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It recently has been found that methods of the statistical theories of spectra can be a useful tool in the analysis
of spectra far from levels of Hamiltonian systems. The purpose of the present study is to deepen this kind
of approach by performing a more comprehensive spectral analysis that measures both the local- and long-
range statistics. We have found that, as a common feature, spectra of this kind can exhibit a situation in which
local statistics are relatively quenched while the long-range ones show large fluctuations. By combining three
extensions of the standard random matrix theory (RMT) and considering long spectra, we demonstrate that this
phenomenon occurs when disorder and level incompleteness are introduced in an RMT spectrum. Consequently,
the long-range statistics follow Taylor’s law, suggesting the presence of a fluctuation scaling (FS) mechanism
in this kind of spectra. Applications of the combined ensemble are then presented for spectra originate from
several very diverse areas, including complex networks, COVID-19 time series, and quantitative linguistics,
which demonstrate that short- and long-range statistics reflect the rigid and elastic characteristics of a given
spectrum, respectively. These observations may shed some light on spectral data classification.

DOI: 10.1103/PhysRevE.104.054144

I. INTRODUCTION

In the late 1950s, Wigner proposed an ensemble of ran-
dom matrices as a tool to describe statistical properties in the
dense region of the spectra of many-body systems. During the
1960s, the formalism was then fully developed by Wigner,
Mehta, and mainly Dyson in a series of seminal papers (see
Ref. [1] for a review with preprints). Random matrix theory
(RMT) could then be considered as a well-established theory
with a body of statistical measures that became known as
the Wigner-Dyson statistics [2]. This standard RMT is con-
stituted by three classes of ensembles of Hermitian Gaussian
matrices whose elements are real, for the Gaussian orthog-
onal ensemble (GOE), complex, for the Gaussian unitary
ensemble (GUE), and quaternion, for the Gaussian symplectic
ensemble (GSE). These classes are labeled by the Dyson
index β that gives the number of degree of freedom of the
matrix elements, 1, 2, and 4, respectively. A great boost in
applications came at the beginning of the 1980s when the
link to the manifestations of chaos in quantum systems was
set by the Bohigas-Giannoni-Scmit conjecture that states the
equivalence between quantum chaos and RMT [3], while, in
contrast, regular systems would have the uncorrelated Poisson
statistics. The Wigner-Dyson statistics contains two kinds of
measures: short-range ones that probe local correlations, for
which the most used measurement is the nearest-neighbor
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distribution (NND), and the long-range ones that probe cor-
relations along the spectrum, for which the number variance
(NV) is the most employed quantity (see Appendix A for its
connection with the two-point correlation function). Hence-
forth, the NND and the NV will be the main quantities of
interest in this work.

Generally speaking, spectra are points on a line, and their
existence are not restricted to Hamiltonian systems as had
been extensively treated in classical RMT. For instance, the
sequence of prime numbers forms a spectrum. Moreover,
spectra can be also constituted in situations in which line and
points are considered in a general way [4]. For example, as
studied in Ref. [5], if punctuation is removed from a text, then
the text becomes a spectrum of blanks. In this case, the NND is
the distribution of the distances between neighboring blanks,
measured by the number of letters, and it thus gives the distri-
bution of the length of words. The same idea can be applied to
Chinese characters by considering that for characters strokes
play the same role as letters do for words. For polymers,
proteins and DNA are sequences of letters, and by just taking
out a given letter, then a spectrum is defined [6]. In addition
to the above areas of nonstandard spectra, in this work, we
also extend the analysis to spectra extracted from complex
networks and from correlation matrices of COVID-19 time
series.

Despite the success RMT had enjoyed for the understand-
ing of spectra generated from physical systems in the more
than half century of its existence (see the review paper [7]
with more than 800 references), spectra far from levels of
Hamiltonian systems usually manifest properties, such as
large fluctuations in long-range correlations, that cannot be
fully accounted for by classical RMT. Therefore, extensions
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of the original formalism have also been proposed in order
to enlarge the range of applications of the random matrix
approach. Since complex empirical systems usually possess
less symmetries than most Hamiltonian systems, and they are
often not closed but subject to external noises, here we are
particularly interested in taking into account the effects of
three relatively recent RMT generalizations. The first one is
the so-called beta ensemble [8] made of tridiagonal matrices,
in which the value of the Dyson index β can assume any real
positive value in contrast to the values of 1, 2, and 4 it has
in the Gaussian ensembles, so that the symmetry mandate
can be largely eased. The second generalization, which is
crucial for accounting for the large fluctuation in long-range
statistics, has been called the disordered ensemble, in which
an external source of randomness is introduced that operates
concomitantly with the internal Gaussian ones [9]. Finally, the
third one is the ensemble constructed by randomly removing
a fraction of the eigenvalues from a given spectrum, namely,
the thinned ensemble [10,11]. The removal of levels decreases
the correlations among the remaining ones so that they show
statistics intermediate between Wigner-Dyson and Poisson. In
our scheme, it enters as a tool to take into account the incom-
pleteness of the spectrum, that is, to treat the effect of missing
levels. As will be seen later, the necessity of this ingredient
is actually related to the fluctuation scaling phenomenon. It is
our motivation to show that by combining these three RMT
extensions, a random matrix model is constructed that can
capture special features found in the analysis of spectra that
are far from levels of physical systems.

The need for the three RMT extensions is then imme-
diately justified by the data. The three RMT classes, GOE,
GUE, and GSE, are associated with symmetries of the phys-
ical systems which play no role in the present case turning
necessary to consider arbitrary real values of β. We found
that the NVs show a parabolic increase for large interval, a
super-Poissonian behavior which is a characteristic of disor-
dered ensembles [9] and is characterized by a larger variance
than the Poisson distribution. In some cases, the NND and
the NV can be fitted only by resorting to the intermediate
statistics of the thinned ensemble whose data is a signature of
defects. However, the most important feature emerges when
the NND and NV data are confronted so that they can behave
independently. This means that we are dealing with a special
kind of spectra that shows a certain degree of complexity and
elasticity, which are typical characteristics of soft matter [12].
In this respect, the local- and long-range correlations, that is
the NND and NV, correspondingly are manifestations of the
rigid and the elastic aspects of a given spectrum, hence the
NND and NV are bound to give some advantages to spectral
data classification.

The analogy of spectra to the state of matter is known in the
theory of spectra [13]. Actually, the configuration exhibited
by the RMT eigenvalues as a consequence of the repulsion
among them has already been considered as related to a crystal
lattice structure. The picture is that the eigenvalues behave as
a picket fence in which they vibrate around fixed points [14].
Here the analogy is extended to show that a new phase appears
when spectra are subjected to external sources of randomness.

This paper is then organized as follows. In the next section,
we discuss in detail the three RMT extensions. In Appendix A

we show how the external source modifies the number vari-
ance, and in Appendix B we derive the basic asymptotic
expressions for very long spectra. Section III applies the for-
malism in the analysis of spectra extracted from three different
areas regarding complex networks, COVID-19 time series,
and literary texts. Finally, we conclude this work in the last
section.

