessary for our purposes. In particular,
for initial conditions p(0) in the span of 1 and 7, we further
have Pp(0) = p(0). From now on, we will focus on such kind
of initial conditions, which also appear in the context of linear
response theory [48].

After having defined the projection superoperator (and the
reference system), the so-called time-convolutionless (TCL)
projection-operator technique routinely leads to a time-local
differential equation for the evolution of P p;(¢) in the interac-
tion picture [43,51],

T, C@)=(Tp®), “

0
EPPI(I) =GP +Zt)(1—=P)p0), ()

where pi(t) = e7o' e M p(0)eM e~ Ho" The term Z(2), i.c.,
the inhomogeneity on the right-hand side (rhs) of Eq. (5), can
be neglected, due to (1 — P)p(0) = 0. The generator G(¢t)
is given as a systematic series expansion in powers of ¢. In
many cases, just like in our case, odd orders vanish. Hence,
the lowest order is the second order and reads

Ga(t) = &2 / dt' PLOLE P, 6)
0

where the Liouvillian is given by L(t) e = —i[Vi(t), e] with
Vi(t) = et Y(0) e~ ot

So far, we have invoked no significant assumption. The
central assumption in the following will be a truncation to
lowest order. The quality of such a truncation naturally de-
pends on the perturbation strength ¢, but also on the structure
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of the perturbation V and the degrees of freedom in the
projection superoperator P. Note, however, that a truncation
to lowest order does not necessarily imply that we have to
restrict ourselves to weak perturbations &€ — 0 and long times
t — oo. In particular, a lowest-order truncation turns out to
be reasonable in many situations [41]. While the quality can
naturally be further improved by taking into account higher-
order corrections [52], conditions for neglecting higher orders
at rather large ¢ can be found in Ref. [52].

Now, we use a truncation to lowest order, as well as the
simple mathematical facts that

Ct)x (TJW)T), Ct) x(T@)A{@)), (7

which relate the time-dependent part of the density matrix (in
the Schrédinger or interaction picture) to a certain type of cor-
relation function. (A derivation of this relation can be found in
Appendix C.) In particular, within the TCL formalism, a rate
equation can be obtained for Ci(¢) in the interaction picture,

0
ST OTD) = =& ) (TOTD), ®)
where J(t) = €' 7(0) e~ and the time-dependent damp-

ing y,(¢) results from a time integral over a kernel k,(¢,¢') =
kZ(T =t— t/)’

(ilJ, V(LT , Vi)
(T2 '
Apparently, if k,(t) — O for sufficiently long times, then we
have y,(t) — const at such time scales. We note that the
kernel k,(7) can in principle be calculated analytically in the
thermodynamic limit, if the reference system #, is integrable.
But often a numerical calculation of k,(7) in systems of finite
size is sufficient [52].
The solution of rate equation (8) obviously is an exponen-
tial decay of the form

(JOR@) 2/’ ' ,}
77 exp |: £ ; dt’ y,(t")|. (10)
This solution reflects our central result: Within our TCL
approach, the time-dependent part of the density matrix is
damped exponentially in the interaction picture and not neces-
sarily in the Schrodinger picture. Clearly, both pictures must
agree, if the observable 7 is preserved in the reference system
Ho, [T, Hol = 0. For instance, for the particle current in the
Fermi-Hubbard chain, this preservation is given in the nonin-
teracting Hy = H(U = U’ = 0). Therefore, both pictures can
also be expected to be rather similar, whenever the dynamics
of Ji(t) is sufficiently slow compared to the dynamics of
J(t). In the general situation, however, the two pictures are
just not the same:

(T @) T )e=0 ” (TORD)

(TO)T)e=0 (7

Hence, a priori, one cannot expect that the lowest-order
prediction of an exponential decay in Eq. (10) simply car-
ries over to the Schrodinger picture, and the relaxation
dynamics of (J(¢)J)e~0 may exhibit nontrivial behavior
that is distinct from typicality predictions in Refs. [24,25].
For instance, as we demonstrate later, this difference is
eye striking for the strongly interacting reference system

ya(t) = f dt ko(2), ka(z) = ©)
0

(1)

Ho = H(U > 1, U’ = 0). Note that Eq. (10) has also con-
sequences for transport quantities.

III. NUMERICAL ILLUSTRATION

Next, we illustrate our central result in numerical simula-
tions after a description of the employed method.

