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Thermalized buckling of isotropically compressed thin sheets
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The buckling of thin elastic sheets is a classic mechanical instability that occurs over a wide range of scales.
In the extreme limit of atomically thin membranes like graphene, thermal fluctuations can dramatically modify
such mechanical instabilities. We investigate here the delicate interplay of boundary conditions, nonlinear
mechanics, and thermal fluctuations in controlling buckling of confined thin sheets under isotropic compression.
We identify two inequivalent mechanical ensembles based on the boundaries at constant strain (isometric) or at
constant stress (isotensional) conditions. Remarkably, in the isometric ensemble, boundary conditions induce a
novel long-ranged nonlinear interaction between the local tilt of the surface at distant points. This interaction
combined with a spontaneously generated thermal tension leads to a renormalization group description of two
distinct universality classes for thermalized buckling, realizing a mechanical variant of Fisher-renormalized
critical exponents. We formulate a complete scaling theory of buckling as an unusual phase transition with a
size-dependent critical point, and we discuss experimental ramifications for the mechanical manipulation of
ultrathin nanomaterials.
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I. INTRODUCTION

Thin sheets with a resistance to shear can accommodate
compressive stresses through an array of mechanical insta-
bilities, including buckling [1,2], wrinkling [3–5], folding
[6,7], and crumpling [8–10], all controlled essentially by ge-
ometry. Although once disregarded as undesirable modes of
failure, instabilities now play a central role in the design of
mechanical metamaterials [11,12] as they combine complex
morphologies with mechanical functionality. In recent years,
rapid miniaturization has driven intense research efforts in
developing similar metamaterials on a much smaller scale
[13–18]. In this regard, atomically thin two dimensional (2D)
materials such as graphene, MoS2 or BN [19,20] are par-
ticularly promising and offer unprecedented opportunities to
study classical elasticity and mechanics in the ultimate limit
in thin sheets, where thermal fluctuations can play a dominant
role [20,21].

In such ultrathin flexible materials thermal fluctuations can
dramatically renormalize the mechanical properties in a scale-
dependent fashion [22]. Out-of-plane (flexural) deformations
allow tensionless solid membranes to exhibit a remarkable
thermally wrinkled, yet flat phase with a scale-dependent
bending rigidity and strongly softened elastic moduli [21,23].
While thin sheets favor bending over energetically expensive
stretching, geometry links the two as any bending-induced
Gaussian curvature inevitably causes stretching as well. This
basic feature underlies many of the impressive finite tempera-
ture properties. Nanoindentation measurements in graphene
[24] and MoS2 [25] monolayers yield exceptionally high
Young’s moduli on the nanoscale as expected from strong

covalent bonding. Yet on larger scales ∼10 μm, recent
experiments with freely suspended graphene have demon-
strated a ∼4000-fold enhancement of the bending rigidity [13]
and a factor ∼20 reduction in the in-plane stiffness [26], due
to a combination of thermally generated and static ripples
[27–29], highlighting the importance of flexural fluctuations.

While the anomalous mechanics of thermalized mem-
branes has been extensively explored, the role of confinement
and boundaries is much less appreciated. Supported or
clamped edges are one of the most commonly encountered
boundary conditions, in electromechanical resonators [30,31],
multistable switches [32] and in nanomechanical devices
[13,26]. Geometric confinement at the boundary can induce
prestrains in the sample that can cause large scale instabilities
such as wrinkling [33]. As a result, in recent years, exploring
the influence of external stresses on the mechanics of fluctuat-
ing membranes has been a topic of prime interest [34]. While
there has been some theoretical work, both old [35] and new
[36–41], complemented by more recent large scale numerical
simulations [42–47], elucidating the role of boundaries in con-
trolling the nonlinear mechanics and buckling of thermalized
sheets, particularly for compressions which attempt to impose
a nonzero Gaussian curvature, remains a challenging problem.

Motivated by the above, in this paper, we pose and answer
the following question: What is the finite temperature version
of the buckling transition in an isotropically compressed thin
sheet? Euler buckling represents the simplest mechanical in-
stability a thin elastic body can undergo and it provides an
attractive setting to investigate the interplay of thermal fluc-
tuations and boundary conditions along with the geometric
nonlinearities inherent to thin plate mechanics. In particular,
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TABLE I. The two buckling universality classes. We list all the scaling exponents along with the relevant scaling identities for the
isotensional (unprimed exponents) and isometric (primed exponents) ensembles. The exponents are obtained within an ε-expansion (D =
4 − ε, d = D + dc), accurate to O(ε) and also in physical dimensions (D = 2, d = 3) using the best self-consistent estimates for η [73]. Only
β = 1/2, γ = 1 (isotensional) and δ = δ′ = 3 (both ensembles) are exact to all orders and independent of dimensionality.

Isotensional ensemble Isometric ensemble

Exponent Relation D = 2, d = 3a D = 4 − ε, d = D + dc D = 2, d = 3a D = 4 − ε, d = D + dc

η, η′ η′ = η 0.821 12ε

24+dc
0.821 12ε

24+dc

ηu, η
′
u

2η + ηu = 4 − D
2η′ + η′

u = 4 − D
0.358 dcε

24+dc
0.358 dcε

24+dc

ν, ν ′ ν = 1/(2 − η)
ν ′ = ν/(Dν − 1)

0.848 1
2 + 3ε

24+dc
1.218 1

2 + (12+dc )ε
(96+4dc )

β, β ′ β = ν(1 − η/2)
β ′ = ν ′(1 − η′/2)

1
2

1
2 0.718 1

2 + dcε

96+4dc

γ , γ ′ γ = ν(2 − η) = 2β

γ ′ = ν ′(2 − η′) = 2β ′ 1 1 1.436 1 + dcε

48+2dc

δ, δ′ δβ = γ + β

δ′β ′ = γ ′ + β ′ 3 3 3 3

θ, θ ′ θ = 1/(νD − 1)
θ ′ = ν ′D − 1, θ ′ = θ

1.436 1 + dcε

48+2dc
1.436 1 + dcε

48+2dc

φ, φ′ φ = ν(4 + D − η)/2
φ′ = ν ′(4 + D − η′)/2

2.196 2 + (12−dc )ε
96+4dc

3.155 2 + 3(4+dc )ε
4(24+dc )

aExponents computed using η = 4/(1 + √
15) obtained from the self-consistent screening approximation [73].

we focus on the universal aspects of the transition such as
critical scaling exponents that are independent of microscopic
details. By combining a full renormalization group analysis
along with a general scaling theory, we provide a complete
description of thermalized buckling as a genuine phase tran-
sition that exhibits critical scaling along with more unusual
features such as a sensitive dependence on system size and
the choice of boundary conditions. Apart from new statistical
mechanical results, the scaling framework we propose also
yields key predictions that have important ramifications for
experiments that we highlight below.

In the rest of the Introduction, we summarize our main
results and outline the structure of the paper.

A. Results and outline

A key outcome of our work is a renormalization group
analysis, augmented by a scaling description of buckling in
isotropically compressed thermalized thin sheets. There are
two main reasons why finite temperature buckling, when
viewed as a phase transition, is distinct from conventional
critical phenomena. The first is that buckling is strongly size
dependent, even at zero temperature by virtue of it being a
long-wavelength instability [1]. The second is the remarkable
fact that freely fluctuating elastic sheets exhibit a flat phase
[22] with critical fluctuations over an extended range of tem-
peratures. Both these features are characteristic of thin sheets,
arising from an interplay of geometry and mechanics, and
form the basis of our results below.

1. Ensemble inequivalence and Fisher renormalization

Thin sheets can be loaded in-plane either by prescribing
the external strain (isometric) or the external stress (isoten-
sional) at the boundary (see Fig. 1 for an illustration). These

constitute dual mechanical ensembles, in analogy with ther-
modynamic ensembles [49]. While it is well known that
boundary conditions can modify nonuniversal quantities such
as the buckling threshold [1], we discover that universal
scaling exponents (defined in Sec. IV) can also exhibit a re-
markable sensitivity to boundary conditions! We demonstrate
this fact explicitly within a systematic ε = 4 − D expan-
sion for a general D-dimensional solid embedded in d > D
dimensional space (discussed in Secs. VII and VIII with
details relegated to Appendix C) along with a simpler, but
uncontrolled, one-loop calculation performed directly in the
physical dimensions of D = 2 and d = 3 in Appendix D.
Our calculations show that buckling in the two mechanical
ensembles is in fact controlled by two distinct fixed points,
with different scaling exponents that are summarized in Ta-
ble I. This remarkable departure from conventional wisdom
demonstrates the nonequivalence of mechanical ensembles in
thermally fluctuating thin sheets and highlights the subtle na-
ture of membrane statistical mechanics. Thus, in the simplest
setting of isotropic compression, we find thermalized plate
buckling is described by two distinct critical points charac-
terizing the isometric and isotensional universality classes that
are distinguished simply by the boundary conditions imposed.

Although surprising, the inequivalence of ensembles has
precedence in critical phenomena. A critical point engenders
fluctuations on all scales which under appropriate conditions
can result in scaling exponents that change upon switching
to a dual or constrained ensemble. This is known as Fisher
renormalization [50–52]. In our case, however, by tuning
to the buckling threshold, we approach the flat phase of a
free-standing membrane which characterizes an entire low-
temperature critical phase with scale invariant fluctuations!
Furthermore, we find that the imposition of a fixed strain
(in contrast to a fixed stress) boundary condition induces a
novel long-ranged nonlinearity that couples the local tilt of
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FIG. 1. A sketch showing a possible realization of the two me-
chanical ensembles, for example, in an atomically thin sheet of
graphene. (a) In the isotensional ensemble, a constant inward ex-
ternal stress σ0 is applied to the membrane, while the boundary
displacement fluctuates. This setup might be realized in the same
fashion as in single molecule experiments, by using feedback-
controlled multiplexed optical tweezers to actuate under constant
force conditions, similar to experiments recently used to probe the
mechanical response of red blood cells [48]. (b) The isometric en-
semble instead corresponds to a clamped boundary with the external
load imposed via a global strain ε. While, current experiments with
graphene typically suspend monolayers across fixed size holes [26], a
variable aperture size tuned by a camera shutter mechanism could be
used to tune the strain isotropically. An external symmetry breaking
field E perpendicular to average plane of the sheet can also be applied
in either ensemble to bias the direction of buckling.

the surface at far away points, which we derive in Sec. III and
Appendix A through a careful consideration of zero modes
and boundary conditions. This nonlocal term, which can also
be important far from the buckling transition, softly enforces
the geometric constraint of global inextensibilitiy, which si-
multaneously shifts the buckling threshold by a spontaneously
generated thermal tension and modifies the critical exponents
via a mechanical variant of Fisher renormalization.

Note that the two ensembles we consider differ only in
the boundary conditions for in-plane force balance, but have
identical boundary conditions with regard to out-of-plane
force balance. Variations in the latter are not expected to
qualitatively change the results here, but a full exploration of
the consequences of different boundary conditions is left for
future work.

2. Size-dependent scaling theory

The long-wavelength nature of the buckling instability en-
dows it with both a system size-dependent threshold and a
macroscopic mechanical response [1], features that are re-
tained even at finite temperature. This size dependence is
unusual though, from the point of view of critical phenomena,
and behaves as a dangerously irrelevant variable [53–55] that
modifies scaling exponents in nontrivial ways. As a result, we
derive new exponent identities in Sec. IX that relate different
scaling exponents in both ensembles, mirroring classic results
from conventional critical phenomena [56]. Many of these re-
lations are also summarized in Table I. By combining scaling
with general thermodynamic arguments, we also explicitly
demonstrate how buckling physics in both ensembles is a
mechanical variant of Fisher renormalization. Note that, the
construction of a consistent scaling theory for thermalized
buckling is a significant achievement as it not only clarifies
previous confounding results [35,37] by correctly accounting
for nontrivial system size dependence and ensemble inequiva-
lence, but it also yields a unified framework that incorporates
experimentally relevant boundary conditions and symmetry
breaking fields.

We emphasize that our results are consistent with all pre-
vious calculations [35,37,57], where they overlap. Previous
investigations, some including constrained boundaries akin to
our isometric ensemble [35], did not fully address critical
behavior near a thermalized buckling transition [35,37,57];
indeed these works analyzed a restricted set of exponents that
happen to be numerically identical in the two ensembles. The
comprehensive analysis of all the relevant scaling exponents
described here demonstrates a much richer and subtler picture,
with other exponents, particularly those directly involving
the buckling order parameter, i.e., the height, being different
by virtue of ensemble inequivalence (see Table I). Although
we find two distinct fixed points for buckling differentiated
by in-plane boundary conditions, the two universality classes
are intimately related by Fisher renormalization as discussed
above. An important consequence is that there is only one
unique and independent exponent controlling buckling (η,
which controls the size-L-dependent divergence of the bend-
ing rigidity κ ∼ Lη in an unconstrained sheet), from which
all other exponents in both ensembles can be consequently
derived. This feature (first derived using field theoretic tech-
niques in Ref. [35]) is unlike conventional critical points that
typically have two independent critical exponents. Our gen-
eral scaling framework offers a complementary approach that
naturally incorporates ensemble inequivalence, while preserv-
ing these exponent relations in a consistent fashion.

3. Experimental consequences

Our work illustrates the spectacular ways in which geome-
try, boundary effects and thermal fluctuations can conspire to
produce unexpected phenomena, and suggests that extending
thin body mechanics to finite temperature is a rich and chal-
lenging enterprise, requiring great care. Given the ubiquity
and ease of manipulating strain rather than stress in experi-
ments, our results have important implications for the rational
design of strain engineered nanodevices and interpretation of
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FIG. 2. Experimentally measured height response curve of a
clamped graphene sheet suspended over a circular hole of radius
6.2 μm in a cryostat at two different temperatures, T = 78 K (upper
blue dots) and T = 297 K (lower red dots). The data is reproduced
from Ref. [58]. The electrically integrated graphene devices are
capacitively actuated out of the plane using an electrostatic force
E ∝ V 2

g (Vg is the gate voltage) and the average deflection 〈h〉 of the
sheet is measured using laser interferometry, see inset for a sketch
of the setup and Ref. [58] for further details. The red (lower) and
blue (upper) lines are guides to the eye showing the exponent of
the nonlinear force response. While the T = 297 K data (lower red
dots) shows a strong cubic dependence on the height, the T = 78 K
data (upper blue dots) shows a smaller slope that matches well with
our theoretical prediction using the isometric ensemble exponent
3 − 1/β ′ ≈ 1.607. Note that, this slope is significantly different from
a slope of unity (middle black line), as would be predicted in both the
isotensional ensemble and within mean-field theory.

mechanical measurements in ultrathin materials in the pres-
ence of thermal fluctuations.