II. DISORDERED BETA THINNED ENSEMBLE

Before combining the three RMT extensions, namely, the
beta, the disordered, and the thinned ensembles, we give a
summary of their main points. One should keep in mind that
our main focus would be the short- and long-range statistics,
i.e., the NND and the NV, of each ensemble. The main points
are then illustrated in Figs. 1 and 2, which would be fur-
ther employed to interpret the behavior of empirical spectra.
Though Sec. II B 1 is useful for obtaining the matrix elements
of the disordered ensemble, it is not very relevant to the
subsequent discussions, and one may skim through it to just
get a rough idea.

A. The beta ensemble

The beta ensemble consists of a family of Hermitian tridi-
agonal matrices

Hβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2

. . .

. . .

. . .

bn−2 an−1 bn−1

bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where the diagonal elements ai are normally distributed,
namely, N (0, 1), while the bi are distributed according to

fν (y) = 2 exp(−y2)yν−1

�(ν/2)
, (2)

with ν = (n − i)β and β is a real positive parameter. From
this definition, it is found that the joint density distribution of
the eigenvalues is given by [8]

Pβ (E1, E2, . . . , En) = Cβ
n exp

(
−1

2

n∑
k=1

E2
k

)∏
j>i

|Ej − Ei|β.

(3)
As stated in the introduction, the above equation shows that
for β = 1, 2, and 4 their eigenvalues share all the statistical
properties of the RMT Gaussian classes of matrices, that is,
they have Wigner-Dyson statistics. For arbitrary values of β,

analytic expressions are not yet fully derived. Asymptotically,
it can be shown that when β → 0 with the matrix size kept
fixed, the matrix becomes diagonal, and in this case, the
density of eigenvalues is Gaussian and the Poisson statistics
follows. On the other hand, when β → ∞ fluctuations are
suppressed.

For the product nβ � 1, the asymptotic density of eigen-
values is the semicircle law

ρβ (E ) = 1

πβ

√
2nβ − E2, (4)
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and the NND is well described by the Wigner surmise

pβ (s) = 2Bβ+1sβ

�[(β + 1)/2]
exp[−(Bs)2], (5)

where B = �( β+2
2 )/�( β+1

2 ) and s = 2Nβ (E/2) with

Nβ (E ) =
∫ x

0
ρβ (E ′) dE ′

= n

π

(
arcsin

E√
2nβ

+ E√
2nβ

√
1 − E2

2nβ

)
. (6)

Equation (5) defines a one-parameter family of functions,
whose parameter β can be determined by fitting the data as
had been done in Ref. [5]. In addition, the fluctuations in the
number of eigenvalues in the interval (− θ

2 , θ
2 ) is characterized

by the number variance 〈n2〉 − 〈n〉2. For the GOE with β = 1,
we have the number variance expressed in terms of the un-
folded interval length L = 〈n〉 = 2Nβ (θ/2) as [2,15]

�2
GOE = 〈n2〉 − 〈n〉2 = 2

π2

[
ln(2πL) + 1 + γ − π2

8

]
, (7)

where γ denotes the Euler gamma constant.

B. The disordered beta ensemble

Disordered ensembles were defined in [9] by considering
random matrices HD(ξ ) which are obtained from a random
matrix H of a given ensemble by the relation

HD(ξ ) = ξ̄

ξ
H, (8)

where ξ is a positive random variable sorted from a distribu-
tion w(ξ ) with first moment ξ̄ . This scheme emerged from a
generalization of an ensemble generated, by two independent
groups, via using the maximum entropy principle based on
the Tsallis entropy [16,17]. It has been labeled “disordered”
as an external source of randomness, which is represented by
the random parameter ξ , is imposed on the internal random-
ness. The amplitude of the disorder is then controlled by the
localization of the distribution w(ξ ) around its average; cf.
Appendix A.

From this relation, it follows that, in the case of the above
matrix Hβ , the joint density distribution of the 2n − 1 matrix
elements of the disordered matrix HD is given by

P(HD) =
∫ ∞

0
dξw(ξ )

(
ξ

ξ̄

)n−1/2

Pβ

(√
ξ

ξ̄
HD

)
(9)

that, explicitly, gives

P(HD) = Cβ
n

∫ ∞

0
dξw(ξ )

(
ξ

ξ̄

)γn

exp

(
− ξ

2ξ̄

n∑
i=1

d2
i

)

×
n−1∏
j=1

c jβ−1
j exp

(
− ξc2

j

ξ̄

)
, (10)

where γn = n
2 + n(n−1)

4 β and the diagonal elements are de-
noted by the letter d and subdiagonal ones by the letter

c. Choosing the distribution w(ξ ) to be given by (see
Refs. [18,19] for other choices)

w(ξ ) = 1

�(ξ̄ )
exp(−ξ )ξ ξ̄−1, (11)

which follows from the Tsallis entropy formalism, the integral
in ξ can be performed, and the expression

P(HD) = 2n−1

(2π )n/2
∏n−1

j=1 �( jβ/2)

(
1

ξ̄

)γn

× �(ξ̄ + γn)
∏n−1

j=1 c jβ−1
j

�(ξ̄ )
(
1 + 1

2ξ̄

∑n
i=1 d2

i + 1
ξ̄

∑n−1
j=1 c2

j

)ξ̄+γn
(12)

is obtained. As a consequence, explicitly the matrix elements
are not independent anymore but correlated. As will be seen
later, this correlation among the matrix elements further in-
duces a positive correlation within eigenvalues so that they
may show aggregated behavior at longer ranges, leading to
large fluctuations in the long-range statistics. This is in stark
contrast to the level-repulsion behavior in the pure beta en-
semble. Therefore, the disorder effect will constitute a crucial
factor for understanding the large fluctuations manifested in
long-range statistics of empirical spectra. We now show how
this expression can be used to generate first the matrix ele-
ments and after the eigenvalues.

1. Matrix elements

Although Eq. (8), in principle, can be used to generate the
disordered matrices, it is also instructive to be able to obtain
the elements of the matrices by taking into account the corre-
lations among them. This can be done, for instance, by sorting
them in the sequence d1 → c1 → d2 → · · · → cn−1 → dn.

This means to factorize their distribution PD(HD) as

PD(d1, c1, d2, . . . , cn−1, dn)

= P(d1)
P(d1, c1)

P(d1)

P(d1, c1, d2)

P(d1, c1)
. . .

P(d1, c1, d2, . . . , cn−1, dn)

P(d1, c1, d2, . . . , cn−1)
,

(13)

where each fraction denotes a conditional probability; that is,

P(d1, c1)

P(d1)
= P(c1|d1) (14)

is the probability of sorting the value c1 after the value d1;

P(d1, c1, d2)

P(d1, c1)
= P(d2|d1, c1) (15)

is the probability of sorting the value d2 after the values d1, c1;
and so on.