A. Method

To study system sizes larger than what is possible with full
exact diagonalization (ED), we rely on the concept of dy-
namical quantum typicality (DQT) [39,40,42,53] and obtain
time-dependent autocorrelation functions from a single pure
state |¢), which is drawn at random from a high-dimensional
Hilbert space. While this approach is by now well established
for “standard” correlation functions such as (7 (t)J) (see
Refs. [54,55] and references therein), the dynamics of correla-
tion functions with a more complicated time dependence such
as (J(@)Ji(t)) can be obtained in a rather similar fashion.
Specifically, we first introduce the two auxiliary pure states

(1)) = e M e Yy, o)) = e M T |y),
(12)

and then approximate the autocorrelation function and its time
dependence as
(pOIT le(1)) 1

TR0 = =525 0( ).y
where the statistical error becomes negligibly small for system
sizes studied here. Compared to the usual approximation of
(J@)J) [56,57], the approximation of (7 (¢)J1(¢)) is more
costly from a numerical point of view, since at each point in
time an additional backward propagation with respect to the
reference system #, is required. However, this extra operation
can still be carried out in large Hilbert spaces beyond the
range of full ED, thereby reducing the impact of finite-size
effects (see Appendix B for a detailed analysis of finite-size
effects). In this paper, we treat systems with up to L = 16,
where D & 4.3 x 10°, and the largest symmetry subspace has
a dimension ~107. Note that a time evolution of the form (12)
is also relevant for the stability of quantum motion with re-
spect to a static perturbation [58].

B. Results

Let us now turn to our actual numerical results for the
two scenarios of a noninteracting and an interacting reference
system.

1. Noninteracting reference system

We start with a decomposition where the reference system
is chosen to be noninteracting, Hy = H(U = U’ = 0), such
that Schrodinger and interaction picture are identical, C(¢) =
Ci(t), due to [J, Ho] = 0. The role of the perturbation is then
played by the particle-particle interaction terms. In Fig. 1, we
summarize the decay of the current autocorrelation function
(TJ®)T) = (T @)J1(t)) for a finite system of size L = 16
and interaction strengths U/f, = U’ /t, = ¢ < 4. The decay is
faster the larger ¢, and an exponential relaxation for weak &
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FIG. 1. (a) Decay of the current autocorrelation function
(J ()T for the noninteracting Ho = H(U = U’ = 0), which is per-
turbed by particle-particle interactions of various strengths U/t, =
U’ /t, = ¢ < 4. Numerical results from DQT in a finite system of
size L = 16 are compared to the lowest-order prediction of the
TCL projection-operator technique in Eq. (10). (b) Kernel &, () and
(c) rate y»(t), as both given in Eq. (9), for L < 16. Finite-size effects
are mild and systematic. The expected plateau value of y,(¢) for
L — oo is indicated (dash-dotted line).

changes into a Gaussian type of relaxation for stronger . This
overall behavior is in qualitative agreement with the lowest-
order prediction of the TCL projection-operator technique in
Eq. (10). Note that the Gaussian behavior is expected due to
y2(t) o< t at small ¢, which becomes relevant for large ¢ [52].
To exclude that this agreement is accidental, we depict
in Figs. 1(b) and 1(c) numerical results for the kernel k,(t)
and rate y,(t), as both given in Eq. (9), for different chain
lengths L < 16. Apparently, k,(¢) decays fast to zero, and the
visible finite-size effects set in at time scales after this initial
decay. As a consequence, the damping y»(¢) shows a mild
dependence on system size and, in particular, a conclusion on
the plateau value of y,(¢) for L — oo is possible. Therefore,
we can quantitatively evaluate the lowest-order prediction in
Eq. (10) and compare to the direct numerics in Fig. 1 dis-
cussed before. We find that the agreement is remarkably good
over a wide range of perturbation strengths &, and small dif-
ferences might be either related to residual finite-size effects
or missing higher-order corrections. A detailed analysis of
finite-size effects can be found in Appendix B. Thus, our TCL

(T ()T )e>0

VIONSVE)

(TOR®))/(T?)

0 5 10
ttn

FIG. 2. Decay of (a) C(t)=(J@®)J) and (b) C()=
(T@) @)y for the interacting Ho = H{U/t, =16,U" = 0),
which is perturbed in this case by nearest-neighbor particle-particle
interactions of strength U’/f, = ¢ < 2. Numerical results from
DQT are shown for a finite system of size L =12 and in
(b) additionally compared to the lowest-order prediction of the TCL
projection-operator technique in Eq. (10). For the kernel k,(¢) and
rate y,(t), see Fig. 5 in Appendix B. The inset in (a) shows the
ratio between (J(t)J )e~o (perturbed dynamics) and (J(#)J )e=o
(unperturbed dynamics) in the Schroédinger picture. This ratio is a
nontrivial function and does not coincide with the damping in the
interaction picture.

approach correctly captures the “standard” case of exponen-
tial damping of (7 (¢)J), in agreement with typicality and
random-matrix considerations [24—26].