A common setup to probe the mechanical properties of
graphene is a buckling assay where the force-displacement
curve is measured for a clamped monolayer deformed by the
application of stresses or external fields. As a simple example,
we shall focus here on a simple circular geometry with sheets
draped across holes and deflected by a normal electric field (E)
as employed in recent experiments [26,58] (see inset in Fig. 2
for a sketch). Other geometries including ribbons cantilevered
at an edge [13] or suspended across trenches [30,31,33] are
also possible, but we do not address them here. A crucial in-
gredient in the interpretation of force response measurements
in these devices is a mechanical “equation of state” that relates
the externally applied field E and the in-plane tension σ

to the magnitude of the average deflection of the sheet 〈h〉.
A zero-temperature mean-field description following classical
elasticity (detailed in Sec. V) gives

E = c1
σ

R2
〈h〉 + c2

Y

R4
〈h〉3, (1)

where c1,2 are calculable numerical constants, Y is the sought
after 2D Young’s modulus and R is the size of the sheet. Im-
portantly, when the sheet is constrained at fixed stress σ , i.e.,

the isotensional ensemble, Eq. (1) applies exactly even at finite
temperature upon simply replacing Y by its scale-dependent
renormalized value (see Sec. IX for details).

However, nearly all the force measurement experiments
are instead conducted with fixed strain and clamped boundary
conditions, i.e., in the isometric ensemble. Our general scaling
theory and renormalization group analysis provides a different
equation,

E = c1
σ

R2

( Y

R2

)1−1/2β ′

〈h〉3−1/β ′ + c2
Y

R4
〈h〉3, (2)

where the tension σ = Bε is now given by the 2D bulk
modulus B and the imposed in-plane strain ε. Strikingly,
Eq. (2) involves a new order parameter exponent β ′ ≈ 0.718
that controls the asymptotic nonlinear force response. The
difference between Eq. (1) and Eq. (2) makes it clear that
using Eq. (1) for clamped sheets, as is conventionally done,
can lead to significantly wrong results. In fact, recent exper-
imental measurements [58] on graphene drumheads match
well with our theoretical predictions; see Fig. 2. The strain
in the sample increases upon lowering temperature [31,58],
notwithstanding the theoretically expected negative thermal
expansion coefficient of graphene [33,37], presumably due to
surface contaminants. As a result, while the classical cubic
response dominates at higher temperature with weak tension
(red dots in Fig. 2), the anomalous nonlinear response with
E ∝ 〈h〉1.607 (blue dots in Fig. 2) emerges for higher strains
at lower temperature. A systematic analysis exploring how
this nonlinear response affects the extraction of the Young’s
modulus is left for future work.

This result highlights the direct relevance of our work
to the correct interpretation of mechanical measurements in
graphene devices, not only for the circular geometries studied
here, but also cantilevers and doubly clamped ribbons. We
believe that recognizing the fundamental distinction between
the isotensional and the isometric ensembles is essential to
such endeavours. While Fig. 2 depicts a static example, a dy-
namical extension of Eq. (2) including dissipation and inertia
along with a time-varying field E (t ) provides a simple de-
scription of periodicaly driven electromechanical oscillators
[59]. Although a full dynamical analysis is beyond the scope
of this current work, we can already appreciate the presence
of a strong nonlinear response [Eq. (2)] in the small deflection
limit, which allows for higher quality factors and bistability
[59] even for a weak drive. Note that, such an anomalous re-
sponse is only elicited in the isometric ensemble, emphasizing
once again the importance of boundary conditions.

Although we focus on isotropic compression, we ex-
pect suitable extensions of this framework to be applicable
to recent numerical simulations [46,47] and experiments
[13,29,33] on compressed ribbons that have begun addressing
the anomalous mechanics of anisotropic buckling in con-
strained sheets. While much of our discussion has been based
on atomic crystals, we emphasize our results are generic
and also apply to organic 2D polymers, such as naturally
occuring DNA kinetoplasts [60], the spectrin cytoskeleton
[61] and reconstituted spider silk [62], or synthetic molecular
crystals [63,64] and possibly polymerosomes [65] with very
large radii. In Sec. X, we conclude with a brief discussion
of the broader significance of our results to experiments on

054141-4



THERMALIZED BUCKLING OF ISOTROPICALLY … PHYSICAL REVIEW E 104, 054141 (2021)

atomically thin crystalline membranes and possible future
directions.

II. THIN PLATE ELASTICITY

Here, we focus on the physically relevant continuum elas-
tic description of a thin 2D sheet fluctuating in 3D space
(a generalization for a D-dimensional solid embedded in
d-dimensional (d > D) Euclidean space, useful for certain
calculations, is provided in Appendix C). The deformation of
a thin flat sheet is parametrized in the Monge gauge using a
2D in-plane displacement vector u and a height field h. The
total elastic energy of the sheet involves both stretching and
bending contributions and is given by [1]

H =
∫

d2r

[
κ

2
(∇2h)2 + μu2

i j + λ

2
u2

kk − Eh

]

−
∮
C

d� ν̂iσ
ext
i j u j . (3)

The Lamé parameters are μ and λ, and κ is the bending
rigidity. The final boundary integral is the work done by an
external stress σext with ν̂ being the outward normal (within
the plane) to the boundary curve C. The penultimate term
corresponds to the potential energy due to an external out
of plane field E which couples directly to the height of the
membrane. Such a perturbation can be realized by an electric
field E , with E = ρqE , where ρq is the electric charge density
on the surface, while in the presence of gravity, we have E =
ρmg, where ρm is the mass density and g is the gravitational
acceleration. The strain tensor,

ui j = 1
2 (∂iu j + ∂ jui + ∂ih∂ jh), (4)

encodes the geometric nonlinearity inherent to thin sheets.
We neglect higher order terms in the in-plane displacements
which are small and irrelevant on large scales for a thin sheet
[1]. As an aside, note that, for a D-dimensional manifold
embedded in d-dimensional space, the displacement field u
has D components and the height field is no longer a scalar,
but instead a vector h with codimension dc = d − D > 0
components. The nonlinear strain tensor in this case is then
ui j = (∂iu j + ∂ jui + ∂ih · ∂ jh)/2. The relative importance of
stretching versus bending energies is captured by a dimen-
sionless Föppl-von Kármán number, which in 2D is given by

vK = Y R2

κ
, (5)

where Y = 4μ(μ + λ)/(2μ + λ) is the 2D Young’s modu-
lus and R is a characteristic linear dimension of the sheet.
When viewing the sheet as thin slice of a bulk elastic
material, its bending modulus and stiffness are related as
κ = Y3Dt3/[12(1 − ν2

3D)] and Y = Y3Dt , where Y3D is the 3D
Young’s modulus, ν3D the 3D Poisson’s ratio and t is the
thickness of the sheet [66]. As a result, vK ∼ (R/t )2 is es-
sentially controlled by geometry with vK 
 1 for a thin sheet
(t/R � 1), reflecting the dominance of geometrically nonlin-
ear isometric deformations, i.e., bending without stretching.
An ordinary sheet of paper has a vK ≈ 106 while a 1 μm size
graphene monolayer has a microscopic vK ≈ 109 (using the

atomic scale values for κ ≈ 1.1 eV [20] and Y ≈ 340 N/m
[24]).

III. MECHANICAL ENSEMBLES

The properties of a thermalized elastic membrane at tem-
perature T are computed through the equilibrium partition
function,

Z =
∫

DhDu e−H/kBT , (6)

where kB is the Boltzmann constant. As the in-plane phonons
(u) only appear quadratically in H they can be inte-
grated out exactly to give an effective free energy F =
−kBT ln

∫
Du e−H/kBT . To do this, we separate out the av-

erage strain and Fourier transform the nonzero wavelength
deformations. While the calculation for the wave vector q �= 0
modes is standard [21], the homogeneous q = 0 strain mode
needs to be handled with care in the presence of various
boundary conditions. We shall focus on isotropic loading at
the boundary and neglect external shear or compressional
loading of ribbons for simplicity. This leaves us with two
possibilities, which are the

(1) Fixed stress or isotensional ensemble, and the
(2) Fixed strain or isometric ensemble.
Note the latter could be realized with clamped circular

boundary conditions. Stress and strain (equivalently, force
and displacement) are thermodynamically conjugate variables
and the elliptic nature of elasticity prohibits specifying both
at a boundary simultaneously. Hence, we have two natu-
ral mechanical ensembles akin to the isobaric (N, P, T ) and
isochoric (N,V, T ) ensembles of statistical mechanics respec-
tively, that are dual to each other. In Fig. 1, we sketch a
possible realization of the two mechanical ensembles in an
atomically or molecularly thin suspended sheet.

In the isotensional ensemble, the sheet is driven by an
external isotropic stress

σ ext
i j = σ0δi j, (7)

with no further constraints on the zero modes of the displace-
ment or strain. As a result, the boundary can freely displace in
the plane under the action of σ0 �= 0. Note that σ0 > 0 corre-
sponds to a tensile stress while σ0 < 0 is compressive stress,
a situation studied in Ref. [37]. In the isometric ensemble,
however, we clamp the boundary with a fixed displacement
and allow the stress to fluctuate freely instead. If the constant
displacement on the boundary is uC = C ν̂, then we have∮

C
d� ν̂ · u = LCC, (8)

where LC is the length of the boundary. By using Stokes’
theorem, we can rewrite this as a bulk integral,

1

A

∫
d2r ∇ · u = ε. (9)

Here we have defined the average strain induced by the bound-
ary as ε = LCC/A, where A = ∫

dr is the area of the sheet.
To leading order this strain results in an isotropic change in the
projected area as δA/A = ε. As before, ε > 0 (C > 0) cor-
responds to a uniform dilational strain, while ε < 0 (C < 0)

054141-5



SURAJ SHANKAR AND DAVID R. NELSON PHYSICAL REVIEW E 104, 054141 (2021)

is an isotropic compressive strain. We can now integrate out
the phonons in either ensemble to get the free energy solely in
terms of the flexural modes. In the isotensional ensemble, we
obtain

Fσ =
∫

d2r

[
κ

2
(∇2h)2 + σ0

2
|∇h|2 − Eh

+Y

2

(
1

2
PT

i j∂ih∂ jh

)2]
. (10)

The subscript σ denotes the fixed stress boundary condition
imposed and Fσ is analogous to the Gibbs free energy. The
externally applied stress σ0 enters in a quadratic term that
has been identified previously [35,37]. A tensile stress (σ0 >

0) suppresses height fluctuations [36], while a compressive
stress (σ0 < 0) signals the onset of the buckling instability.
The Young’s modulus controls the now well known nonlinear
stretching term [21–23] via the transverse projection operator
(PT

i j = δi j − ∂i∂ j/∇2). In the nonlinear stretching term [in
Eq. (10) and below in Eq. (12)], it is understood that the
q = 0 Fourier mode has been projected out [21–23], which
ensures that PT

i j is well-defined. This fact also means that the
free energy is rotationally invariant when σ0 = 0, i.e., h(r) →
h(r) + α · r where αi are rotation angles, is a symmetry of
the system. The average areal strain (ε = δA/A) conjugate to
the imposed stress in this ensemble can be computed from the
partition function Zσ = ∫

Dh e−Fσ /kBT to give

〈ε(σ0)〉 = kBT

A

∂ lnZσ

∂σ0
= σ0

B
− 1

2A

∫
d2r〈|∇h|2〉. (11)

The thermal average is computed using Fσ and B = μ + λ is
the bulk modulus.

In the isometric ensemble, we obtain (see Appendix A) a
different result,

Fε =
∫

d2r

{
κ

2
(∇2h)2 − Eh + Y

2

(
1

2
PT

i j∂ih∂ jh

)2

+B

2

[
ε + 1

2A

∫
d2r|∇h|2

]2}
, (12)

where the ε subscript now refers to the fixed strain conditions
and now Fε is analogous to the Helmholtz free energy. As
before we include contributions from bending, the external
field and the nonlinear stretching terms. While the Young’s
modulus penalizes bending induced shear, in the presence of
clamped boundaries, dilational stretching induced by flexural
deflections can no longer be accommodated by displacing the
boundary. Hence, global homogeneous dilations are a zero
mode in the isotensional ensemble, but not in the isometric
ensemble, and are penalized by the bulk modulus in the latter.
Upon expanding the final bracket and neglecting an irrelevant
constant, we obtain a quadratic term ∼Bε|∇h|2 that has been
obtained previously [36] which mirrors the external tension
term in Eq. (10). Importantly, we also have an additional
nonlinear term of the form

B

8A

∫
d2r

∫
d2r′|∇h|2|∇′h|2, (13)

that is independent of the strain imposed, but nonetheless
arises only in isometric ensemble. This highly nonlocal term

couples the local tilts ∼∇h of the membrane at arbitrarily dis-
tant points and has been missed in previous studies [35–37].
Anisotropic versions of this term do appear in the description
of micromechanical resonators as nonlinear beams [59] and
have been included in a recent mean-field analysis of a uniax-
ially compressed ribbon [47]. The consequences of this term
in the presence of thermal fluctuations are a major focus of
this paper.

We note some further unusual features of the new nonlocal
term in Eq. (13). Although it involves a double spatial integral,
the whole term is extensive (due to the factor of 1/A), but it
is importantly not additive. As a result, the membrane cannot
be divided into a cumulative sum of macroscopic parts which
are roughly independent of each other in the thermodynamic
limit. Similar long-ranged interactions appear in models of
compressible [67–69] or constrained [70] ferromagnets and
can affect critical behavior in some cases, though without ref-
erence to ensemble inequivalence. In self-gravitating systems
[71] and mean-field models of magnets [72], long-ranged in-
teractions are known to spoil the equivalence of canonical and
microcanonical ensembles, though typically in the context of
first-order phase transitions. Although the buckling instability
under compression can proceed as a continuous bifurcation,
the highly nonlocal interaction in Eq. (13) strongly suggests
that the isotensional and isometric ensembles may not be
equivalent even in the thermodynamic limit (A → ∞).