Starting with n = 1, γ1 = 1
2 , and

P(d1) = 1√
2πξ̄

�(ξ̄ + 1/2)

�(ξ̄ )
(
1 + 1

2ξ̄
d2

1

)ξ̄+1/2
, (16)

such that, by making the substitution of variable

d1 = ±
√

2ξ̄

√
t1

1 − t1
, (17)
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it is found that t1 is sorted from the beta distribution f (t1; 1
2 , ξ̄ )

and the signs ± are chosen with equal probability. Proceeding,
assuming that all the elements of the diagonal block of the ma-
trix with dimension (k − 1) × (k − 1) are already obtained,
then the off-diagonal element ck−1 of the k × k block is given
by

ck−1 =
√

Q̃k−1ξ̄

√
t̃k−1

1 − t̃k−1
, (18)

where

Q̃k−1 = 1 + 1

2ξ̄

k−1∑
i=1

d2
i + 1

ξ̄

k−2∑
j=1

c2
j (19)

and t̃k−1 is sorted from the beta distribution f (t̃k−1; k−1
2 β, ξ̄ +

γk−1). Next, the diagonal term dk is obtained as

dk = ±
√

2Qk ξ̄

√
tk

1 − tk
, (20)

where

Qk = 1 + 1

2ξ̄

k−1∑
i=1

d2
i + 1

ξ̄

k−1∑
j=1

c2
j (21)

and tk is sorted from the beta distribution f (tk; 1
2 , ξ̄ + γk − 1

2 ).
In this way, all the elements of a disordered matrix are deter-
mined. We remark that by considering these elements as steps

of a random beta process they have an interest in themselves
[20,21].

2. The eigenvalues

We start observing that in the denominator of Eq. (12)∑n
i=1 d2

i + 2
∑n−1

j=1 c2
j = trH2

D = ∑n
i=1 x2

i , with xi =
√

ξ̄

ξ
Ei.

Besides, as we are dealing with tridiagonal matrices whose
subdiagonal elements are positive, they satisfy two important
lemmas: the first one states that the Vandermonde determinant
is given by

�(x) =
∏
j>i

(x j − xi ) =
∏n−1

i=1 ci
i∏n

i=1 qi
, (22)

and the second one states that the Jacobian of the transforma-
tion from matrix elements to eigenvalues and eigenvectors is
given by

J =
∏n−1

i=1 ci∏n
i=1 qi

, (23)

where qi are elements of the first row of the eigenvector
matrix. Substituting these results in Eq. (12) we derive that
eigenvectors and eigenvalues decouple, and we have

PD(x1, x2, . . . , xn) ∝
∏

j>i |x j − xi|β(
1 + 1

2ξ̄

∑n
i=1 x2

i

)ξ̄+γn
(24)

such that if the integral representation of the gamma function
is used we can write the normalized expression

PD(x1, x2, . . . , xn) =
∫ ∞

0
dξw(ξ )

(
ξ

ξ̄

)n/2

Pβ

(√
ξ

ξ̄
x1,

√
ξ

ξ̄
x2, . . . ,

√
ξ

ξ̄
xn

)
. (25)

Therefore, as a consequence, the statistical measures of the disordered beta ensemble are obtained by averaging those of the beta
ensemble with the distribution w(ξ ).

Thus in the RMT regime nβ � 1, the one-point function, that is the density, is obtained by integrating all eigenvalues and
multiplying by n, giving

ρDβ (x) =
∫ ∞

0
dξw(ξ )

(
ξ

ξ̄

)1/2

ρβ

(√
ξ

ξ̄
x

)
= 1

πβ

∫ ξmax

0
dξw(ξ )

(
ξ

ξ̄

)1/2
√

2nβ − ξ

ξ̄
x2, (26)

where ξmax = 2nβξ̄/x2. Integrating the density, Eq. (26), from the origin to a value x, the cumulative function is
obtained as

NDβ (x) = n

2

{
1 −

∫ ξmax

0
dξw(ξ )

[
1 − 2

n
Nβ

(√
ξ

ξ̄
x

)]}
. (27)

To measure the short-range spectral fluctuations we define the probability E (s) that the interval (− s
2 , s

2 ) is empty. This
so-called gap probability is obtained by integrating over all eigenvalues outside the interval (− θ

2 , θ
2 ) to obtain

EDβ (s) =
∫ ∞

0
dξw(ξ )Eβ

[
2Nβ

(√
ξ

ξ̄

θ

2

)]
, (28)

with s = 2NDβ ( θ
2 ). From the gap probability, the NND is obtained by taking the derivatives, F (s) = dE

ds and p(s) = d2E
ds2 , such that

p(s) is the distribution and 1 + F (s) the probability. Analytic expressions for Eβ (s) are known only for the Gaussian ensemble;
in particular, for the case of β = 1, we use the Wigner surmise

E1(s) = erfc

(√
π

4
s

)
. (29)
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The number variance of the disordered ensemble is given by (see the derivation in Appendix A)

�2
Dβ (L) = 〈n2〉 − 〈n〉2 =

∫ ∞

0
dξw(ξ )

{
�2

β

[
2Nβ

(√
ξ

ξ̄

θ

2

)]
+ 4N2

β

(√
ξ

ξ̄

θ

2

)}
− L2, (30)

where L = 〈n〉 = 2NDβ ( θ
2 ) denotes the unfolded interval. Us-

ing the results of Appendix B, we find that asymptotically the
number variance takes the simple form of a parabola given by

�2
Dβ (L) 


⎡⎣(√
ξ√
ξ

)−2

− 1

⎤⎦L2 
 1

4ξ̄
L2, (31)

where the �2
β term that increases logarithmically, in the pres-

ence of the L2 term, has been neglected. Therefore, in this case
the number variance satisfies Taylor’s law [22] exhibiting the
phenomenon that has more recently been named the fluctua-
tion scaling mechanism [23–25].

On the other hand, considering the gap probability, the first
order term in Eq. (B4) can be used such that with s 
 ρ(0)θ
being replaced in Eq. (28), it becomes

EDβ (s) =
∫ ∞

0
dξw(ξ )Eβ

(√
ξ

ξ̄
s

)

 Eβ (s), (32)

as the disorder fluctuations are quenched in the large ξ̄ limit.
The above results show that, asymptotically, the two

sources of randomness acting on the system affect, differently,
the short- and the long-range statistics. The local statistics
are described by the expressions of the beta ensemble, while
the long-range number variance is dominated by the external
source of randomness, similar to systems affected by a strong
external driving in which the internal dynamics of the system
essentially becomes irrelevant for large L [24]. This important
result is illustrated by the numerical simulations exhibited
in Fig. 1, which clearly shows the robustness of the local
statistics in contrast with the high sensitivity of the long-range
one.

It is important to observe that when the value of the pa-
rameter ξ̄ approaches 0, a strong disorder regime is reached in
which the local statistics show a power-law decay [9,17]; also
cf. the discussion in Appendix C. It is also noteworthy that,
for reasons that will be clear in Sec. II D, Eq. (31) is still not
adequate to capture the characteristics of the empirical data
studied in Sec. III. Though its parabolic form seems to be
in accord with what one observes in the data, some further
fine-tuning is still required. One possibility is to additionally
incorporate the thinning ensemble.