2. Interacting reference system

Finally, and most importantly in the context of this paper,
we turn to the decomposition H = Hy + ¢V with an inter-
acting reference system, Ho = H(U # 0, U’ = 0), where the
Schrodinger and interaction picture are no longer the same,
C(t) # Ci(t), and the perturbation V is given by the nearest-
neighbor interaction U’ > 0. We decide to choose a large
on-site interaction U/t, = 16 > 1, since the dynamics for
such U is known to have rich features [59,60]. However,
the overall phenomenology emerges for smaller values of U
as well, as can be seen in the additional data presented in
Appendix A. As shown in Fig. 2(a) for a finite system size
L=12,C()=(J()J) in the Schrodinger picture exhibits
oscillatory behavior, where the frequencies and zero crossings
also vary with the strength U’/f, = ¢ of the nearest-neighbor
interaction. Hence, from visual inspection, it is clear that
unperturbed and perturbed dynamics cannot be related by a
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simple damping function. Their nontrivial relation becomes
even more obvious by plotting their ratio (see the inset of
Fig. 2).

In the interaction picture, however, the situation turns out
to be different. As shown in Fig. 2(b), the behavior of C((¢) =
(T (@)A(t)) is like the one in Fig. 1. It decays monotonously
and changes from exponential to Gaussian type of relaxation
as ¢ is increased, in qualitative agreement with the lowest-
order prediction of the TCL projection-operator technique
in Eq. (10). Furthermore, a quantitative comparison is also
feasible, since the corresponding kernel k,(z) and rate y»(t)
are converged with respect to system size (see Fig. 7 in Ap-
pendix B), at least for the time scales depicted in Fig. 2(b).
Apparently, the agreement is not as convincing as before
and deviations set in for times ¢ #, ~ 4. However, for such
times, the direct numerics is known to still depend on system
size (see, e.g., Refs. [59,60] and Appendix B), and devia-
tions might eventually disappear in the thermodynamic limit
L — oco. We should also stress that the restriction by the
finite-size time ¢ f;, ~ 4 does not allow us to study very weak
perturbations ¢ < 0.1 in our numerical simulation, where the
relaxation takes place on a much longer time scale. How to
numerically study the limit of very weak ¢ therefore remains
an open problem.

In the specific context of currents, this result also has
direct consequences for the transport behavior [61-63]; i.e.,
only in the interaction picture is the dynamics of the density
matrix exponentially damped due to perturbations such that
(1) the frequency dependence of the conductivity has a simple
Lorentzian form and (ii) the dc conductivity o4 scales as
o4c o 1/&2. But for the dynamics of the density matrix in the
Schrodinger picture, which is of actual interest, both (i) and
(i1) cannot be expected (see also the corresponding data shown
in Appendix D).

IV. CONCLUSION

We have addressed the question of how the dynamics
of a given quantum system is altered when a perturbation
is switched on. We have shown that, within our analyti-
cal approach based on projection-operator techniques, the
“standard” case of exponential damping occurs for the den-
sity matrix in the interaction picture but not necessarily in
the Schrodinger picture. This key point we have illustrated
explicitly in numerical simulations for charge transport in
the strongly interacting extended Fermi-Hubbard chain, as a
physically relevant many-body problem. Using this example,
we have unveiled the emergence of nontrivial damping of
current-current correlation functions, which is on the one hand
not expected from typicality and random-matrix considera-
tions and on the other hand demonstrates the complexity of
quantum many-body systems out of equilibrium. While our
numerics has focused on one specific example, our analyti-
cal reasoning suggests a similar behavior for other quantum
systems. We expect that a nontrivial damping of relaxation
dynamics in perturbed many-body quantum systems occurs
most likely for cases where already the unperturbed dynamics
possesses rich features. Thus, strongly interacting spin-1/2
XXZ chains or ladders [64—66] are natural candidates and
promising future directions of research. However, we do not

t
exp|:752 dt"yg(t')} ——
0 4

0
IN|

[\v]

(T ()T )e>0
S

(T()T)e=

VIONSVE)

(TOR®))/(T?)