Before we proceed, we note the isometric ensemble variant
of Eq. (11). The average stress generated in the sheet due to
the imposed strain is simply given by

〈σ (ε)〉 = −kBT

A

∂ lnZε

∂ε
= B

(
ε + 1

2A

∫
d2r

〈|∇h|2〉), (14)

with the partition function Zε = ∫
Dh e−Fε/kBT and the ther-

mal average now performed using Fε . Note that the partition
functions in the two ensembles are related,

Zσ = const.
∫ ∞

−∞
dε Zε eAσ0ε/kBT . (15)

To incorporate both ensembles within the same calculation,
we now work with the following free energy:

F =
∫

d2r

[
κ

2
(∇2h)2 + σ

2
|∇h|2 − Eh

+Y

2

(
1

2
PT

i j∂ih∂ jh

)2

+ v

8A
|∇h|2

∫
d2r′|∇′h|2

]
. (16)

Up to unimportant additive constants, F = Fε [Eq. (12)] upon
identifying v = B and σ = Bε, where B = μ + λ is the bulk
modulus. Alternately, if we set v = 0 to switch off the non-
local nonlinear term and set σ = σ0, then we find F = Fσ

[Eq. (10)]. It is important to note that setting v = 0 is only
a mathematical trick to obtain Fσ from Eq. (16). It does not
imply that the actual bulk modulus vanishes. As we shall see
later, the nonlocal nature of this new term guarantees that it
cannot be generated if initially absent, i.e., if we set v = 0
in Eq. (16), then it remains zero under the coarse-graining
embodied in a renormalization group transformation. Note
the “mass” term σ that tunes the proximity to the buckling
transition is common to both ensembles (albeit with dif-
fering interpretations), and controls all the scaling behavior
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discussed below. Additionally we will see that the actual
physical elastic moduli (μ, λ) renormalize identically in both
ensembles, but the buckling transition is described by two
distinct fixed points (with distinct critical exponents for some
quantities!) depending on the ensemble. So, in all that follows,
we will use v as a coupling constant that distinguishes the
two ensembles with v = 0 being allowed in the isotensional
ensemble and v > 0 only being allowed in the isometric en-
semble. Only in the latter case will v be identical to the actual
bulk modulus (B) of the sheet.

IV. DEFINITION OF SCALING EXPONENTS
NEAR BUCKLING

Before we analyze buckling criticality, we define our no-
tation. Close to the buckling transition, we expect power law
scaling in a number of quantities, the exponents for which we
define below. The unprimed exponents below will refer to the
isotensional (constant stress) ensemble and the primed expo-
nents to the isometric (constant strain) ensemble, while the
buckling threshold is denoted by σc and εc in the isotensional
and isometric ensembles respectively. We follow standard
conventions to define critical exponents via the singular scal-
ing properties of measured observables in the vicinity of the
transition, as a function of control parameters or tuning vari-
ables. As expected, the latter necessarily depend on the choice
of the ensemble.

A. Mechanical response

Upon approaching the buckling transition, the sheet de-
velops a variety of anomalous mechanical responses. In the
absence of an external field (E = 0), up/down symmetry is
spontaneously broken and the sheet develops a finite 〈h〉 �= 0
when buckled. The average height rises continuously at the
transition, acting as an order parameter,

〈h〉 ∝
{|σ0 − σc|β (isotensional),
|ε − εc|β ′

(isometric).
(17)

The zero field susceptibility exhibits divergent scaling near
buckling,

χ = ∂〈h〉
∂E

∣∣∣∣
E=0

∝
{|σ0 − σc|−γ (isotensional),
|ε − εc|−γ ′

(isometric).
(18)

We expect the exponents γ , γ ′ to be the same on either side
of the transition [56], though the amplitudes of the scaling
function can and will be different. The divergence of the
susceptibility signals the breakdown of linear response, which
is also seen in the nonlinear field dependence right at the
buckling transition

〈h〉 ∝
{
E1/δ (σ0 = σc, isotensional),
E1/δ′

(ε = εc, isometric).
(19)

Finally, in conjunction with these out-of-plane responses, we
also have a concomitant nonlinear scaling in the in-plane
mechanics, quantified by anomalous stress-strain curves,

〈ε〉 ∝ const. + (σ0 − σc)1/θ (isotensional), (20a)

〈σ 〉 ∝ const. + (ε − εc)θ
′

(isometric), (20b)

at zero external field (E = 0). Note that the above only
includes the dominant singularity and neglects other contri-
butions. The new exponents θ, θ ′ �= 1 signal a violation of
Hooke’s law.

B. Fluctuations and spatial scales

Apart from global quantities discussed above, local vari-
ables also develop extended correlations when near the
buckling transition. In the absence of an external field (E = 0),
the fluctuating height of the sheet has spatial correlations
with nontrivial scaling properties. A nonzero external stress
or strain generically causes the height fluctuations to decay
exponentially over a finite correlation length ξ , albeit with
different large distance asymptotes depending on whether
the sheet is buckled or flat. This behavior is also reflected
in the normal-normal correlation function. The unit normal
to a surface specified by X(r) = (x, y, h(r)) in the Monge
representation, is n̂ = (−∂xh,−∂yh, 1)/

√
1 + |∇h|2, which

allows us to simply relate the normal-normal and height-
height correlation functions as

〈n̂(r) · n̂(0)〉 � 1 − 1
2 〈|∇h(r) − ∇h(0)|2〉, (21)

at lowest order in the height gradients. On either side of the
buckling transition, we have 〈n̂(r) · n̂(0)〉 ∼ e−r/ξ , neglecting
asymptotic constants and nonexponential prefactors. The cor-
relation length diverges at buckling as

ξ ∝
{|σ0 − σc|−ν (isotensional),
|ε − εc|−ν ′

(isometric).
(22)

Right at the buckling transition, the normal correlations de-
cay as a power law and the sheet has critical fluctuations
on all scales that cause the correlation functions to behave
anomalously. We define the translationally invariant height
and phonon correlators well away from the boundaries as

Gh(r) = 〈h(r)h(0)〉, (23)

[Gu(r)]i j = 〈ui(r)u j (0)〉. (24)

Upon tuning to the transition, the Fourier transformed correla-
tors [G(q) = ∫

dr e−iq·rG(r)] exhibit a power law scaling as
q = |q| → 0. These averages define the well known anoma-
lous exponents η and ηu [22,57,73–75] through

Gh(q) ∝
{

q−(4−η) (σ0 = σc, isotensional),
q−(4−η′ ) (ε = εc, isometric),

(25)

and for the in-plane phonons (irrespective of the tensor in-
dices),

Gu(q) ∝
{

q−(2+ηu ) (σ0 = σc, isotensional),
q−(2+η′

u ) (ε = εc, isometric).
(26)

These results describe a divergent renormalization of the
wave-vector-dependent bending rigidity κ (q) ∼ q−η and
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softening of the elastic moduli μ(q), λ(q) ∼ qηu (with anal-
ogous expressions with exponents η′ and η′

u in the isometric
ensemble).

V. MEAN-FIELD THEORY

Here we neglect thermal fluctuations and analyze the buck-
ling transition in the mean-field limit, as appropriate at T = 0.
By minimizing the free energy F [Eq. (16)] over the surface
profile h(r), we obtain the Euler-Lagrange equation,

κ∇4h − σ∇2h − Y

[
PT

k�

(
1

2
PT

i j∂ih∂ jh

)]
∂k∂�h

− v

2A
∇2h

∫
d2r′|∇′h|2 = E, (27)

where v = 0 and v = B > 0 again allows us to distinguish
ensembles. As both the elastic sheet and the external load
are isotropic, axisymmetry is assumed in the following. We
choose the eigenfunction of the linearized operator in Eq. (27)
as an ansatz for the buckled height profile in a circular geom-
etry,

h0(r) = H0J0(qnr). (28)

Here, r = |r| is the distance from the center of the disk and
J0(x) is the Bessel function of the first kind. The mode of
buckling is controlled by qn which is fixed by boundary con-
ditions on the height. For simplicity, we shall assume

h0(R) = 0 ⇒ J0(qnR) = 0, (29)

where R is the radius of the sheet. Other boundary condi-
tions can also be easily used with only minor quantitative
changes in the results. A simple Galerkin approximation [76]
involves projecting Eq. (27) onto the single mode ansatz,
which then gives (the details of the calculation are provided in
Appendix B)

q2
n

(
κq2

n + σ
)
H0 + q4

n

[
v

2
f (qnR) + c0Y

]
H3

0 = EqnR, (30)

where c0 ≈ 0.10567 is a constant and f (x) is a dimensionless
function given in Appendix B, with the asymptotics f (x) ∼
2/(πx) for x → ∞. Similar to the simpler problem of the
buckling of a ribbon at T = 0 [47], Eq. (30) resembles a
Landau theory with H0 as the order parameter. It is the me-
chanical equivalent of a mean-field “equation of state.” Note,
however, that the underlying Landau theory has coefficients
that depend on system size. In the absence of an external
field (E = 0), buckling occurs for a sufficiently negative σ

and spontaneously breaks up-down inversion symmetry. At
the buckling threshold, the lowest (n = 0) mode (shown in
Fig. 3) goes unstable first. The buckling amplitude in either
ensemble is given by

|H0| =
{(

σc−σ0

c0Y q2
0

)1/2
(σ0 < σc, isotensional),(

εc−ε

c′
0q2

0

)1/2
(ε < εc, isometric),

(31)

where c′
0 = f (m0) + 2c0(Y/B) is weakly dependent on the

Poisson’s ratio through Y/B. As expected, we obtain a stan-
dard square-root scaling typical of pitchfork bifurcations (β =
β ′ = 1/2). For both σ0 > σc or ε > εc, we have a stable flat

FIG. 3. Sketch of the first buckling mode with boundary condi-
tions such that h0(r = R) = 0, for a circular plate of radius R. The
amplitude of the mode at the center of the circular frame is H0 and
its wave vector is q0 ∼ 1/R. We assume hinged boundary conditions
at r = R for simplicity. Qualitatively similar buckling modes appear
for alternative boundary conditions, such as for membranes that
approach r = R tangentially.

state with H0 = 0. The critical stress for buckling is σc =
−κq2

0 and the critical strain is εc = −κq2
0/B in the respective

ensembles. The wave vector that first goes unstable with de-
creasing σ0 < 0 or ε < 0 is q0 = m0/R, where m0 ≈ 2.405
is the smallest positive root of J0(m0) = 0 as required by
the boundary condition [Eq. (29)]. At threshold, f (m0) =
J1(m0)2 ≈ 0.27, is finite.

A couple of points are worth remarking on here. The
buckling thresholds in both ensembles involve compression
(σc, εc < 0) and are ∝ 1/R2, vanishing as the area of the sheet
becomes larger. Thus, in the thermodynamic limit (R → ∞),
classical buckling is a thresholdless long-wavelength (q0 ∼
1/R → 0) instability. At the same time, the buckling ampli-
tude remains macroscopic (|H0| ∝ R). Note also that, for a
circular geometry, the buckled state acquires nonzero Gaus-
sian curvature due to the isotropic nature of the loading. This
is the energetically preferred state: a uniaxially buckled sheet
that remains developable has a higher energy for these circu-
lar loading conditions. As a result, even in the isotensional
ensemble, we pay stretching energy ∼Y upon buckling [the
penalty associated with Gaussian curvature in Eq. (16)], while
in the isometric ensemble, both the bulk (B) and Young’s (Y )
moduli contribute.

Right at the transition, in the presence of an external field
(E �= 0), we have an nonlinear response of height given by

H0 =
{( m0E

c0Y q4
0

)1/3
(σ0 = σc, isotensional),( 2m0E

c′
0Bq4

0

)1/3
(ε = εc, isometric).

(32)

As is typical of mean-field models, we obtain δ = δ′ = 3.
Note that, because q0 ∼ 1/R, this response is strongly size
dependent, diverging as R4/3 in a large sheet. Finally, we also
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have the zero field susceptibility

χ = ∂H0

∂E

∣∣∣∣
E=0

=
{

c± m0

q2
0 |σ0−σc| (isotensional),

c± m0

q2
0B|ε−εc| (isometric), (33)

which diverges right at the transition with γ = γ ′ = 1. The
magnitude of this divergence is different on either side of
the transition, with c+ = 1 above the transition and c− = 1/2
below the transition, irrespective of the ensemble. Once again
we find a strong size dependence, with χ ∝ R2 diverging as
the area. Finally, a simple calculation using Eqs. (11) and (14)
also determines the stress-strain relation to be σ0 ∝ ε, which
sets the exponents defined by Eq. (20) to be θ = θ ′ = 1 in
both ensembles. Unlike the previous expressions, the stress-
strain relation is system size independent. Although the above
analysis was restricted to 2D membranes deforming in 3D
space, all of the mean-field results are qualitatively similar in
arbitrary dimensions.

It is evident that the two ensembles have equivalent scaling
behavior in the mean-field limit. In addition, some of the
scaling functions have a nontrivial size dependence, a fea-
ture peculiar to the buckling transition. This size dependence
is unusual from the point of view of conventional critical
phenomena [56], and as we shall see in Sec. IX, it has impor-
tant consequences for the critical exponents and their scaling
relations. Below we go beyond the mean-field limit by in-
cluding thermal fluctuations and show that there are important
changes.

VI. GAUSSIAN ANALYSIS

Here we shall primarily consider the simpler case of
a flat unbuckled membrane with H0 = 0 with a vanishing
symmetry-breaking external field (E = 0). We can rewrite
Eq. (16) as F = F0 + Fint where

F0 = 1

2

∫
d2r[κ (∇2h)2 + σ |∇h|2], (34)

Fint = Y

2

∫
d2r

(
1

2
PT

i j∂ih∂ jh

)2

+ v

8A

∫
d2r

∫
d2r′|∇h|2|∇′h|2. (35)

For small fluctuations, one might hope to neglect the
nonlinear terms in Fint. Upon Fourier transforming [hq ≡∫

dr e−iq·rh(r)], we obtain the bare height-height correlation
function

G0
h(q) = 1

A
〈|hq|2〉0 = kBT

κq4 + σq2
, (36)

where q = |q| and the zero subscript denotes that the average
is performed in the noninteracting limit. We can similarly
neglect all the nonlinear interactions in H [Eq. (3)] to find
the bare in-plane phonon correlation function,[

G0
u(q)

]
i j = 1

A
〈ui(q)u j (−q)〉0

= kBT

μq2
PT

i j (q) + kBT

(2μ + λ)q2
PL

i j (q), (37)

involving the longitudinal (PL
i j (q) = qiq j/q2) and the trans-

verse (PT
i j (q) = δi j − qiq j/q2) projection operators. As is

evident, at the Gaussian level, we have η = η′ = 0 and ηu =

η′
u = 0 in both ensembles. From Eq. (36), we can easily show

that the correlation length in Gaussian limit is

ξ =
√

κ

|σ | ∝ |σ |−1/2, (38)

which corresponds to ν = ν ′ = 1/2 in both ensembles. Note
that, here we work in the large sheet limit, which allows us to
freely Fourier transform and set σc, εc ∼ 0.