C. Thinned ensemble

Using the beta ensemble, we are supposing that we are
dealing with perfect spectra which, necessarily, is not the case
especially for those originating from complex systems that
we are interested in. In order to make our approach more
comprehensive, we add to the model the formalism introduced
in [11] that deals with incompleteness in a sequence being
analyzed. This formalism was a natural development of the
missing level theory [10] and it consists in constructing from

FIG. 1. The effect of disorder on the GOE (β = 1) cumulative
nearest-neighbor distribution and on the number variance. It shows
the robustness of the local statistics in contrast to the sensitivity of the
long-range one. For comparison, the cumulative NNDs of the Pois-
son ensemble (red) and the original GOE ensemble (green), as well
as the asymptotic NV of the disordered GOE ensemble (magenta),
are also displayed.

a given spectrum a new one by removing with a probability
1 − f levels from it, such that the resulting spectrum has, in
average, f levels. In statistics, this construction is denoted
as a thinning point process [26], and it has the important
aspect of preserving, in the less dense object, properties of
the original one. The RMT formalism is based on Fredholm
determinants [2], and this determinantal method is preserved
by the thinning process. This fact explains the great attention
that has recently been attracted by this model [27–31]. In our
case, we use it as a sort of an error-correction code.

In [11], it is shown that the thinned spectra have statistics
intermediate between RMT and Poisson. Moreover, the RMT
formalism analytically also describes this intermediate situa-
tion with f playing the role of a parameter that varies from
zero to one. In terms of the spacing distribution of the initial
spectrum, the NND is given by

p(s, f ) =
∞∑

k=0

(1 − f )kP

(
k,

s

f

)
, (33)

where the lower case denotes the incomplete quantity and the
upper case the original complete one. The P(k, s) are spacing
distribution with k levels inside the interval s and the division
by f taking into account the contraction of the incomplete
spectrum. However, this construction is not very practical for
data fitting purposes due to the lack of an exact form. As
shown in Fig. 2 (where disorder effects are irrelevant in the
NND; see Sec. II D), a simple beta ensemble fitting can be
quite handy in cases when f ∼ 1, especially when data noise
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FIG. 2. The effect of removing levels (solid lines) on the nearest-
neighbor distribution (top pane), the cumulative nearest-neighbor
distribution (middle pane), and the number variance (bottom pane)
of the disordered GOE (β = 1, ξ̄ = 200), with f = 1 (gray), 0.8
(red), and 0.5 (blue), respectively. The nearest-neighbor distribution
implies that the thinned spectra still have level repulsion and an
exponential decay, while the number variance, asymptotically, shows
a parabolic behavior. For f �= 1, the dashed lines correspond to the
beta ensemble fitting with the fitting parameter β ′. Hence, for f ∼ 1,
the effect of the thinning process on the NND is weak, one may
consider a beta ensemble fitting still to be appropriate.

also inevitably render large error margins in the fitting results.
Since in (33) all spacing distributions P(k, s) are normalized
with first moments 〈s〉k = k + 1, it then follows that p(s, f )
also is normalized and has the first moment equal to one. This
shows the need of rescaling the argument of the functions with
the parameter f . Accordingly, for the density we have

ρβ (x, f ) = f ρβ (x), (34)

while for the number variance it can be shown that [11]

σ 2
β (L, f ) = (1 − f )L + f 2�2

β

(
L

f

)
. (35)

The NND expression implies that the thinned spectra still have
level repulsion and an exponential decay as can be seen in
Fig. 2. On the other hand, the number variance expression
shows an asymptotically straight line Poisson behavior. Fi-
nally, we remark that the thinning process has no effect on
an uncorrelated Poisson spectrum.

D. The combined ensemble

In practice, we found that the parabolic tails of data NVs
can not be delineated by solely considering the beta ensemble
and disorder effects. Actually, from an FS point of view, in
many real systems, fluctuations of certain count n should scale
as �2(n) ∼ 〈n〉α . An FS exponent of value 2 corresponds to
totally disordered patterns; an FS exponent of value 1 in-
dicates uncorrelated or short-range correlated patterns (e.g.,
the Poisson ensemble); and an FS exponent less than 1 or a
logarithmic NV [e.g., Eq. (7)] hints at anticorrelated patterns
[24]. Due to nontrivial positive correlations between the con-
stituent components, real systems are usually characterized by
an FS exponent between 1 and 2, the NV of which may be
alternatively expressed as a combination of a linear term and
a quadratic term [22,24]. By noting the linear term introduced
via the thinning process in Eq. (35), it is then natural to also
incorporate the thinned ensemble for the general construction.
Henceforth, by combining the above three ingredients, we
have a disordered randomly incomplete β-spectrum that we
will coin as belonging to the disordered beta thinned ensem-
ble.

According to Eqs. (32) and (33), the local statistics should
be robust with respect to disorder but can be altered by
thinning effects. In Fig. 2 numerical simulations show that
the NND displays a typical intermediate statistics behavior
between Poisson and RMT. As a rule of thumb, the thinning
effect on the NND is weak when f ∼ 1 so that the NND
may still be fitted using only the beta ensemble curve. But
for the number variance data, better results are obtained by
using the expression that takes into account both disorder and
incompleteness, which gives

�2
DβT (L) =

∫ ∞

0
dξw(ξ )

[
σ 2

((
2Nβ

(√
ξ

ξ̄

θ

2

)
, f

))
+ 4

f 2
N2

β

(√
ξ

ξ̄

θ

2

)]
−
(

L

f

)2

, (36)

which, asymptotically, becomes

�2
DβT (L) 
 (1 − f )L +

⎡⎣(√
ξ√
ξ

)−2

− 1

⎤⎦(L

f

)2

, (37)

where L = 2NDβ ( θ
2 ). Hence, the NV shows a much more

sensitive dependence on the thinning parameter f than the
NND; cf. Fig. 2. One may then make use of the NV to obtain

the value for f and utilize it to fit the NND data when Eq. (33)
has to be fully employed if f ∼ 0.

Therefore, in all cases we have NVs that follow Taylor’s
law in the super-Poissonian parabola form aL + bL2. This
implies the presence of an FS phenomenon. As a matter of
fact, here the fluctuation in the scaling can be understood as
the manifestation of the breaking of the ergodicity of the en-
semble enacted by the introduction of the external randomness
[9]. Ergodicity in RMT means that averaging over one large
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matrix is equivalent to an ensemble average; in other words,
individual matrices are equivalent, which, by construction, is
not the case of the disordered ensemble. It is interesting to ob-
serve that fluctuations are enhanced by the thinning process;
cf. Fig. 2. To understand this, note that the super-Poissonian
behavior just means that the eigenvalues have a tendency to
aggregate at certain values rather than distributing uniformly
[22], be it caused by positive correlations between the con-
stituent components, disordered inhomogeneity in the system,
external driving on the system or criticality, etc. [24], whereas
the thinning process simply removes levels uniformly so that
aggregations of eigenvalues are further enhanced overall.