0 ) 10

FIG. 3. Similar data as depicted in Fig. 2, but now shown for the
on-site interaction strength U /#, = 8.

expect that integrability is a necessary condition. It would also
be desirable to tackle the open problem of how to numerically
study the limit of very weak perturbations.
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APPENDIX A: OTHER VALUES FOR THE ON-SITE
INTERACTION

Since we have focused in the main text on a strongly inter-
acting reference system Ho = H(U/f, > 1,U’ =0) with a
single on-site interaction strength U/, = 16, we redo the cal-
culation in Fig. 2 for another value of U. As shown in Fig. 3,
the overall picture remains the same for U/, = 8. Therefore,
our numerical illustration is not fine tuned with respect to U'.
Additionally, Fig. 4 shows similar data as Fig. 3(a) but for
small interaction strengths U /f, = 2 and U /f, = 1. Naturally,
with decreasing interaction strength U, we start to approach
the noninteracting limit where 7 is conserved and the oscilla-
tions in the reference dynamics disappear. However, while the
ratio (J ()T )es0/{T ()T )e=o assumes a more well-behaved
shape, the relation between perturbed and unperturbed
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FIG. 4. Similar data as depicted in Fig. 3(a), but now shown for smaller on-site interaction strengths (a) U/, =2 and (b) U/t, = 1.

dynamics remains hardly reconcilable with exponential damp-
ing for U/t = 2.

APPENDIX B: FINITE-SIZE SCALING

1. Interacting reference system

In the main text, we have mentioned in the context of Fig. 2
that the corresponding kernel &, (#) and the rate y;,(¢) are con-
verged with respect to system size for the relevant time scales.
To support this, we depict in Fig. 5 the numerical results for
k,(¢) and y, (1) for different system sizes L < 15. We have also
mentioned that finite-size effects for the strongly interacting
case U/t, = 16 in Fig. 2 occur for times ¢ #, ~ 4. Since we
have shown curves for a single system size L = 12 there, we
now illustrate in Fig. 6 these finite-size effects explicitly by
depicting curves for different system sizes L < 15. We do so
for H(U /1, = 16, U’ = 0), which enters as H,, the interaction
picture for all perturbations U/, = ¢ > 0.

2. Noninteracting reference system

In the discussion of Fig. 1 in the main text, we have men-
tioned that small differences between direct DQT calculations

s |\ R8s
= 13 14—
05 ¢ 2= i
=
= gL 4
i o | (b) i
= L=09 10
= 11 12
& 13 14
15—
O |
0 10 20
tty

FIG. 5. Second-order (a) kernel k,(¢) and (b) damping y»(¢), as
both given in Eq. (9) of the main text, for the interacting Ho =
HU/t, = 16, U’ = 0). Numerical results from DQT are shown for
various chain lengths L < 15.

and lowest-order TCL predictions of the current autocorre-
lation function (7 (¢).J) might in part be related to residual
finite-size effects. To support this, we depict similar data for
different system sizes and for two exemplary perturbation
strengths ¢ = 0.2 and ¢ = 0.6 in Fig. 7. Numerical results
from DQT for different system sizes L < 16 are shown and
compared to the lowest-order prediction of the TCL projection
operator technique in Eq. (10) of the main text. Here, we show
three different curves (labeled as TCL;5, TCL ¢, and TCL,),
corresponding to the rate y,(¢) obtained for the two largest
numerically accessible chain lengths L = 15, 16 as well as
its estimate for the thermodynamic limit L — oo, featuring
a constant plateau for 7 #, = 4 [see Fig. 1(c) of the main text].
For ¢ = 0.2 [Fig. 7(a)], the DQT curves for the largest system
sizes are converged up to times t#, ~ 5 and coincide with
all three TCL curves. For later times, both the DQT and the
TCL results show mild finite-size effects, whereby the TCL,
prediction appears to agree best with the scaling behavior of
the DQT data. For ¢ = 0.6 [Fig. 7(b)], a very similar behavior
is found in the comparison of the DQT and the TCL curves.
Complementary to the DQT and the TCL data, Fig. 7 also
shows numerical results for (J(¢).7) in the thermodynamic
limit L — oo as obtained by means of a numerical linked-
cluster expansion (NLCE) (see, e.g., Refs. [67,68] and below)
for different expansion orders cyax < 15. The NLCE results

Ly p=12 —- Uty =16 7

(T®OT)/T?)

tin

FIG. 6. Time dependence of the current autocorrelation function
(J(#)J) in the strongly interacting system H(U/t, = 16,U’ = 0),
as obtained from DQT for different system sizes L < 15. For such L,
data are converged up to times ¢ #;, ~ 4. Similar data can be found in
Ref. [60].
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0L : .