We can now determine the importance of the nonlinear
terms in Eq. (35) by making a scale transformation. To do
this, we rescale r → br, h → bζ h to get the following scaling
dimensions for the bending rigidity, tension and nonlinear
couplings,

yκ = 2ζ − 2, yσ = 2ζ , yY = yv = 4ζ − 2, (39)

where we have used the fact that the area A → b2A under scal-
ing. Here, D = 2 and d = 3, but these scalings depend more
generally on dimensionality;their generalization for general
D-dimensional manifolds embedded in d-dimensions is given
in Appendix C. In the Gaussian limit, we have ζ = 1, as h
is simply the height with naïve dimensions of length. This
leaves the bending term scale-invariant (yκ = 0), but the ex-
ternal load (σ ), Young’s modulus (Y ), and nonlocal coupling
(v) are all equally relevant perturbations for 2D membranes
embedded in 3D: yσ = yY = yv = 2 > 0.

Hence, even at low temperatures when fluctuations may
be small, we expect that the nonlinear interactions eventually
dominate in a large enough sheet. As usual, a Ginzburg-like
criterion determines the thermal length scale beyond which
such nonlinear fluctuations dominate [22,37,43,77]

�th =
√

16π3κ2

3kBTY
. (40)

Remarkably, at room temperature, a monolayer of graphene
or MoS2 has �th ∼ 1 − 10 Å, and thermal fluctuations matter
already on the atomic scale. Softer materials, such as natu-
rally occuring 2D organic polymers [60–62] have a typical
�th ∼ 0.1 − 1 μm range which is much larger due to their
smaller Young’s moduli. As a result, the consequences of
thermal fluctuations are most dramatic in atomic crystals in
contrast to the other soft membranes. We can perturbatively
account for such fluctuation effects within a renormalization
group framework that we implement below.

VII. PERTURBATIVE RENORMALIZATION GROUP

We now implement a conventional Wilsonian renormaliza-
tion group [56] by iteratively integrating out a thin shell in
momentum space of short wavelength fluctuations. The cutoff
in Fourier space is � ∼ 1/a, where a is the microscopic lattice
spacing. As an aside, we note that, although the nonlocal term
involving v in Eq. (16) is quite unusual, it can be treated
straightforwardly within a standard Wilsonian treatment, as
has been done for related problems in, for example, compress-
ible magnets [67–69]. We perform a systematic ε = 4 − D
expansion about the upper critical dimension following previ-
ous works [35,57]. Although the full diagrammatic calculation
is presented in Appendix C, we describe the main results
below. In Appendix D, we separately provide a simple, but
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uncontrolled, one-loop calculation with fixed internal (D = 2)
and external (d = 3) dimensions that is qualitatively correct,
but numerically inaccurate.

A. Recursion relations

We carry out a perturbative low-temperature expansion
evaluation of thermal fluctuations to one loop order. By inte-
grating out fluctuations within a shell of wave vectors �/b �
q � �, where b = es is a scale factor, and �−1 a short distance
cutoff of order the lattice spacing or membrane thickness, we
compute corrections to the various parameters in the model.
As explained in Appendix C, even with the addition of the
new nonlinear term, the form of our elastic description in
F [Eq. (16)] remains unchanged at long-wavelengths under
coarse-graining; only coupling constants such as κ, σ,Y, v

and E get renormalized. The fluctuation corrections can be
cast as differential recursion relations given below

dκ

ds
= κ (2ζ − ε) + 5kBT �2

192π2(κ�2 + σ )
(Y + 4μ), (41)

dσ

ds
= σ (2ζ + 2 − ε) + kBT v�4

16π2(κ�2 + σ )
, (42)

dY

ds
= Y (4ζ − ε) − 5kBTY 2�4

384π2(κ�2 + σ )2
, (43)

dμ

ds
= μ(4ζ − ε) − kBT μ2�4

96π2(κ�2 + σ )2
, (44)

dv

ds
= v(4ζ − ε) − kBT v2�4

16π2(κ�2 + σ )2
, (45)

dE
ds

= E (4 − ε + ζ ). (46)

The fluctuation corrections are evaluated here to leading order
in ε = 4 − D and the codimension of the manifold is set to
its physically relevant value of dc = d − D = 1. Furthermore,
as these equations are derived in general dimension, we use
the D-dimensional generalization of the Young’s modulus
[Y = 2μ(2μ + Dλ)/(2μ + λ)] and the bulk modulus [B =
(2μ/D) + λ], which reduce to the standard 2D expressions
for D = 2, as expected.

The renormalization equations for κ , μ and Y in Eqs. (41),
(44), and (43) are identical to those obtained previously
[35,57], while the important coupled equations for σ and v are
new results. The difference between the isometric and isoten-
sional ensembles captured by the presence of the nonlinear
coupling v is already reflected in the modified renormaliza-
tion group flows. We have also retained the external field
E here [78]; this quantity renormalizes trivially without any
graphical corrections as it couples only to the average height
(
∫

dr h = hq=0), which is left untouched by the elastic and
geometric nonlinearities.

The shear and Young’s moduli renormalize independently,
as expected, but they both contribute to the renormalization of
the bending rigidity near D = 4. One can easily use the recur-
sion relations for μ and Y to obtain equivalent ones for the

D-dimensional versions of the bulk modulus (B = (2μ/D) +
λ) and the Poisson’s ratio (νp = λ/[2μ + (D − 1)λ]), namely,

dB

ds
= B(4ζ − ε) − kBT B2�4

16π2(κ�2 + σ )2
, (47)

dνp

ds
= − kBT μ�4

192π2(κ�2 + σ )2
(1 + νp)(1 + 3νp). (48)

A couple of points are worth noting here. First, as expected,
the bulk and shear moduli also renormalize independently.
Second, upon comparing Eqs. (47) and (45), we immedi-
ately see that both v and B renormalize in identical ways,
guaranteeing that in the isometric ensemble, since v = B at
the microscopic scale, they remain equal on larger scales as
well. In contrast, the isotensional ensemble is characterized by
v = 0 (which remains invariant under renormalization), even
though B > 0.

The third important point concerns the Poisson’s ratio νp

[79]. As is easily seen from Eq. (48), we have a stable fixed
point where dνp/ds = 0 at νp = −1/3 (νp = −1 is unphysi-
cal as it corresponds to λ = −2μ/D leading to a marginally
stable solid with vanishing bulk and Young’s moduli), which
is exactly the one-loop estimate for the universal Poisson’s
ratio of a free standing elastic membrane, in accord with
previous self consistent calculations [73] and Monte-Carlo
simulations [75,80–82]. This universal auxetic response is
a characteristic property of the flat phase of unconstrained
thermalized membranes [23,81]. The reason we obtain this
result from a simple one-loop calculation near D = 4 is that
the structure of the one-loop calculation is the same as that
of the self-consistent calculation done by Le Doussal and
Radzihovsky [73], and the higher order box diagrams are
convergent in that case. Furthermore, the universal Poisson’s
ratio obtained is independent of both internal and embedding
dimensions of the membrane [73], hence we recover the same
value even in an ε = 4 − D expansion.

To analyze these recursion relations, we introduce the
following dimensionless variables (the Poisson’s ratio is of
course already dimensionless):

K = κ�2

κ�2 + σ
, Ȳ = kBT �4

(κ�2 + σ )2
Y,

μ̄ = kBT �4

(κ�2 + σ )2
μ, v̄ = kBT �4

(κ�2 + σ )2
v, (49)

which are appropriate near D = 4 dimensions. For general D,
we must replace the factor of �4 by �D to keep Ȳ , μ̄ and v̄

dimensionless. As the external field E does not influence the
fixed points, we will set E = 0 for now. The effects of E �= 0
will be addressed within a general scaling theory we develop
in Sec. IX.

The physical interpretation of K is that it measures the
relative importance of bending to the external load. We note
that 0 � K < ∞ and then demarcate three distinct regimes
based on the value for K as follows:

0 < K < 1 : Tension dominated (σ > 0),

K ∼ 1 : Bending dominated (σ ∼ 0),

K > 1 : Compression dominated (σ < 0).
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The buckled state we found using mean-field theory thus
occurs for K > 1 in the presence of compression. The recur-
sion relations for these dimensionless coupling constants then
read

dK

ds
= 2(K − 1)

[
K − 5

384π2
(Ȳ + 4μ̄)

]
− v̄K

16π2
, (50)

dȲ

ds
=

[
ε + 4(K − 1) − v̄

8π2
− 25Ȳ

384π2
− 5μ̄

24π2

]
Ȳ , (51)

dμ̄

ds
=

[
ε + 4(K − 1) − v̄

8π2
− 5Ȳ

96π2
− 7μ̄

32π2

]
μ̄, (52)

d v̄

ds
=

[
ε + 4(K − 1) − 3v̄

16π2
− 5Ȳ

96π2
− 5μ̄

24π2

]
v̄, (53)

dνp

ds
= − kBT μ�4

192π2(κ�2 + σ )2
(1 + νp)(1 + 3νp). (54)

As expected, the scale factor ζ for the flexural phonon field
drops out of the equations when cast in terms of dimension-
less variables. Note that, while we quote the renormalization
group flow equations for Ȳ , μ̄ and νp [Eqs. (51), (52), and
(54)], only two of the three are independent, as νp = (Y −
2μ)/[2μ + (D − 2)Y ]. For an unconstrained membrane, K
remains fixed at unity, as σ = v̄ = 0. While in the isotensional
ensemble, we can have any σ �= 0 (K �= 1) with v̄ = 0, in
the isometric ensemble, we generally have both σ �= 0 and
v̄ �= 0. In the latter case, the system spontaneously develops a
thermally generated tension due to the geometric confinement
enforced by the clamped boundary conditions, as discussed
below. But first, we analyze the fixed points of the recursion
relations.

B. Fixed points

We now enumerate the four physically relevant fixed points
[83] permitted in both ensembles, to O(ε):

(1) Gσ : K∗ = 0, Ȳ∗ = 0, μ̄∗ = 0, v̄∗ = 0.
(2) Gκ : K∗ = 1, Ȳ∗ = 0, μ̄∗ = 0, v̄∗ = 0.
(3) vKth: K∗ = 1, Ȳ∗ = 384π2ε/125, μ̄∗ = 96π2ε/25,

v̄ = 0 (νp = −1/3).
(4) CvKth: K∗ = 1 + ε/50, Ȳ∗ = 384π2ε/125, μ̄∗ =

96π2ε/25, v̄∗ = 16π2ε/25 (νp = −1/3).
We have set dc = 1 here as is physically relevant; the

expressions for the fixed points with arbitrary dc are presented
in Appendix C. Of these fixed points, only Gκ , Gσ , and vKth

are admissable in the isotensional ensemble. The thermal
Föppl-von Kármán fixed point vKth has been the focus of vir-
tually all studies to date. The constrained thermal fixed point
CvKth is new and unique to the isometric ensemble. Both Gκ

and Gσ are Gaussian (noninteracting) fixed points that are
bending and tension dominated respectively. The conventional
flat phase is described by vKth and occurs for a vanishing
renormalized tension (hence, K∗ = 1) that is appropriate for
an unconstrained fluctuating membrane. This fixed point has
been extensively studied previously [22,35–37,57,73] and it
controls the buckling transition in the absence of boundary
constraints, i.e., the isotensional ensemble as evidenced by
v̄ = 0 at the fixed point.

In contrast, a new constrained fixed point CvKth emerges
in the isometric ensemble with v̄ �= 0, reflecting the geometric

FIG. 4. A schematic of the full renormalization group flow di-
agram in the three-dimensional parameter space of {K, Ȳ , v̄}. We
fix the Poisson’s ratio to its universal value νp = −1/3 here, so that
both the shear and bulk moduli are determined by the Young’s mod-
ulus through μ̄ = (D + 1)Ȳ /4 and B̄ = (D + 1)Ȳ /D(D + 2). The
three isotensional fixed points (Gσ , Gκ , and vKth) are shown as red
points with 0 � K � 1 and v̄ = 0, while the new constrained fixed
point CvKth with K > 1 and v̄ �= 0 is shown in blue. An unphys-
ical fixed point with v̄ �= 0 and Ȳ = B̄ = μ̄ = 0 is also present as
a green dot at the bottom, but this is irrelevant for our purposes.
The red plane at v̄ = 0 on the left shows the accessible space of
coupling parameters within the often used isotensional ensemble.
Under fixed stress (isotensional) conditions, the thermal buckling
transition occurs at σ = 0 (i.e., K = 1) and is controlled by the
conventional vKth fixed point. However, for fixed strain (isometric)
conditions, when v̄ �= 0, we flow instead to a new codimension-1
fixed point (CvKth) that now controls the thermal buckling transition.
The unstable renormalization group flow going towards large K > 1
corresponds to strong compression and postbuckling behavior. At
low temperature, Gσ is a globally attracting and stable fixed point
which controls the properties of a tense flat membrane for both
ensembles.

constraint imposed by the clamped boundaries in the isometric
ensemble. The new interacting fixed point involves bare com-
pression (as K∗ > 1), unlike the others, reflecting the presence
of a fluctuation induced spontaneous tension that appears only
when the boundary is constrained. We will discuss this feature
in more detail in Sec. VIII. As we will show below, CvKth

controls the buckling transition in the isometric ensemble.
We note that both vKth and CvKth are characterized by

the universal Poisson’s ratio νp = −1/3. A schematic of the
full renormalization group flow diagram with the above fixed
points is sketched in Fig. 4. The stability of each fixed point
can be analyzed by linearizing about it. The two Gaussian
fixed points, Gσ and Gκ , differ simply by the presence or
absence of σ and play a role in both ensembles. The tension-
dominated fixed point Gσ is a globally stable attractor that
controls the low-temperature phase of a tense flat membrane.
However, the bending dominated Gaussian fixed point Gκ

is unstable in all directions, as found previously for tense
membranes [35–37]. Both these fixed points along with their
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FIG. 5. A schematic of the renormalization group flows projected onto the invariant attracting planes appropriate to the two ensembles.
The Poisson’s ratio is fixed to its universal value νp = −1/3 in both cases. (a) In the isotensional ensemble, v̄ = 0 identically, and we have
three fixed points, Gσ , Gκ , and vKth (filled circles). The lines connecting the various fixed points are separatrices (red) that demarcate the
basins of attraction. The vertical separatrix flowing into vKth at K = 1 describes the buckling transition in this ensemble. The streamlines
(black) correspond to integral curves of the flow, and representative trajectories closely bracketing the buckling transition are highlighted in
blue. (b) In the isometric ensemble, the relevant attractor is now a plane characterized by Ȳ = z∗v̄ with z∗ = 24/5 + O(ε). Once again, we
have three important fixed points, Gσ , Gκ , and CvKth (filled circles). The separatrices (red) delimit stability basins for each fixed point and the
separatrix flowing into CvKth controls the buckling threshold in this ensemble. Unlike in the isotensional case, this line is curved and bends
towards K > 1, signaling the generation of spontaneous tension (Fig. 6). In both ensembles, Gσ is globally stable for flat and tense mebranes
(K < 1), while flows towards larger values of K (> 1) lead to strong compression and buckling.

flow directions in different invariant planar sections of the full
parameter space, are shown in Fig. 5.