III. APPLICATIONS

RMT has been successfully applied to a wide scope of
complex systems, such as the stock market [32], brain activ-
ities [33], and atmospheric variabilities [34], to name just a
few. To demonstrate the versatility of the combined ensem-
ble, in this section we apply the formalism to the analyses
of spectra extracted from three different areas, namely, the
Laplacian matrix spectra of complex networks, the cross-
correlation matrix spectra of COVID-19 time series, and the
spectra of blanks in Portuguese and Chinese literary texts.
We investigate the NND and NV of all the data. One point
we would like to stress is that we are considering spectra
for which an average constant density can be assumed. This
allows us to rescale the data with respect to the so-called
unfolding process, so that the average spacing equals one, as
proceeded above to obtain the NV in terms of L, which will
be explained further below for our data processing.

A. Complex networks

From transport infrastructures to biological systems, social
interactions, neural networks, and the Internet, a varied array
of systems are made by a large amount of highly intercon-
nected dynamical units [35,36]. One way to capture the global
properties of these systems is to model them as graphs consist-
ing of pairs of nodes connected via links that stand for the
interactions between the dynamical units. Traditionally, the
Erdős-Rényi random graphs [37] were most comprehensively
studied for the investigation of complex network properties.
However, growing observations revealed that many real net-
works behave quite differently from Erdős-Rényi random
graphs, and more realistic network models, such as the small-
world network [38] and the scale-free network [39], have been
proposed.

The spectral analysis of Laplacian matrices of networks is
an important tool for extracting the structural properties of
complex networks. It turns out that these spectra can also be
analyzed under the RMT framework [40–43]. Considering an
undirected network with N nodes (i = 1, . . . , N), the Lapla-
cian matrix is defined as L = K − A [44], where K = diag(ki )
is a diagonal matrix consisting of node degrees ki and A is
the adjacency matrix with elements Ai j = 1 if nodes i and
j are connected and Ai j = 0 if otherwise. In what follows,
we apply RMT to analyze short- and long-range eigenvalue
statistics of the Laplacian matrices of model networks and real

FIG. 3. The NND (top pane) and the NV (bottom pane) of ran-
dom, scale-free, and small-world networks, fitted with respect to
Eqs. (5) and (37). The red curve in the bottom pane marks the GOE
NV given by Eq. (7). The fitted parameters are listed, from left to
right, with respect to random, scale-free, and small-world networks.
The black curve in the top pane shows the averaged NND. The inset
of the bottom pane shows that the data NVs follow the universal GOE
prediction only for small L.

networks, which are described by the NNDs and the NVs of
the eigenvalue spectra.

For model networks, we investigate three well-known
model networks: random networks, scale-free networks, and
small-world networks. Following Ref. [42], we construct net-
works of N = 2000 nodes and similarly set the connection
probability p between pairs of nodes to 0.01 for random
networks, the average node degree k to 20 for scale-free net-
works, and for small-wold networks, the rewiring probability
p = 0.005 and the average degree k = 40. Previously, long-
range correlations of network ensembles were also studied via
the �3-statistic, which show universal GOE behavior for rela-
tively small L but pick up quadratically for larger L, especially
for networks with higher heterogeneity [42,43]. We will show
that the NV displays similar behavior but more sensitively
depends on external sources of randomness which can be fully
captured only by the combined ensemble.

To proceed, we first order the eigenvalues xi of the network
Laplacian matrix. Following the standard procedure [2], these
eigenvalues are then unfolded according to xi = N (xi ), where
N (x) = ∫ x

xmin
ρ(x′)dx′ is the cumulative function [cf. Eqs. (6)

and (27)], so that the transformed eigenvalues exhibit a uni-
form spectral density ρ(xi ) = 1. Since the functional form of
N usually cannot be deduced, we have resorted to polynomial
curve fitting for the cumulative density data. The spacing is
then calculated as si = xi+1 − xi, and the NND and the NV
are defined, following Sec. II, as the probability distribution
p(s) of spacing and the variance for the number of unfolded
eigenvalues averaged over nonoverlaping intervals of length
L, respectively.

Figure 3 shows the NND, the NV, and their fitted curves
by using the least square fitting method for the three network
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ensembles, with the data for each ensemble averaged over 10
realizations of networks. As shown in the top panel of Fig. 3,
the NNDs of the three network ensembles all can be fitted with
the beta ensemble with β ∼ 1, indicating a universal GOE be-
havior of the NNDs [40–43]. The NNDs of different networks
can be considered as just fluctuating around an average dis-
tribution (the black curve), suggesting the robustness of local
statistics. This of course just reiterates what previously had
been found that many systems follow the universal GOE or
GUE behavior for their short-range statistics [42,43,45–48].
In contrast, long-range statistics, measured by either the NV or
the �3-statistic, follow the universal GOE or GUE prediction
only up to certain values of L [42,43,45–49]. In particular,
the NVs are deemed to be sensitive to external randomness.
As indicated by the inset of the bottom panel of Fig. 3, the
NVs of the three network ensembles follow the GOE statistic
only for very small L and quadratically deviate from it as
L increases. Even though parabolic-like NVs were observed
for disordered matrix ensembles [9], previous studies haven’t
concluded an explicit explanation for the quadratic tails of
long-range statistics observed in many empirical systems. In
this work, we found that this behavior of NV can be best ac-
counted for by the disordered beta thinned ensemble; compare
the black curves fitted according to Eq. (37) in the bottom pane
of Fig. 3. Therefore, external randomness play important roles
in long-range statistics. In particular, the presence of a linear
term in the fitting form hints the emergence of the fluctuation
scaling mechanism that should be ultimately ascribed to the
inhomogeneity and finite-size nature of the networks.

From the fitting parameters for the NV data, let us make
two observations. First, with f ∼ 1, the thinning processes
are not pronounced for these studied cases, which validates
the beta ensemble fitting for NNDs. This can be understood,
with respect to the chosen network parameters, by the fact
that the studied networks are highly connected to form a large
connected component so that the corresponding Laplacian
matrices and the eigenvalue spectra are dense. Second, the
NVs of the three network ensembles are clearly distinguished
by their fitting parameters: the more heterogeneous the net-
work ensemble is, the further its NV deviates from the GOE
prediction, which is also indicated by the fitting parameter ξ̄ .
According to Appendix C, larger ξ̄ signifies weaker disorder
so that the unfolded eigenvalues are also more uniformly
distributed. Comparing to the other two kinds of networks,
the random network ensemble, being homogeneous by its
nature, thus takes the largest ξ̄ . On the other hand, small-world
networks and scale-free networks are characterized by high
clustering coefficients and nonvanishing probability for rare
hubs [36], respectively, so that the corresponding unfolded
eigenvalues are also more aggregated as compared to random
networks and hence give rise to larger NV values.