(b) e =0.6

DQT
TCLis
TCLis
TCLw
NLCE

10

tin

15 0

tin

FIG. 7. Time dependence of the current autocorrelation function (7 (¢).7) in the noninteracting system o = H(U = U’ = 0), which is
perturbed by interactions U/t, = U’ /t, = ¢ for two exemplary strengths (a) ¢ = 0.2 and (b) ¢ = 0.6. Numerical results from DQT are shown
for different system sizes L = 9, ..., 16 and compared to the lowest-order prediction of the TCL projection-operator technique in Eq. (10) of
the main text. For the TCL curves, different rates y,(#) corresponding to finite system sizes L = 15 (TCL15), L = 16 (TCL16), as well as its
estimate for L — 0o (TCLoo) are used [cf. Fig. 1(c) of the main text]. Additionally, (NLCE) data are shown for expansion orders ¢y, < 15.

agree with the DQT and the TCL data at times ¢ #;, < 5 for both
e = 0.2 and ¢ = 0.6. Beyond times ¢, ~ 5, the NLCE does
not add much to the information on the thermodynamic limit
for ¢ = 0.2. However, for ¢ = 0.6, the NLCE curves are con-
verged just long enough to indicate that the TCL, prediction
is most suitable to describe (7 (¢)J) in the thermodynamic
limit.

NLCE in a nutshell

In the framework of NLCE, the per-site value of the current
autocorrelation function on an infinite chain can be expanded
in terms of its respective weights W, on all linked (sub)clusters
(i.e., open-boundary chains of different lengths c),

(TOTV/L =Y Wet). (BI)

For numerical calculations, the sum in Eq. (B1) naturally
has to be truncated to the maximum accessible cluster size
Cmax- This, together with the inclusion-exclusion principle
for the calculation of each weight, W.(t) = (J(t)J)© —
> sce Wi(t), results in the very simple expression approximat-
ing Eq. (B1),

Cmax

D o Welt) = (TOT) ) —(TOT) ", (B2)

which is reliable up to a certain maximum time, increasing
with the maximum cluster size cmax. The (J () 7)) (evalu-
ated on open-boundary chains of length c) are again obtained
with DQT and additionally averaged over multiple random
states in order to counteract the sensitivity of the difference
in Eq. (B2) to small statistical errors.

APPENDIX C: RELATION TO CORRELATION
FUNCTIONS

To see that (TPp1(t)) o (J (@) Ji(t)), we first insert the
definition of the projection superoperator P in (JPpi(t)),
which yields

(T 1))

1
PRYE ‘7>>

D (CI)

(TPpu(t)) = <J(

Since (J) = 0, performing the outer angles leads to

(TPp1()) = (T pr(1)).

We then insert the initial condition p(0) o< 1 + b7 and use the
time dependence of a density matrix in the interaction picture,
p1(t) = et ¢~ 5(() et ¢~ Ho! | to obtain

(C2)

(TPpi(0) o (T e (14 bT) e e ™0r). (C3)
Using (J) = 0 again, we thus get
(TPoi1)) oc (TeThr e F &M ™) (Ca)
which, after a cyclic permutation, reads
(TPpr()) oc (e FeMt el 7 oMty (C5)

Denoting by J(t) = &' J e~ and Ji(t) = e/™0" J e~ Ho!
the time evolution of an operator in the Heisenberg and inter-
action picture, respectively, we can write

(TPpi(®)) o (T (=1)Ti(—1)).

Due to J' = J, we can replace t — —¢ and end up with

(C6)

(TPpi(0)) < (T @) (1)). (e7))

0_37[/:12 U/t, =16 528.8—7
-<«—— Drude weight 8%1
s | 0.8
>~ | ldc values S]?OU/Q' %8
= ’//’ W
| 1.6
1.8
2.0

0

15
w/th

FIG. 8. Frequency dependence of the conductivity o (w), as ob-
tained by the Fourier transform (D1) of the current autocorrelation
functions shown in Fig. 2(a) of the main text.
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APPENDIX D: CONDUCTIVITY

In Fig. 8, we show the frequency-dependent conductiv-
ity in the strongly interacting system H(U /t, = 16, U’ = 0),
perturbed by interactions U’/f, = ¢. This conductivity is ob-
tained by the Fourier transform of the current autocorrelation
functions depicted in Fig. 2(a) of the main text,

Imax

with a cutoff time fp,#, = 100. The overall shape of the
conductivity is incompatible with a simple Lorentzian form,
while the freestanding shoulder shifts from higher to lower
w as the perturbation strength increases, attesting to the shift
in the frequencies observed in the oscillatory behavior of the
corresponding current autocorrelation functions. In addition,
the spectral weight at small w provides a rough estimate for
the value of the dc conductivity oq4., which clearly does not
scale as og. o 1/¢2. For the detailed extraction of oy, see
Ref. [45].
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