Within the invariant subspace of v̄ = 0, associated with
the isotensional ensemble (see Fig. 4), the conventional flat
phase fixed point vKth has only one relevant direction cor-
responding to the external stress. As a result, it controls the
finite temperature buckling transition in the isotensional en-
semble, where the stress is tuned to zero at threshold. But
once we allow for a v̄ �= 0, i.e., work in the isometric en-
semble instead, we find that vKth is now a codimension two
fixed point, being unstable to this new nonlinear coupling.
As sketched in Fig. 4, the system can now flow to the new
constrained fixed point CvKth instead, which has codimen-
sion one. Perturbations in Ȳ , B̄, and v̄ are all irrelevant at
CvKth and the only unstable or relevant direction is primarily
along K . In other words, within the isometric ensemble, the
strain tuned buckling transition is controlled by CvKth and not
vKth.

The identification of two distinct ensemble-dependent
fixed points controlling buckling is a significant achievement.
The fact that the choice of fixed point is picked by the mechan-
ical ensemble, here decided by fixed strain or stress boundary
conditions, is quite intriguing. Although the isotensional and
isometric ensembles are dual to each other, they remain in-
equivalent even in the thermodynamic limit, due to flexural
phonons on all length scales at the critical point. As mentioned
in the Introduction, this remarkable feature is akin to Fisher
renormalization of conventional critical exponents, which we
demonstrate explicitly in Sec. IX. Below we compute the flat
to buckled phase boundary and analyze the linearized flow

in the vicinity of the two interacting fixed points to extract
critical exponents for the buckling transition.

VIII. BUCKLING TRANSITION IN 4 − ε DIMENSIONS

Let us now analyze the recursion relations given in
Eqs. (50)–(54) in more detail. For a given Ȳ , as μ̄ and νp

are related, we only have to consider one of them. From
Eq. (54), we easily see that the fixed point at νp = −1/3
is stable and exponentially attracting for any finite Ȳ . So
we shall neglect perturbations in the Poisson’s ratio and fix
νp = −1/3. This condition in turn fixes the shear modulus to
be μ̄ = (D + 1)Ȳ /4 and the bulk modulus to be B̄ = (D +
1)Ȳ /D(D + 2), allowing us to then concentrate on the flow in
the three-dimensional subspace of just {K, Ȳ , v̄} parametriz-
ing the stable attractor.

As an aside, note that νp rapidly approaches its fixed point
value of −1/3 only when Ȳ > 0, which is true in the vicinity
of both the vKth and CvKth fixed points. In contrast, for a tense
membrane governed by Gσ , Ȳ (s) ∝ e−s(4−ε) → 0 approaches
zero exponentially fast on large scales. In this case, νp does not
reach its universal fixed point value and instead, the rapidly
vanishing Ȳ essentially freezes νp at a value that depends on
microscopic properties of the material. Thus, while the large-
distance Poisson’s ratio is universal at the buckling transition,
away from it, in a tense mebrane, it becomes nonuniversal
and depends on microscopic details, consistent with results for
fluctuating membranes under strong tension [36,37,39,84].

We shall now address buckling criticality in the two ensem-
bles separately below.

054141-12



THERMALIZED BUCKLING OF ISOTROPICALLY … PHYSICAL REVIEW E 104, 054141 (2021)

A. Isotensional ensemble

In the isotensional ensemble, we set both σ = σ0 and v̄ =
0. The latter picks out a renormalization group invariant plane
[see Figs. 4 and 5(a)] specific to this ensemble. The buckling
transition then occurs at σ0 = σc = 0 (in the thermodynamic
limit of infinite system size), though σc is nonzero for a finite
sheet (see Sec. V). Note that, right at the unconstrained fixed
point vKth, we do have σ0 = 0 (i.e., K = 1) even at finite
temperature, a result that holds to all orders in perturbation
theory. Hence, the critical stress at the buckling transition is
still given by its T = 0 value,

σc(T ) = −κq2
0, (55)

and it does not receive corrections from thermal fluctuations in
the isotensional ensemble. As before q0 ∼ 1/R is the smallest
wave vector determined by the boundary conditions and the
size of the sheet (Sec. V).

To compute anomalous scaling exponents at the transition,
we use a standard renormalization group matching proce-
dure [85] to relate correlation functions evaluated near the
transition to those further away from the critical point. Un-
der scaling, r = br′ and h(r) = bζ h(r′), conversely, q = q′/b
and hq = h′

q′bD+ζ (in D dimensions). Upon setting b = es,
we have the following scaling relation for the height-height
correlation function (Gh(q) ≡ 〈|hq|2〉/VD, where VD is the D-
dimensional volume of the manifold):

Gh(q) = exp

{∫ s

0
ds′[D + 2ζ (s′)]

}
Gh(qes; s), (56)

where Gh(k; s) is computed using all the parameters evaluated
at scale s. We now choose s = s∗ such that |q|es∗ = �−1

th , set
by the thermal length [Eq. (40)]. This condition allows us to
write

Gh(q) = exp

[
Ds∗ + 2

∫ s∗

0
ds ζ (s)

]
Gh

(
�−1

th ; s∗)

= kBT �4
th

K (s∗)

κ (s∗)
exp

[
Ds∗ + 2

∫ s∗

0
ds ζ (s)

]
. (57)

Here we have used the fact that on small scales (� � �th),
fluctuation corrections are negligible and a Gaussian or mean-
field treatment is valid. To evaluate the renormalized bending
rigidity at scale s∗, we need the following flow equation as
well:

dκ

ds
= κ

[
2ζ − ε + 5(Ȳ + 4μ̄)

192π2K

]
. (58)

It is convenient to chose the height rescaling factor ζ (s) to
keep κ (s) fixed, which leads to

ζ (s) = ε

2
− 5

384π2K (s)
[Ȳ (s) + 4μ̄(s)]. (59)

Right at the buckling transition, the coupling constants
flow to the fixed point vKth. The height correlator defines a
renormalized bending rigidity via

κR(q)−1 = q4 Gh(q)

kBT
. (60)

Upon using Eqs. (58) and (57) right at buckling, this then gives
the well-known diverging bending rigidity,

κR(q) = κ (q�th )−η, η = 12
25ε + O(ε2). (61)

The anomalous exponent η that we obtain matches earlier
calculations [35,57]. While we do not expect the one-loop ap-
proximation of η to be numerically accurate in the physically
relevant case of D = 2 dimensions, we nonetheless obtain
a reasonable value of η = 24/25 ≈ 0.96 upon setting ε = 2
in Eq. (61). More sophisticated calculations involving self
consistent [73] and nonperturbative techniques [86] give η �
0.82 − 0.85 which compares well with the exponent value
measured in numerical simulations [36,43,75,84] and recent
experiments [13].

The elastic moduli also experience a scale-dependent
renormalization, though they now get softer on larger scales.
The renormalized Young’s modulus scales as

YR(q) = Y (q�th )ηu , ηu = ε

25
+ O(ε2), (62)

The other elastic moduli (μ, λ, and B) all scale in the same
way, with the same ηu exponent. Both η and ηu are related
via a Ward identity ηu + 2η = ε, which is a consequence of
rotational invariance [35,57,73,74].

If the external tension is small but nonzero, then we perturb
slightly away from vKth. We write K = 1 + δK and linearize
in δK to get

dδK

ds
=

(
2 − 12

25
ε

)
δK ≡ (2 − η)δK, (63)

which is exactly true by virtue of the definition of η. For
a small external stress (|σ0| � κ�2), K ≈ 1, with δK (s) =
δK (0)e(2−η)s growing with s, as expected of a relevant pertur-
bation. Eventually, we reach a scale s∗ at which the external
stress has grown large and is now comparable to the bending
rigidity, i.e., |σ (s∗)| ≈ κ (s∗)�2), which defines the correla-
tion length ξ via s∗ = ln(ξ/a) (a ∼ 1/� is a lattice cutoff)
beyond which the stress dominates bending. After incorpo-
rating a nonzero σc appropriate to a finite system, we have
δK (0) ∝ |σ0 − σc| which gives

ξ ∝ |σ0 − σc|−ν, ν = 1

2 − η
= 1

2
+ 3ε

25
+ O(ε2), (64)

for the isotensional ensemble. On short length scales (� � ξ ),
the system is controlled by the bending-dominated vicinity of
the vKth fixed point, while on larger scales (� 
 ξ ) when σ0 >

0, the system is dominated by external tension and the Gσ

fixed point. Hence, for σ0 > 0, we have the following length
scale dependence (for D = 2):

κR(�)

κ
∝

⎧⎨
⎩

1, (� < �th ),
(�/�th )η, (�th < � < ξ ),
(ξ/�th )η ln(�/ξ ), (� > ξ ),

(65)

with similar expressions for the elastic moduli [37]. A similar
dependence without the ln(�/ξ ) term also exists for 2 < D <

4 dimensions.

B. Isometric ensemble

Now that we have recapitulated the isotensional results, let
us move onto the more interesting isometric ensemble. We
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now set σ = Bε and identify v̄ = B̄. As mentioned earlier, the
v̄ = 0 plane defining the isotensional ensemble is unstable to
finite v̄ perturbations, leading us to consider the full 3D space
of parameters {K, Ȳ , v̄}. For v̄ > 0, i.e., in the isometric en-
semble now, we can further reduce dimensionality by writing
Ȳ = zv̄, which gives

dz

ds
= Ȳ

16π2

(
1 − 5z

24

)
, (66)

to leading order in O(ε). With Ȳ > 0 as before, this equa-
tion has an exponentially stable fixed point given by z =
24/5 + O(ε) that attracts all the renormalization group flows
for v̄ > 0. This stable fixed point in z hence defines an at-
tracting invariant plane in the {K, Ȳ , v̄} space [see Fig. 5(b)],
only accessible within the isometric ensemble. Note that the
new constrained fixed point CvKth lies on this plane as well,
a welcome feature that guarantees that when v̄ �= 0 micro-
scopically and equal to B̄ on short scales (as it should be in
the isometric ensemble), their equality is retained on larger
scales. More importantly, the relation v̄ = B̄ > 0 serves as
an invariant attractor under coarse-graining in the isometric
ensemble. Within this plane, we have two coupled flow equa-
tions, namely,

dK

ds
= 2K (K − 1) + v̄

16π2
(12 − 13K ), (67)

d v̄

ds
= v̄

[
ε + 4(K − 1) − 27v̄

16π2

]
, (68)

as shown in Fig. 5(b).
Upon dividing the above two equations, we obtain dK/d v̄

which we numerically integrate to obtain the basin of attrac-
tion of Gσ and CvKth. The stable and unstable manifolds
are obtained as integral curves of the stable and unstable
eigendirections at CvKth, which correspond to separatrices
shown in red in Fig. 5(b). The separatrix connects the unstable
fixed point Gκ at K = 1 to the constrained thermal buckling
transition fixed point at CvKth, and it delineates the stability
region for a clamped membrane. All parameter values that
fall to the left of this separatrix flow into the stable Gσ fixed
point, leading to a sheet that is flat and tense on large scales.
In the opposite case, parameter values starting to the right

2 4 6 8 10

- 0.06

- 0.04

- 0.02

0

FIG. 6. The numerically computed buckling threshold |εc(T )|
extrapolated to ε = 2 (D = 2). The critical buckling strain gets
shifted to more negative (compressive) values at finite temperature
due to the generation of a thermally induced spontaneous tension. We
have subtracted out the zero temperature buckling threshold εc(0) =
−κq2

0/B. Near the buckling transition, we have used the universal
Poisson’s ratio (νp = −1/3) to relate the bulk and Young’s modulus
in D = 2. At low temperature (large �th), εc(T ) ∼ T ln T , while at
higher temperature (smaller �th), we have εc(T ) ∼ −√

T [Eq. (69)].
While this plot is obtained by setting ε = 2 in the recursion relations
obtained by expanding around D = 4 dimensions, a qualitatively
similar curve is obtained from a fixed dimension calculation with
D = 2 and d = 3 (Appendix D).

of the red separatrix flow away to larger values of K , sig-
naling strong compression (σ = Bε < 0) and buckling of the
membrane. Representative flow trajectories illustrating this
are shown in blue in Fig. 5(b). The separatrices are computed
as the solution of a boundary value problem and hence do not
admit a simple analytical solution. Nonetheless, we can obtain
some asymptotic results informed by the algebraic structure
of the recursion relations, in conjunction with the numerical
solution. Upon using the definitions of K and B̄ and the
relation σ = Bε, we obtain the critical curve for the buckling
transition strain (εc(T )) in terms of the elastic constants and
temperature, as plotted in Fig. 6 for D = 2 (ε = 2). For low
and high temperatures, we find simple asymptotic expansions
for the buckling threshold εc(T ) < 0 (in D = 2),

|εc(T )| � κq2
0

B
+ kBT

8πκ

[
2 ln

( a

�th

)
+ c1

]
, (�th 
 a), (69a)

|εc(T )| � κq2
0

B
+ kBT

8πκ

(
�th

a

)[
c2 − c3

�th

a

]
, (�th � a), (69b)

where a ∼ �−1 is the lattice cutoff and c1,2,3 are numerical
constants that must be computed by numerical integration
of the recursion relations. While here, we extrapolated our
perturbative solution to ε = 2, we have confirmed that the
same asymptotic expressions for the buckling strain, with only
c1,2,3 modified, are also obtained within a fixed dimension
calculation with D = 2 and d = 3 (Appendix D). As T → 0,
εc(T ) → −κq2

0/B, which is the zero temperature buckling
instability threshold with q0 ∼ 1/R being the smallest avail-

able mode in a system of size R (Sec. V). We have utilized
the fact that, near the transition νp = −1/3, which relates
Y and B via B = 3Y/8 (in D = 2), allowing us to write the
above in terms of the thermal length �th. As �th ∼ T −1/2

[Eq. (40)], for D = 2 we have |εc(T )| ∼ T ln(1/T ) at low
temperature and |εc(T )| ∼ √

T at high temperature, as shown
in Fig. 6. For general D, as T → 0, we find that |εc(T )| ∼
T [1 + const. (T 2/ε−1 − 1)/(2 − ε)] and the linear T depen-
dence dominates at small T for 0 < ε < 2 (2 < D < 4), while
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an additional logarithmic term ∼T ln(T ) appears when ε = 2
(D = 2). Note that the high temperature asymptotics depends
only weakly on dimension.