As an example for real networks, we consider fungal
networks adopted from Ref. [50]. In Fig. 4 four different
species of fungal networks are analyzed, with the labels cor-
responding to (a) Physarum polycephalum (Pp), an acellular
slime mold that forms networks but is taxonomically dis-
tinct from fungi; (b) Phanerochaete velutina (Pv), a foraging
saprotrophic woodland fungus that forms reasonably dense
networks; (c) Resenicium bicolor (Rb), a white-rot fungus
that forages rapidly with a sparse network that is not very

FIG. 4. The NND (top pane) and the NV (bottom pane) of the Pp,
Pv, Rb, and Ag fungal networks, fitted with respect to Eqs. (5) and
(37). The fitted parameters are listed, from left to right, with respect
to the Pp, Pv, Rb, and Ag networks. The black curve in the top pane
shows the averaged NND.

cross-linked; and (d) Agrocybe gibberosa (Ag), a foraging
saprotrophic fungus that is isolated from garden compost and
forms dense networks. More results for a total number of 270
fungal networks are available in [51]. Note that since only one
network is considered for each set of data, both the NND and
the NV data appear to be a little noisy. According to the top
pane of Fig. 4, the NNDs of the data again fluctuate around
some averaged beta ensemble distribution which, however, is
quite different from that of the GOE. Being taxonomically
different from the other three networks for fungi, one naturally
expects the Pp network to display some distinctive charac-
teristics. Indeed, the bottom pane of Fig. 4 shows that the
NVs follow the disordered beta thinned ensemble statistics,
in which the Pp data separates from the data for the three
fungal networks with quite evident gaps and the NVs of the
three fungal networks are more or less grouped together. It
is also striking to observe that Rb, corresponding to the most
sparse network, gives a thinner spectrum than the rest ones.
Nevertheless, the fungal networks for Pp, Pv, and Ag are still
dense enough as indicated by their relatively large f values
and are robust against damage [52].

The above observations for different networks thus under-
score the significance of disorder and thinning processes in
RMT analyses. The NNDs belonging to the same subclass of
data that appear to be related to certain matrix ensemble are
usually rigid with respect to changes in external randomness
and hence are mostly dictated by that matrix ensemble. How-
ever, this is usually not the entire story for many empirical
data, as external randomness may affect each system globally
in a distinctive way. Long-range correlations are then crucial
to capture these effects and are useful to separate data be-
longing to the same subclass, which can be of assistance to
network classification, especially when it is exploited together
with other characteristic features of interested networks.
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(a) (b)

FIG. 5. The eigenvalue distributions of the COVID-19 cross-correlation matrices of (a) global countries and (b) U.S. counties. The solid
smooth curves are fitted with respect to the Marčenko-Pastur distribution with asymptotic ratio λ and scale parameter σ . The fitting curve
(solid) for U.S. counties in (b) agree only with the tail of the distribution. The dashed smooth curve shows an attempt to fit the initial part of
the distribution via manually tuning the parameters.

B. COVID-19 time series

The ongoing pandemic caused by the contagious disease
named Coronavirus Disease 2019 (COVID-19) poses the lat-
est threat to global health, which has also triggered a series
of related studies via physics concepts and methods, ranging
from modeling its spreading dynamics to the study of the role
of respiratory droplets [53–58]. In this work, we focus on an-
alyzing the time series of daily new COVID cases in different
regions. To this end, by following the RMT analyses of finan-
cial time series [32,49,59,60], we study the cross-correlations
between daily new cases changes of different countries or of
different counties of the United States, where the analyzed
data were obtained from the John Hopkins COVID database
[61]. In order to draw statistically meaningful conclusions,
only data sets with more than 20 000 total cases were con-
sidered, corresponding to the data sets of N = 120 global
countries and N = 288 counties in the United States, respec-
tively.

Let us denote Si(t ) the number of daily new cases of coun-
try (or county) i on day t , where i = 1, . . . , N and the time t
spans over a period of 10 months from May 1, 2020, to March
1, 2021. Following the financial analysis convention, the daily
new cases change Gi(t,�t ) is calculated with respect to the
logarithmic scale as

Gi(t,�t ) ≡ ln Si(t + �t ) − ln Si(t ), (38)

where �t = 1 day is the sampling time interval. The time-
series correlations between different countries (or counties)
are then assembled into the equal-time cross-correlation ma-
trix C with elements [59]

Ci j ≡ 〈GiGj〉 − 〈Gi〉〈Gj〉
σiσ j

, (39)

where σi ≡
√

〈G2
i 〉 − 〈Gi〉2 is the standard deviation of the

daily new cases changes of country (or county) i, and 〈·〉
denotes the time average over the studied 10-month period.
The obtained cross-correlation matrix C then plays the role

of a random matrix, validating the application of RMT and
the ensuing NND and NV analyses after the eigenvalues are
unfolded [59].

As shown in Fig. 5(a), our first observation is that, similar
to what had been found in financial time series [32,49,60],
the distribution of the bulk eigenvalues of C is close to the
Marčenko-Pastur distribution of the Wishart orthogonal en-
semble. According to Ref. [32], Wishart matrices are not
strictly GOE-type matrices, but belong to a special ensemble
called the “chiral” GOE, whose short- and long-range eigen-
value correlations still manifest universal GOE properties.
Hence, deviations of the studied data from the Marčenko-
Pastur distribution may be suggestive of, in addition to data
noise ascribed to the relatively small matrix sizes, external
randomness, or even discrepancies from the GOE in eigen-
value correlations. For the U.S. county case [cf. Fig. 5(b)], the
eigenvalue distribution data can not be fitted with respect to
the Marčenko-Pastur distribution, hinting at a deviation from
the GOE behavior [62]. This is immediately confirmed, as
shown in Fig. 6(b), by the NND and the NV of the cross-
correlation matrix. The fitted β value for the global country
data is still close to one, rendering a universal GOE behavior
for its NV when L is small [cf. the inset of the bottom pane of
Fig. 6(a)]. For larger L, the NV tails of both cases turn out to
follow the disordered beta thinned ensemble. It is noticeable
that the NV values of the U.S. county data are much larger
(with a smaller ξ̄ value) than those of the global country
data. To understand this, it is more apt to interpreter it from
a fluctuation scaling perspective [24], which just suggests
that the U.S. counties are more strongly related by positive
correlations than between different global countries, so that
the corresponding eigenvalues of the U.S. county matrix are
more prone to aggregate around certain values. Note again
that with f ∼ 1 for both cases, the thinning effects are also
weak and it is valid to fit the NNDs with respect to the beta
ensemble.

In summary, this example demonstrates that even though
the cross-correlations of the COVID-19 time series data
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(a) (b)

FIG. 6. The NND and NV of the COVID-19 cross-correlation matrices of (a) global countries and (b) U.S. counties, fitted with respect
to Eqs. (5) and (37). The red curve in the bottom pane of (a) marks the GOE NV given by Eq. (7). The U.S. county data show an apparent
discrepancy with respect to the GOE.

contain great elasticity, one may still put them into an
RMT framework with the combined ensemble, regardless of
whether they follow the GOE or not. What is more, as a
reflection of the characteristics of each individual data set, the
NV may be exploited as an alternative means for exploring
regional intracorrelations of different administrative levels in
response to a pandemic or to other social or economical activ-
ities.