We pause here to comment on the above results. Unlike
in the isotensional ensemble, where the buckling thresh-
old did not receive any correction from thermal fluctuations
[Eq. (55)], in the isometric ensemble, the buckling threshold
gets pushed to higher values of compression (as εc(T ) <

0 and |εc(T )| increases with T ) at higher temperature. In
other words, the sheet spontaneously develops a tension due
to thermal fluctuations in the isometric ensemble. A freely
fluctuating sheet wants to shrink in-plane for entropic rea-
sons, but the clamped boundaries resist this shrinkage, thereby
putting the sheet under tension. As a result, the externally
imposed strain now has to compensate and overcome this ther-
mally induced tension to cause buckling. This effect is absent
in the isotensional ensemble because the boundaries are free
to fluctuate, allowing the sheet to freely shrink with increasing
temperature, albeit against a constant external stress.

We now compute critical scaling exponents at the buckling
transition. Here, by tuning right to the buckling threshold, we
approach the constrained fixed point CvKth. Upon evaluating
the height-height correlator, we obtain the renormalized bend-
ing rigidity to be

κR(q) = κ (q�th )−η′
, η′ = 12

25ε + O(ε2). (70)

Remarkably, we obtain the same anomalous scaling exponent
here as in the isotensional ensemble [Eq. (61)]. As we will
show later in Sec. IV, we expect η = η′ from general scaling
arguments, which we also confirm for arbitrary dc within a
lowest order systematic ε = 4 − D expansion in Appendix C
and Table I.

A similar analysis of the phonon correlator or equivalently
the nonlinear stretching term also provides the renormalized
Young’s modulus,

YR(q) = Y (q�th )η
′
u , η′

u = ε

25
+ O(ε2). (71)

As before, η′
u satisfies the Ward identity η′

u + 2η′ = ε. A con-
sequence of the equality η = η′ is that ηu = η′

u as well, which
is verified here to leading order in an expansion in ε = 4 − D.

Distinct critical exponents appear, however, when we per-
turb away from the buckling threshold, with one relevant
direction that flows away from the fixed point CvKth. Upon
linearizing about this fixed point, we obtain and diagonalize
the resulting Jacobian matrix to produce the following eigen-
values valid to O(ε),

y0 = 2 − 13ε

25
, y1 = y2 = − ε

25
, y3 = −ε. (72)

We have three irrelevant directions with negative eigenval-
ues (y1,2,3 < 0) and one relevant direction with a positive
eigenvalue (y0 > 0). If we write K (s) = K∗ + δK (s), where
K∗ = 1 + ε/50 is the fixed point value and δK (s) is a small de-
viation, then we find that δK (s) � δK (0)ey0s grows with scale
as the renormalization group flow proceeds away from CvKth

along the outgoing separatrix. Note that δK (0) ∝ (εc(T ) − ε)
is controlled by the distance to the buckling transition. This re-
lation can be easily obtained by expanding σ/(κ�2) = K−1 −
1 to linear order in δK and setting σ = Bε as appropriate in

the isometric ensemble. Upon using standard renormalization
group arguments, we obtain the divergent correlation length
to be

ξ ∝ |ε − εc(T )|−ν ′
, ν ′ = 1

y0
= 1

2
+ 13

100
ε + O(ε2). (73)

Strikingly, we obtain a distinct value of ν ′ here as compared
to the value of ν obtained in the isotensional ensemble. In
Sec. IX, we in fact demonstrate through general scaling argu-
ments that ν < 2/D < ν ′, which is satisfied to leading order
in ε in our systematic expansion (see also Table I). While, we
do not expect this leading order perturbative calculation to re-
main numerically accurate for ε = 2, the exponent inequality
continues to hold in D = 2, where it reduces to ν < 1 < ν ′.
Note that, the requirement ν ′ > 1 for D = 2 in the isometric
ensemble implies an exceptionally strong divergence for a
correlation length in critical phenomena.

The difference in exponents (ν �= ν ′) directly demonstrates
that the universality class for buckling within the isometric
ensemble is distinct from that in the isotensional ensemble, as
mentioned in the Introduction.

Our analysis of the renormalization group flow at the two
fixed points associated with buckling in the two dual ensem-
bles is now complete. While the calculation presented here
was performed within a systematic ε = 4 − D expansion at
fixed manifold codimension dc, we provide the general results
for arbitrary dc in Appendix C. We also present a simpler, yet
uncontrolled, and hence inaccurate one-loop approximation
for the fixed points and exponents directly in fixed internal
and embedding dimension (D = 2, d = 3) in Appendix D.
Although, we directly compute only the scaling exponents
associated with the fluctuation spectra (η, η′ or equivalently
ηu, η

′
u) and the correlation length (ν, ν ′), the other exponents

defined in Sec. IV can be obtained through various exponent
identities derived below. All the exponents for both ensembles
are listed to leading order in an ε = 4 − D expansion for
arbitrary codimension dc = d − D in Table I. We also use the
most accurate estimates for the η exponent in the physically
relevant dimensions of D = 2 and d = 3, obtained through
the self-consistent screening approximation [73] along with
the scaling relations derived in Sec. IX to directly quote our
best estimates for the various buckling exponents in both
ensembles, in Table I.

Below, we present a general scaling theory valid near the
buckling transition and derive relations between various ex-
ponents, which acquire nonstandard forms due to the unusual
size dependence exhibited by the buckling transition. This
framework will also allow us to explicitly demonstrate that the
distinction between the isotensional and isometric buckling
universality classes constitutes a mechanical variant of Fisher
renormalization [50].

IX. SCALING RELATIONS AND FISHER
RENORMALIZATION

In this section, we continue to work in the general setting of
a D-dimensional elastic manifold embedded in d-dimensional
Euclidean space. As before, the codimension dc = d − D > 0
counts the number of directions in which the elastic material
can deform extrinsically, i.e., the flexural modes. Close to
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the thermalized buckling transition, we have universal scaling
laws, just as in conventional critical phenomena, compactly
captured by the scaling form of the free energy itself. Standard
renormalization group arguments show that the free-energy
density defined by F = −(kBT/VD) ln[

∫
Dh e−F/kBT ] (VD is

the D-dimensional volume, which is just V2 = A the area
for D = 2) has a singular part Fs which obeys the following
scaling relation close to the transition [56]:

Fs = b−D�̃F (σb1/ν, EbyE ), (74)

where b is a scale factor and �̃F is a scaling function that
implicitly depends on the system size via R/b, the bending
rigidity via κb−η and the elastic moduli via {Y, B}bηu . We
suppress this dependence to ease notation, but these quan-
tities are important as they give rise to nonstandard scaling
relations later. Equation (74) allows us to map the physics
near the buckling transition onto the mean-field theory derived
in Sec. V. A finite external field E is a strongly relevant
perturbation, and has been retained with its scaling exponent
yE > 0. For convenience, we will work within the isotensional
ensemble where the distance from the buckling threshold is
given by σ = σ0 − σc(T ) [87]. Equivalent results for the
isometric ensemble will be quoted directly as they follow
immediately by replacing σ with Bε = B[ε − εc(T )] and
exchanging the unprimed exponents for the primed ones. This
connection holds for all the exponent identities, except for
the stress-strain exponents θ and θ ′, which require a minor
modification due to their definition [Eq. (20)], as will be clear
later on.

By choosing b = |σ |−ν ∝ ξ , we scale out the σ depen-
dence to obtain

Fs = |σ |νD�F

( E
|σ |φ

)
, (75)

where �F (x) = �̃F (1, x). The crossover or gap exponent is
given by φ = νyE (correspondingly φ′ = ν ′y′

E in the isometric
ensemble). The full scaling form,

Fs = |σ |νD�F

( E
|σ |φ , κ|σ |νη,

{Y, B}
|σ |νηu

, R|σ |ν
)

,

(76)

is a function of five distinct variables, four of which we have
suppressed in Eq. (75).

The height field has a scaling dimension ζ . Right at buck-
ling, we expect 〈h(r)2〉 ∼ ∫

1/R dDq/(κR(q)q4) ∼ R2ζ , which
gives [35,57,73,74]

ζ = 4 − D − η

2
, ζ ′ = 4 − D − η′

2
. (77)

Similarly, the requirement that the rotationally invariant non-
linear strain tensor ui j renormalize correctly leads to a
Ward identity exponent relation [35,57,73,74], now stated in
general D

2η + ηu = 4 − D, 2η′ + η′
u = 4 − D. (78)

These are well known identities, which we will use below in
deriving additional exponent relations.

Similar to the mean-field treatment of buckled ribbons in
Ref. [47], the average height 〈h〉 serves as an order parameter

for the buckling transition here. By definition, we obtain (for
general E)

〈h〉 = −∂Fs

∂E = |σ |νD−φ�h

( E
|σ |φ

)
, (79)

where �h(x) = � ′
F (x). Now, we identify 〈h〉 ∼ bζ ∝

|σ |−νζ , which gives the exponent relations

φ = ν

2
(4 + D − η), φ′ = ν ′

2
(4 + D − η′). (80)

As a consistency check, one can easily confirm that this rela-
tion for the gap exponents is equivalent to demanding a trivial
renormalization of the external field E [see Eq. (46) in Sec. VII
for the D = 2 version].

In the zero field limit (E = 0), for strong compression, we
spontaneously break symmetry by buckling, which leads to a
finite 〈h〉. As σ → 0 in a finite system, the rescaled bulk
and Young’s moduli (B and Y ) diverge as |σ |−ηuν , while the
rescaled system size (R|σ |ν) and bending rigidity (κ|σ |νη)
become vanishingly small. But the latter cannot be set to zero
quite yet. We know from our mean-field analysis that upon
buckling, 〈h〉 ∝ R/Y 1/2 [Eq. (A4) in Sec. V]. As a result, the
elastic moduli act as relevant scaling variables at the transition
while the system size behaves as a dangerously irrelevant
variable [53] whose scaling nontrivially affects the critical
exponents. For E = 0, this observation leads to

lim
σ→0

�h(0) ∝ R

Y 1/2
|σ |ν(1+ηu/2). (81)

Note that this interesting size dependence for the scaling func-
tion is not a statement of conventional finite-size scaling [88];
it is instead a unique feature arising from the long wavelength
nature of the buckling transition. By combining Eqs. (77) and
(78) with this asymptotic behavior, we can compute the order
parameter exponents β, β ′ for the buckled height [Eq. (17)] in
our two ensembles to be

β = ν
(

1 − η

2

)
, β ′ = ν ′

(
1 − η′

2

)
. (82)

This exponent identity is new and distinct from the usual hy-
perscaling relation that relates β and η in conventional critical
phenomena (the latter in our current notation would read as
β = −νζ < 0, which is obviously wrong).

We can similarly compute the susceptibility exponents
γ , γ ′ defined in Sec. IV. From our mean-field analysis, we
know that χ ∝ R2 [Eq. (33)]. Upon taking a derivative of
Eq. (79) and evaluating it at E = 0, we obtain

lim
σ→0

� ′
h(0) ∝ R2|σ |2ν . (83)

The susceptibility scaling exponents then satisfy

γ = ν(2 − η), γ ′ = ν ′(2 − η′). (84)

Although we recover the standard Fisher’s identity, its ap-
pearance is in fact nontrivial, as is easily seen by noting that
Fisher’s identity reflects the equilibrium fluctuation-response
relation [89],

kBT χ =
∫

dDr〈h(r)h(0)〉, (85)
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which by a naïve application of scaling would give χ ∼ ξ 4−η

resulting in γ = ν(4 − η) instead of Eq. (84). The resolu-
tion, as before, lies in the nontrivial size dependence of the
correlation function integral (because h(r) ∼ R), which leads
to kBT χ ∼ ξ 4−η(R/ξ )2 ∝ ξ 2−η and then correctly producing
Eq. (84). In addition, combining Eqs. (82) and (84) results in
another unusual exponent identity,

γ = 2β, γ ′ = 2β ′. (86)

Note that the inequality ν �= ν ′ (discussed below) will neces-
sarily imply additional exponent differences between the two
ensembles, such as φ �= φ′, β �= β ′ and γ �= γ ′ (see Table I
for a summary).

Next we move on to the nonlinear response in the presence
of an external field. For finite E we now take the limit σ →
0, which requires that we focus on the x → ∞ asymptotics
of �h(x) ∼ x1/δ . Once again, we must be careful with regard
to scaling with the elastic moduli and the system size. The
mean-field analysis [Eq. (32)] dictates that the prefactor to the
nonlinear response itself scales as (R4/Y )1/3. Upon taking this
dependence into account, we have

lim
σ→0

�h

( E
|σ |φ

)
∝

( E
|σ |φ

)1/δ( R4|σ |4ν

Y |σ |−νηu

)1/3

. (87)

By demanding that the σ dependence cancel as σ → 0,
we determine δ and δ′. Remarkably, upon using the other
identities from Eqs. (77), (78), and (80), we obtain

δ = δ′ = 3, (88)

which is an exact result, independent of dimension! In Ap-
pendix E, we show how the above results can all be combined
into a simpler scaling form for 〈h〉 with a single size-
dependent scaling variable and a modified gap exponent.