C. Literary texts

A writing system is a process or result of recording a
spoken language using a system of visual marks on a surface.
There are mainly two types of writing systems: phonographic
and logographic. The former includes syllabic writing (e.g.,
Japanese hiragana) and alphabetic writing (e.g., English,
Russian, or Portuguese), while the latter encodes syllables
and phonemesa (e.g., Sumerian cuneiforms, Egyptian hiero-
glyphs, or Chinese characters). In this subsection, we show
that the spectra of these two types of texts are in good agree-
ment with the disordered beta thinned ensemble as well, with
Portuguese texts and Chinese texts taken as representative
examples.

1. Spectra of blanks

In Ref. [5], the spectra of blanks of literary texts of ten
languages were analyzed and two language families have been
found. The family denoted Poisson-like were fitted with a
displaced Poisson distribution as short words did not show
a clear statistical behavior. For this reason, we are not con-
sidering here spectra from this family and decided to perform
a reanalysis of the spectra of Portuguese, a language of the
Wigner-like family. In this study, we take the same four
Portuguese literary texts as Ref. [5]: A Filha do Arcediago
by C. C. Branco (1868), O Primo Basílio by E. de Queirós
(1878), Os Maias by E. de Queirós (1888), and Grande
Sertão: Veredas by J. G. Rosa (1956), which are abbreviated as

AFilha, Oprimo, OsMaias, and Grande, respectively. Defining
word length as spacing s, the NND is just computed as the dis-
tribution p(s) and the NV measures the variance of the number
of levels contained in the interval of length L, averaged over
all nonoverlapping intervals taken from a spectrum.

The results for NNDs and NVs are presented in Fig. 7.
For all the cases in the NND, we find a good agreement with
the NND of the beta ensemble, with β < 1. The NNDs can
also be seen as fluctuating around an average distribution,

FIG. 7. The NND (top pane), the NND in logarithmic scale (mid-
dle pane), and the NV (bottom pane) of four Portuguese texts, fitted
with respect to Eqs. (5) and (37). The fitted parameters are listed,
from left to right, with respect to the texts: AFilha, Grande, OPrimo,
and OsMaias. The black curves in the top and the middle panes show
the averaged NND.
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which is further confirmed in the log-scale plot. The NV data
satisfactorily match the NV of the disordered beta thinned
ensemble. We observe that the values of f and ξ̄ change in
order, and the NV separates the four texts in the order of their
publication years, respectively. Note that the validity of the
beta ensemble fitting for NNDs is again justified by the weak
thinning effects.

2. Chinese texts

The building blocks of the Chinese writing system are
Chinese characters—a collection of spatially marked patterns
of continuous strokes. In an ideogram language such as Chi-
nese, strokes play a similar role as letters do in alphabetic
languages. All Chinese characters are composed of the basic
strokes “�”, “�”, “�”, “�”, “�”, and their variants [63].
For example, the character “�” is composed of five strokes:
“�”, “�”, “�”, “�”, and “�”; and the character “�” is
composed of eight strokes: “�”, “ ”, “�”, “�”, “ ”, “�”,
“�”, and “ ”, where the second, fifth, and eighth strokes are
variant forms of “�” and “�”. In this sense, we can consider
the word “��” (meaning “life”) as a spectrum consisting of
three levels that are separated by two intervals of lengths 5 and
8. For long texts, we obtain the stoke counts of each character
by looking up the Stroke Table of Unihan Characters [64]. A
Chinese literary text, after discarding blanks and punctuation
marks, then produces a long spectrum of levels that can be
treated in the same vein as above, where spacing s is now
defined as the number of strokes of each character. Below we
investigate four Chinese texts: Dream of the Red Chamber
(���) by Xueqin Cao (1791), Water Margin (���)
by Nai’an Shi (14th century), Ordinary World (�����)
by Yao Lu (1986), and Stories of the Sahara (�����
���) by Mao San (1976), which are denoted as HLM,
SHZ, PFD, and SHL according to their Chinese pronunciation
initials.

As can be seen from Fig. 8, the NNDs and NVs of the four
Chinese texts again show good agreement with the NND of
the beta ensemble and the NV of the disordered beta thinned
ensemble, respectively. The beta ensemble distribution fitting
for the NNDs, which, however, gives β > 1, in contrast to
β < 1 for the Portuguese case, is also justified by the weak
thinning effects.

To demonstrate that the above observations for Portuguese
and Chinese texts are not just specific to the selected texts, we
further expanded our study to include 467 Portuguese texts
and 105 Chinese texts obtained from “Project Gutenburg”;
see the data and the fitting results in [51], which further
corroborate the above observations. From these examples,
it is heuristic to speculate that the short-range statistics is
determined by the language and is rather insensitive to the
changes of other factors, while long-range statistics shows
great diversity from one text to another. Even though it is
yet unclear how the fitting parameters are explicitly related
to the language, the genre, the writing era, or even the author,
etc., of a given text, a combined scrutinizing of both the short-
and long-range statistics may provide insightful information
that reflects both the rigid and the elastic properties of a text
spectrum. Similar to complex networks, such information then

FIG. 8. The NND (top pane), the NND in logarithmic scale (mid-
dle pane), and the NV (bottom pane) of four Chinese texts, fitted with
respect to Eqs. (5) and (37). The fitted parameters are listed, from
left to right, with respect to the texts: HLM, SHZ, PFD, and SHL.
The black curves in the top and the middle panes show the averaged
NND.

may be of great value for text classification, and we hereby
advocate for further studies.

IV. CONCLUSION

In this work, we have introduced the general disordered
beta thinned ensemble to cope with external randomness in
complex systems that are invoked by both disorder and level
incompleteness. The model combines three generalizations of
the classical RMT ensembles: the beta ensemble, the disor-
dered ensemble, and the thinned ensemble in which statistic
measures lie intermediately between Poisson and RMT. The
disordered and thinned ensembles were developed as the ex-
tensions of standard RMT, but here we show that they also
work in the beta case. By making use of the correlations
between the matrix elements, we also demonstrated that the
matrix elements of a disordered beta ensemble can be al-
ternatively generated in a sequential manner via the beta
distribution.

Guided by the main findings for the disordered beta thinned
ensemble, we have analyzed spectra from three different areas
that are outside the scope of Hamiltonian physical systems.
The analyses were done by fitting the results which were
obtained by averaging along the empirical spectra (“time”
average) with the analytic expressions deduced by performing
in the RMT model an ensemble average. We found that all
the studied cases are in good agreement with the combined
ensemble, meaning that all the three considered ingredients
are crucial. Hence we naturally expect that the combined
ensemble may find broader applications. From the results,
two main aspects are evident: first, the relative independence
between the local- (NND) and the long-range (NV) statistics,
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and second, NVs of the parabolic form aL + bL2, which is
a characteristic of the fluctuation scaling (FS) phenomenon.
These two kinds of behaviors are not entirely independent. In
fact, considering that linear NV is a typical behavior of an un-
correlated spectrum for the extreme case β → 0 (Poisson), we
can infer that for relative short-range, the points of the spectra
appear as an independent sequence, although the distances
between neighbors follow a given NND (see the footnote
[65]). However, as the range of observation increases, there
is a crossover from the linear to the square dependence of the
mean in the NV. This can be understood as being caused by
the presence of external drives, i.e., disorder and thinning, that
create the long-range inhomogeneity responsible for the FS. In
particular, for β ∼ 1 as in the cases for model networks and
the global COVID-19 time series, this parabolic form of the
NV is crucial for understanding systems with a manifestation
of a certain extent of the universal GOE behavior in a shorter
range, which in turn, however, failed to predict the long-range
tail of the NV.

From the results for complex networks and literary texts,
we conclude that local statistics, measured by the NND, is
robust against external randomness and hence can serve as a
characteristic of a studied area, while the long-range statistics,
measured by the NV, is rather sensitive to external drives and
is favorable for capturing distinctions of different cases inside
the area. In linguistics cases, on the one hand, the NND results
suggest that text spectra can show level repulsion which is
simply the consequence of nonvanishing word lengths (or
character stroke numbers); on the other hand, the distinc-
tions between the NVs could be associated with the writing
style and the genre of a specific text. For complex networks,
the NV results clearly unveiled the structural information of
the networks encoded in the correlations of the Laplacian
matrix elements. From an FS point of view, the NV values
constitute a manifestation of inhomogeneity and finite-size
effects of the complex networks, suggesting that the unfolded
eigenvalues could aggregate around certain values instead of
distributing homogeneously. In COVID-19 time series, the
extent of inhomogeneity just reveals the positive correlations
in the viral spreading patterns among those different regions.
Therefore, in this regard, the U.S. counties are more strongly
correlated than between different global countries. In sum-
mary, the short- and long-range statistics thus reflect the rigid
and elastic features of the systems of interest, and they could

be of considerable assistance to data classification, especially
when they are utilized in conjunction with other classification
characteristics of the systems.

Finally, we remark that we have modeled the disorder using
the one-parameter distribution, Eq. (11). It is important to
mention that other distributions have already been proposed.
In Ref. [66], for instance, another one-parameter distribution
was proposed, and a more general one, with three parame-
ters, was discussed in Ref. [19]. It would be interesting to
investigate if these families can, in some cases, provide more
efficient fittings. Furthermore, we also don’t rule out other
mechanisms—though not yet known to us at this point—that
may introduce a linear term in the NV. It would be quite ben-
eficial if such mechanism also permits a more straightforward
derivation for a compact analytic NND expression.
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APPENDIX A: NUMBER VARIANCE

To calculate the number variance we start with the expres-
sion [2]

〈n2〉G =
∫ θ/2

−θ/2
dE1

∫ θ/2

−θ/2
dE2R2(E1, E2) +

∫ θ/2

−θ/2
dEρG(E ),

(A1)
for the average of the square of the number of eigenvalues
in the interval (− θ

2 , θ
2 ), where R2(E1, E2) is the two-point

function. Introducing disorder, this quantity becomes

〈n2〉 =
∫ ∞

0
dξw(ξ )

[∫ θ/2

−θ/2

∫ θ/2

−θ/2
dx1 dx2

ξ

ξ̄
R2

(√
ξ

ξ̄
x1,

√
ξ

ξ̄
x2

)
+
∫ θ/2

−θ/2
dx

√
ξ

ξ̄
ρG

(√
ξ

ξ̄
x

)]
. (A2)

Making in the integrals the substitution of variable E =
√

ξ

ξ̄
x, the above expression becomes

〈n2〉 =
∫ ∞

0
dξw(ξ )

[∫ √
ξ

ξ̄
θ/2

−
√

ξ

ξ̄
θ/2

∫ √
ξ

ξ̄
θ/2

−
√

ξ

ξ̄
θ/2

dE1 dE2R2(E1, E2) +
∫ √

ξ

ξ̄
θ/2

−
√

ξ

ξ̄
θ/2

dEρG(E )

]
. (A3)

Changing the variable as t (E ) = ∫ E
0 dE ′ρG(E ′) = NG(E ) and using the definition for the two-point cluster function

R(E1, E2)

ρG(E1)ρG(E2)
= 1 − Y (|t2 − t1|), (A4)
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(a) (b)

FIG. 9. Histograms of ξ̄ /ξ for (a) small ξ̄ and (b) large ξ̄ . The distribution of ξ̄ /ξ is more concentrated around 1 for large ξ̄ .

we obtain

〈n2〉 =
∫ ∞

0
dξw(ξ )

{
− 2

∫ N (
√

ξ

ξ̄
θ/2)

0
dt

[
1 − 2N

(√
ξ

ξ̄

θ

2

)]
Y (t ) + 2NG

(√
ξ

ξ̄
θ/2

)
+ 4N2

G

(√
ξ

ξ̄

θ

2

)}
, (A5)

where the first two terms inside the curly braces are just the
number variance expression of the Gaussian ensemble.

APPENDIX B: ASYMPTOTIC EXPRESSIONS

We are interested in the case of long spectra containing a
large number of points. In this situation of very large N, the
statistics are measured around the center of the spectra. To
be specific, we want to make N to go to infinity, in Eq. (6),
keeping the product

√
NE finite, explicitly

Nβ (E ) = N

π

(
arcsin

√
NE

N
√

2β
+

√
NE

N
√

2β

√
1 − NE2

2N2β

)

 ρβ (0)E . (B1)

Assuming now that in Eq. (27) ξmax is very large and can
be replaced by infinity, the disordered cumulative function
becomes

NDβ (x) =
∫ ∞

0
dξw(ξ )Nβ

(√
ξ

ξ̄
x

)

 ρβ (0)

√
ξ√
ξ

x, (B2)

where (B1) has been used. Therefore, s and L can be approxi-

mated in terms of ρβ (0)
√

ξ√
ξ
θ in the NND and NV expressions.

Within the same level of approximation we have

4
∫ ∞

0
dξw(ξ )N2

β

(√
ξ

ξ̄

θ

2

)

 [ρβ (0)θ ]2 =

(√
ξ

√
ξ

)2

L2.

(B3)
Finally, if the disorder is defined by the distribution

Eq. (11) then we further have√
ξ = �

(
ξ̄ + 1

2

)
�(ξ )



√

ξ̄ exp

(
− 1

8ξ̄

)
, (B4)

where the Stirling approximation has been used.

APPENDIX C: THE EFFECT OF THE DISORDER
PARAMETER ξ̄

For disordered beta ensemble, since HD = ξ̄ /ξHβ , the
strength of the disorder is determined by the factor ξ̄ /ξ . As
illustrated in Fig. 9, the distribution of ξ̄ /ξ is more concen-
trated around 1 for larger ξ̄ [Fig. 9(b)], and the properties of
the original ensemble Hβ are mostly preserved in the disor-
dered ensemble HD. Thus this represents a weakly disordered
scenario. In contrast, for smaller ξ̄ [Fig. 9(a)], the distribution
of ξ̄ /ξ is more spread so that what are in Hβ are bound to be
disrupted, introducing a stronger disorder in HD.
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