Finally, we study the anomalous stress-strain curve expo-
nents θ, θ ′ defined by Eqs. (20). These quantities are simpler
as they approach finite limits when the system size R → ∞.
Here we distinguish the isotensional and the isometric ensem-
ble as θ and θ ′ are defined differently in the two. We now note
that the scaling variable is Bε in the isometric ensemble, set
E = 0 in Eq. (75) and employ the definitions in Eqs. (11) and
(14) to get

〈ε〉 = −∂Fs,σ

∂σ0
∝ |σ |νD−1 ∼ |σ |1/θ (isotensional),

(89a)

〈σ 〉
B

= ∂Fs,ε

∂ (Bε)
∝ |Bε|ν ′D−1 ∼ |ε|θ ′

(isometric). (89b)

In this mechanical context θ, θ ′ take on the role usually played
by energy scaling in conventional critical phenomena. We now
obtain exponent relations analogous to Josephson’s hyperscal-
ing relation [56]

θ = 1

νD − 1
, θ ′ = ν ′D − 1. (90)

We shall see later that θ, θ ′ > 1 (see Table I), which leads
to a crucial distinction between the two ensembles. In the
isotensional ensemble, for 1/θ < 1, the anomalous sublinear
response dominates any linear Hookean response as σ → 0
[37]. In contrast, in the isometric ensemble, for θ ′ > 1, the

dominant strain response is in fact the nonsingular linear
term as ε → 0. This dichotomy reflects a crucial physi-
cal consequence of the different boundary conditions: in the
isotensional ensemble, the sheet is infinitely compliant to
homogeneous dilations or contractions in the plane, which
is a zero mode of the system, but in the isometric ensemble,
the clamped boundary conditions prohibit this zero mode and
the sheet has a finite compliance to homogeneous isotropic
distortions.

We now discuss one more scaling relation that is only true
in the isotensional ensemble and not in the isometric ensem-
ble. In the isotensional case, as we saw before in Sec. VII, the
in-plane tension σ = σ0 does not receive any graphical correc-
tions as v̄ = 0 identically. This is true in any dimension and to
all orders in perturbation theory, as a consequence of the fact
that σ0 is the sole term that breaks rotational invariance, while
the bending and nonlinear stretching terms preserve rotational
symmetry. This nonrenormalization condition then implies

ν = 1

2 − η
, (91)

as we already saw by explicit calculation in Eq. (64). Because
we must have η, ηu > 0, Eq. (78) implies that η � (4 − D)/2
(for D � 4). This inequality then shows that ν � 2/D always.
An additional important consequence of Eq. (91) is that both
β and γ take on their mean-field values,

β = 1
2 , γ = 1, (92)

in any dimension. Note that such relations do not hold in
the isometric ensemble as can be seen in an ε-expansion
as displayed in Table I. Equation (91) determining ν when
plugged into the hyperscaling relation [Eq. (90)] also gives
θ = (2 − η)/(D − 2 + η), which is consistent with the scal-
ing expected from 〈ε〉 ∼ ∫

(dDr/VD)〈|∇h|2〉 ∼ ξ 2ζ−2. This
result agrees with previously derived scaling relations in ar-
bitrary dimensions [35,57] and leads to θ = (2 − η)/η when
D = 2 [37].

This completes the derivation of the various scaling
exponents in the two ensembles. The values of the expo-
nents computed within an ε-expansion (D = 4 − ε, d = D +
dc)and by using estimates from a self-consistent calculation
[73] in D = 2 and d = 3 dimensions are displayed in Table I.
With these scaling identities in hand, we can finally address
the last key result of the paper, which is to show that the
two ensembles are related to each other via a mechanical
analog of Fisher renormalization [50]. As the isotensional and
isometric ensembles are thermodynamic duals of each other,
the corresponding free-energy densities are related to each
other via a Legendre transformation (in the thermodynamic
limit VD → ∞)

Fε = min
σ0

(Fσ + σ0ε) = Fσ (σ∗) + σ∗ε, (93)

where σ∗ solves ε = −∂Fσ /∂σ0|σ0=σ∗ , and the free-energy
densities are given by Fσ,ε = −(kBT/VD) lnZσ,ε . Now, near
the buckling transition (at zero symmetry-breaking field E =
0), we can use the scaling theory developed above to obtain

ε ∼ |σ∗ − σc|1/θ ⇒ σ∗ − σc ∼ |ε|θ , (94)
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where we have assumed θ > 1 and retained only the leading
order term as ε → 0. Upon combining Eq. (94) with the
scaling of the singular part of the free-energy densities Fε ∼
|ε|1+θ ′

and Fσ ∼ |σ |1+1/θ [90], we require that both sides
of Eq. (93) scale in the same way as σ → 0. This constraint
gives the equality

θ = θ ′. (95)

Although θ = θ ′, from Eq. (90) we immediately see that the
correlation length exponents must differ in the two ensembles,
ν �= ν ′. The simple form of the nontrivial relation in Eq. (95)
reflects the definition of θ, θ ′ in Eq. (20). Equations (93) and
(94) now lead to

β ′ = βθ, γ ′ = γ θ, (96a)

φ′ = φθ, ν ′ = νθ. (96b)

The last of these relations can be solved using Eq. (90) to ex-
plicitly give the important connection ν ′ = ν/(νD − 1). With
the help of Eq. (91), this relation simplifies to

ν ′ = 1

D − 2 + η
, (97)

which was obtained previously [35], without however recog-
nizing a possible inequivalence in ensembles. In D = 2, we
get ν ′ = 1/η, which upon noting that η < 1 leads to ν ′ > 1,
which has been observed in old Monte-Carlo simulations of
thermalized buckling in clamped sheets [91]. In general D, we
can show that the isotensional and isometric ensembles have
differing correlation length exponents such that

ν <
2

D
< ν ′, (98)

which is consistent with our renormalization group results in
D = 4 − ε dimensions. Finally, demanding that Eq. (96) be
consistent with Eqs. (82) and (84) leads to equality of the eta
exponents in the two ensembles

η′ = η, η′
u = ηu, (99)

the latter being a consequence of the Ward identity [Eq. (78)].
We note that the difference in some of the exponents

between the ensembles is not simply because the control
variables (ε and σ ) have different dimensions. In fact,
both the scaling variables we use have dimensions of stress
and are equivalent to each other: we use σ in the isoten-
sional ensemble and Bε (not ε) in the isometric ensemble.
Hence, the difference in exponents between the ensembles is
due to a genuine change in the fixed point and its associated
universality class, as confirmed by our renormalization group
calculations.

These results are reminiscent of the Fisher renormalization
of critical exponents due to hidden variables [50], and are also
related to the problems of a constrained [70] or a compressible
magnets [67], where the presence of a constraint [much like
Eq. (93)] leads to modified exponents. In conventional critical
phenomena, such as in 3D magnets or superfluid He, Fisher
renormalization does not affect the numerical values of expo-
nents by much as it usually involves dividing the conventional
exponents by 1 − α, where α is the specific heat exponent,
which is often a rather small correction [50]. Here, however,

the exponent θ replaces 1 − α in the mechanical context,
allowing for a much stronger distinction in critical behavior
between the two ensembles.

In Table I, we see that to leading order in an ε-expansion,
all the equalities in Eqs. (95) and (96) are satisfied. Within the
ε-expansion, we find that the anomalous exponents are equal
to leading order in the two ensembles, i.e., η = η′ and ηu =
η′

u, as expected from our scaling considerations [Eq. (99)]. All
the exponents in both ensembles are recapitulated in Table I
along with their exponent identities.

X. DISCUSSION

Although the study of thermalized membranes is more
than three decades old [21], it has been revitalized in recent
years by enhanced interest in 2D materials such as graphene
and MoS2. Motivated by the ability to study extreme me-
chanics in such ultrathin materials [13], we have investigated
the impact of thermal fluctuations on a classic (circa 1757!)
Euler buckling instability of thin plates. By viewing the finite
temperature buckling transition through the lens of critical
phenomena, we have uncovered new exponent relations and
remarkable phenomena that tie together geometry, mechanics,
and fluctuations in a thin elastic sheet.

Near a thermodynamic continuous phase transition, fluctu-
ations emerge on all scales and physics becomes universal.
As we have shown, a similar situation arises on the verge
of a mechanical instability, such as buckling, though with
some surprises. The long-wavelength nature of the buckling
transition leads to unusual critical scaling behavior reflected in
the system size dependence of the mechanical response. Ad-
ditionally, buckling can be actuated under either isotensional
(constant stress) or isometric (constant strain) loading, which
as we have found, actually constitute separate universality
classes. This remarkable feature highlights the importance
of oft-neglected boundary conditions that when clamped can
induce a novel thermally generated spontaneous tension and
modify important scaling exponents. Our work demonstrates
that the inequivalence of mechanical ensembles distinguished
by their boundary conditions exemplifies the phenomenon of
Fisher renormalization [50] in a mechanical context.

We emphasize the salient role of geometry in isotropic
thermalized buckling. Much of the phenomena discussed here
arise due to the inevitable geometric coupling between in-
plane stretching and out of plane bending, ubiquitous in thin
plates but absent in lower dimensional counterparts, such as
slender filaments. As a consequence, there is no analog of our
results in the finite temperature buckling of beams and poly-
mers [92–96]. Single-molecule measurements with polymers
have noted an inequivalence of similar mechanical ensembles
[97–99], though in this case due to finite size effects. In con-
trast for thin sheets, the ensemble inequivalence at buckling
survives the thermodynamic limit, as it instead originates from
the tensionless flat phase being a critical phase, with fluctua-
tions on all scales.

Our work is directly relevant to the interpretation
of mechanical metrology experiments in 2D materials
[13,24,26,58], that have been the focus of intense research
efforts in recent years. A common platform is a static buck-
ling assay that employs a sheet suspended over a trench or
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cavity of a fixed geometry, and buckled into a blister by the
application of pressure or an electric field (see inset in Fig. 2
and Refs. [26,58]). As discussed in the Introduction, routinely
measured force-response curves (Fig. 2) are qualitatively sen-
sitive to the boundary conditions imposed (which are typically
clamped, i.e., in the isometric ensemble) and exhibit char-
acteristic scaling behavior that reflects this sensitivity, fully
consistent with our predictions. This observation highlights
the importance of correctly handling experimentally ubiq-
uitous boundaries, in the interpretation of such mechanical
metrology experiments. Our work suggests similar boundary
sensitive phenomena may occur in other device geometries
as well, and perhaps also in dynamic vibrational assays. For
instance, anisotropic buckling is particularly relevant in solid-
state devices, either in terms of uniaxially compressed ribbons
[37] or sheets crushed in the presence of a background align-
ing field [100], both of which pose intriguing directions for
future research.

More generally, boundary manipulation offers an easy
route to induce strong deformations and morphologies in thin
materials. Although we focused our analysis primarily on
stress (or strain) controlled buckling, one can also traverse the
buckling transition by applying an external field or changing
the temperature. Additional effects, such as thermoelasticity,
are also often present and, in conjunction with boundary
confinement, can provide a way to tune the prestress in the
sample by simply varying temperature [5,33]. Such thermally
actuated devices could also provide a platform to test some of
our predictions. We hope our results spur more experiments
and detailed comparisons with theory in this regard.

The large body of knowledge on the nonlinear mechanics
of athermal sheets is a useful guide for future directions. It
is known that the influence of boundaries can often persist
in macroscopically large diffuse regions in slender elastic
bodies [101], an effect that is amplified by the geometry of
plates [102–104] and shells [105,106]. It would be interest-
ing to explore the consequence of thermal fluctuations in
these cases, where boundary effects are again particularly
important. Far beyond the vicinity of the buckling transi-
tion, yet more complexity arises, as when the sheet adopts a
curved profile whose mechanical description is akin to that
of thin shells. The ensuing curvature can be manipulated
to control localized deformations [107,108] and fluctuation
driven nonlinear response [109,110]. Such curved geometries
offer tunable mechanisms to modulate the mechanical and
vibrational properties of electromechanical resonators [59],
another attractive direction for future research. Postbuckled
states also often exhibit bistability and sudden snap-through
transitions that exhibit critical slowing down even in the

absence of fluctuations [111]. It would be of interest to ex-
tend our analysis to incorporate such hysteretic and dynamic
effects at finite temperature, but this remains a formidable
challenge. We hope that this work will encourage future
explorations at the rich intersection of geometry, statistical
mechanics and elastic instabilities.

Note added. We recently became aware of related work by
Leo Radzihovsky and Pierre Le Doussal [100] on the buckling
transition in a thermalized membrane subjected to an external
aligning field, which unlike our work, breaks rotational sym-
metry explicitly in the bulk.
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APPENDIX A: INTEGRATING OUT THE
IN-PLANE PHONONS

As u appears quadratically in the Hamiltonian [Eq. (3)], we
can exactly integrate it out. To do this, we separate the average
strain (u0

i j) from the nonzero wavelength deformations (i.e.,
q �= 0, denoted by the prime on the q integral), to write

ui j (r) = u0
i j +

∫ ′

q
eiq·r

{ i

2
[qiu j (q) + q jui(q)] + Ai j (q)

}
,

(A1)

with u0
i j = 1

A

∫
d2r ui j, Ai j (r) = 1

2
∂ih∂ jh, (A2)

where
∫

q = ∫
d2q/(2π )2. Note that, while there are only two

independent in-plane phonon degrees of freedom [ui(q)] for
nonzero wave vector, the homogeneous part of the strain ten-
sor (u0

i j) has three independent components, corresponding to
the three distinct modes of macroscopically deforming a 2D
solid. It is well known that only the transverse component
of Ai j is important, as the rest can be absorbed into a global
translation zero mode (constant displacement) [21]. The total
Hamiltonian now takes the form H = H′ + H0,

H′ =
∫

d2q

(2π )2

[
κ

2
q4|hq|2 + 1

2
ui(q)

(
μq2PT

i j + (2μ + λ)q2PL
i j

)
u j (−q)

]
− Ehq=0

+
∫ ′ d2q

(2π )2

{
iμ[qiu j (q) + q jui(q)]Ai j (−q) + iλqiui(q)Akk (−q) + 1

2

[
2μ|Ai j (q)|2 + λ|Akk (q)|2]}, (A3)

H0 = A

2

[
2μ

(
u0

i j

)2 + λ
(
u0

kk

)2] − Aσ ext
i j

(
u0

i j − A0
i j

)
, (A4)
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where H′ includes all contributions from the q �= 0 in-plane
phonon modes and H0 includes all the terms corresponding to
the q = 0 phonon modes. Here we have used the transverse
[PT

i j (q) = δi j − qiq j/q2] and longitudinal [PL(q) = qiq j/q2]
projection operators and written A0

i j = (1/A)
∫

dr Ai j (r).
The q = 0 and q �= 0 in-plane phonon modes clearly decouple
from each other, so when we integrate them out, the total
free energy is simply F = F ′ + F0, where F ′ arises from
integrating out the q �= 0 phonons and F0 arises from the
q = 0 phonon modes. The former is a standard calculation
[21], which gives

F ′ =
∫

d2r

{
κ

2
(∇2h)2 + Y

2

(
1

2
PT

i j∂ih∂ jh

)2

− Eh

}
. (A5)

Note that this part of the calculation is common to both en-
sembles. For the zero mode calculation, we consider the two
ensembles separately. In the isotensional ensemble, σ ext

i j =
σ0δi j , which gives

H0
σ = A

2

[
2μ

(
ũ0

i j

)2 + (μ + λ)
(
u0

kk

)2] − Aσ0
(
u0

kk − A0
kk

)
,

(A6)

where we have decomposed u0
i j into its deviatoric part (ũ0

i j =
u0

i j − δi ju0
kk/2) and its trace u0

kk . Both the shear (ũ0
i j) and the

dilation (u0
kk) components of the homogeneous strain can be

integrated over freely now to obtain the zero mode contribu-
tion to the free energy,

F0
σ = Aσ0A0

kk = σ0

2

∫
d2r |∇h|2, (A7)

in the isotensional ensemble [37]. In the isometric ensemble,
we set σ ext

i j = 0 and instead have (1/A)
∫

dr∇ · u = ε. The
homogeneous part of the strain tensor is then given by

u0
i j = ũ0

i j + δi j

2

(
ε + A0

kk

)
, (A8)

where we have once again separated out the devaitoric shear
component (ũ0

i j). We immediately see that, while in the isoten-
sional ensemble, all three components of u0

i j were freely
integrated over, in the isometric ensemble, only two out of the
three degrees of freedom can be freely integrated over. The
clamped boundary conditions prevent homogeneous dilations
or contractions, but the two homogeneous shear deformations
in ũ0

i j continue to be zero modes. Upon integrating out ũ0
i j , we

obtain

F0
ε = A

2
(μ + λ)

(
ε + A0

kk

)2

= B

2A

∫
d2r

[
ε + 1

2A

∫
d2r′|∇′h|2

]2

, (A9)

with the bulk modulus B = μ + λ, in the isometric ensemble.
By adding together F ′ from Eq. (A5) with F0

σ,ε [Eqs. (A7)
and (A9)], we get the total free energy in the two ensembles
[Eqs. (10) and (12) in the main text].

APPENDIX B: MEAN-FIELD EQUATION OF STATE

For the mean-field calculation we use a single mode
Galerkin approximation using h0(r) = H0J0(qnr) for a gen-

eral wave vector qn. The linear terms are easily diagonalized
by h0(r) which is an eigenfunction of the Laplacian,

∇2h0(r) = −q2
nh0(r). (B1)

The nonlinear terms are computed as follows. We first have
the integral ∫

d2r

A
|∇h0|2 = H2

0 q2
0 f (q0R), (B2)

where the dimensionless function is given by

f (x) = 2

x2

∫ x

0
dr rJ1(r)2

= J0(x)2 + J1(x)2 − 2

x
J0(x)J1(x). (B3)

This is a rapidly oscillating function which vanishes at zero as
f (x) � x2/8 (x → 0) and has an envelope that asymptotically
decays as f (x) ∼ 2/(πx) for x → ∞. The second nonlinear
term comes from nonlinear stretching and involves the pro-
jection operator which is easiest evaluated in Fourier space.
Upon Fourier transforming, we have

h0(q) =
∫

d2r e−iq·rh0(r) = 2π
H0

qn
δ(q − qn), (B4)

where q = |q|. We shall denote

S(r) = 1
2P

T
i j (∂ jh0∂ jh0), (B5)

and similarly define Sq as its Fourier transform. This gives

Sq =
∫

d2k

(2π )2

1

2
PT

i j (q)kik jh0(k)h0(q − k) (B6)

=
(

2πH0

qn

)2 ∫
d2k

(2π )2

k2

2
sin2 ϕδ(k − qn)δ(|q−k|−qn),

(B7)

where cos ϕ = q̂ · k̂. As the δ functions enforce k = qn

and ϕ = ±ϕ0 = ± cos−1(q/2k) (| sin ϕ0| =
√

1 − (q/2k)2),
we can use the identity

δ(|q − k| − qn) = qn

qk

[δ(ϕ + ϕ0) + δ(ϕ − ϕ0)]

| sin ϕ0| . (B8)

After some simplifications, this then gives (with the restriction
q � 2qn)

S(q) = H2
0

2q

√
4q2

n − q2. (B9)

To project Eq. (27) onto h0(r), we use the identity∫ ∞
0 dx J0(x) = 1. This allows us to write

q2
n(κq2

n + σ )H0 + v

2A
q2

nH0

∫
d2r|∇h0(r)|2

− qnY

2π

∫
d2r

1

r
PT

i j S(r)∂i∂ jh0(r) = qnE
2π

∫
d2r

1

r
. (B10)

The divergent integral contribution from the external field is
cutoff by the system size R at large distances. The nonlinear
stretching term can be equivalently computed in Fourier space
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by noting that ∫
d2r

F (r)

r
=

∫
d2q

(2π )2

2π

q
Fq, (B11)

where Fq is the Fourier transform of F (r). Hence, we compute
this term in Fourier space as follows:

qn

∫
dq

2π

∫
d2r e−iq·rPT

i j S(r)∂i∂ jh0(r)

= −qnH3
0

∫
dq

2π

∫
dk

2π

q

k

√
4q2

n − k2

√
1 − (q2 + k2 − q2

n )

4q2k2

= −q4
nH3

0

∫
dx

2π

∫
dy

2π

√
4 − y2

2y2

√
4x2y2 − (x2 + y2 − 1)2

= −c0q4
nH3

0 . (B12)

The integration domain for x = q/qn and y = k/qn is de-
termined by the square root being real. This domain is a
trapezoidal region in the first quadrant (x, y � 0) bounded
by the lines x + y = 1, y = x + 1, y = 2, and y = x − 1. The
integral evaluates to a constant c0 � 0.10567. By combining
the linear and nonlinear terms we then get the quoted Eq. (30).

APPENDIX C: RENORMALIZATION GROUP
CALCULATION: ε-EXPANSION

Here we provide details of our renormalizaton group calcu-
lation in arbitrary dimensions. We consider a D-dimensional
solid fluctuating in d-dimensional space, where dc = d −
D > 0 is the codimension. Now, the in-plane displacement
u is a D-dimensional vector and the height field h is a dc-
dimensional vector. The total elastic energy is once again of
the form as in Eq. (3), though with the nonlinear strain tensor

ui j = 1
2 (∂iu j + ∂ jui + ∂ih · ∂ jh). (C1)

We follow the standard calculation of integrating out the
phonons to now obtain an effective free energy solely as a
function of the height h [35,57,73]. We handle the boundary
conditions in the two ensembles as detailed in Appendix A to
obtain

F = 1

2

∫
dDr[κ|∇2h|2 + σ |∇h|2]

+ 1

4

∫
dDr(∂ih · ∂ jh)Ri jk�(∂kh · ∂�h)

+ v

8VD

∫
dDr

∫
dDr′|∇h|2|∇′h|2, (C2)

where v, as before, distinguishes the two ensembles and VD

is the volume of the D-dimensional solid. This free energy
extends Eq. (16) to general dimensions. We have set the ex-
ternal field to zero (E = 0, which now has dc components)
as it will not be important for the diagrammatic calcula-
tion. The isotensional ensemble corresponds to σ = σ0 (the
external isotropic stress) and v = 0. The isometric ensem-
ble corresponds to setting σ = Bε and v = B, where B =
(2μ/D) + λ is the D-dimensional generalization of the bulk
modulus and ε is the external isotropic strain imposed. The
nonlinear stretching term is given by Ri jk�(q) = μMi jk�(q) +

FIG. 7. The bare propagator and four-point vertex for the height
field, with the notation for labeling wave vectors shown.

(Y/2)Ni jk�(q) [73], where Y = 2μ(2μ + Dλ)/(2μ + λ) is the
D-dimensional version of the Young’s modulus and

Ni jk�(q) = 1

D − 1
PT

i j (q)PT
k�(q), (C3)

Mi jk�(q) = 1

2

[
PT

ik (q)PT
j�(q) + PT

i� (q)PT
jk (q)

] − Ni jk�(q).

(C4)

In D = 2, Mi jk� vanishes identically. This decomposition is
useful as M and N are mutually orthogonal tensors. We can
compute the one-loop correction to the bending rigidity and
the elastic moduli using this free energy. Note that, unlike
in the D = 2 case, both μ and Y appear separately in the
reduced free energy for D > 2. The bare propagator (corre-
lator) for the height field is defined via 〈hμ(q)hν (−q)〉0/VD =
δμνG0

h(q), where μ, ν = 1, · · · , dc, and its renormalized ver-
sion is Gh(q). As both the nonlinearities arising from R and
v are quartic in nature, we combine the two into a single
interaction vertex for simplicity,

Fint =
∫

q

∫
q1

∫
q2

V0(q1, q2, q)(hq1 · hq−q1 )(hq2 · h−q−q2 ),

(C5)

V0(q1, q2, q) = 1

4
Ri jk�(q)q1iq1 jq2kq2�

+ v

8VD
q2

1q2
2 (2π )Dδ(q), (C6)

where
∫

q = ∫
dDq/(2π )D. Note that the usual nonlinear

stretching term excludes the zero mode [21,22,73]. In other
words, we always work in the convention that PT

i j (q = 0) =
0, hence Ri jk�(q = 0) = 0. Both G0

h(q) and V0(q1, q2, q) are
graphically represented in Fig. 7. The new nonlocal nonlinear
term ∝ v/8VD is unusual as it is ultra-local in Fourier space,
with a δ function in q. After all, the new nonlinear term arose
from integrating out the strain zero mode in the isometric
ensemble, hence it makes sense that the associated nonlin-
earity has strict support on q = 0. In conjunction with the
fact that PT

i j (0) = 0, the nonlinear couplings are orthogonal
to each other and their associated operators do not mix. We
perform standard Wilsonian renormalization [56] by integrat-
ing out a shell of wave vectors �/b � q � �, where � is the
UV cutoff. The renormalized propagator is given by Dyson’s
equation,

G−1
h (q) = G0

h(q)−1 − �h(q), (C7)

where �h(q) is the “self-energy” and the vertex corrections
are encapsulated in �(q1, q2, q) with βV = βV0 − � (β =
1/kBT , not to be confused with the order parameter exponent).
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FIG. 8. One-loop contribution to both the self-energy �h(q) and the vertex correction �(q1, q2, q).

Upon including the relevant combinatorial factors, we obtain
at one-loop order

�h(q) = 8(−β ) ×
∫

dDk

(2π )D
V0(q,−q, k)

× G0
h(q − k) + 4dc(−β )

×
∫

dDk

(2π )D
V0(q, k, 0)G0

h(k), (C8)

�(q1, q2, q) = 32
(−β )2

2!

×
∫

dDk

(2π )D
V0(q1, q2, q)

× G0
h(q1 − k)G0

h(q2 + k)

× V0(q1 − k, q2 + k, q − k)

+8dc
(−β )2

2!
×

∫
dDk

(2π )D
V0(q1, k−q, q)G0

h(k)

× G0
h(k − q)V0(q − k, q2, q). (C9)

We can expand these out for small wave vectors (q → 0) and
perform the k integrals over a thin slice �/b < k < � by
leverage standard results [73] for the loop integrals. To handle
the new nonlinear coupling v, we use the fact that PT

i j (0) = 0
to set δ(q)PT

i j (q) = 0. As a result diagram III in Fig. 8 does
not contribute to the vertex correction at long wavelengths.
Both �h and � then have singular terms involving the δ

function, which we regularize as

(2π )Dδ(0) =
∫

dDr ≡ VD, (C10a)

[(2π )Dδ(q)]2 = (2π )Dδ(0)(2π )Dδ(q) ≡ VD(2π )Dδ(q).

(C10b)

This cancels the extra factors of VD leaving all the coupling
constants as intensive parameters, as expected. We cast the
perturbative correction for the various coupling constants into
differential recursion relations by writing ln b = s � 1 and
implementing the scaling transformation to restore the UV
cutoff, which gives

dκ

ds
= (2ζ − 4 + D)κ + 2kBT (D + 1)

D(D + 2)

�D−2SD−1

(2π )D(κ�2 + σ )

[Y

2
+ (D − 2)μ

]
, (C11a)

dσ

ds
= (2ζ − 2 + D)σ + kBT dc

2

v�DSD−1

(2π )D(κ�2 + σ )
, (C11b)

dv

ds
= (4ζ − 4 + D)v − kBT dc

2

v2�DSD−1

(2π )D(κ�2 + σ )2
, (C11c)

dμ

ds
= (4ζ − 4 + D)μ − 2kBT dc

D(D + 2)

μ2�DSD−1

(2π )D(κ�2 + σ )2
, (C11d)

dY

ds
= (4ζ − 4 + D)Y − kBT dc(D + 1)

2D(D + 2)

Y 2�DSD−1

(2π )D(κ�2 + σ )2
, (C11e)

dB

ds
= (4ζ − 4 + D)B − kBT dc

2

B2�DSD−1

(2π )D(κ�2 + σ )2
, (C11f)

dνp

ds
= − kBT dc

D(D + 2)

μ�DSD−1

(2π )D(κ�2 + σ )2
(1 + νp)(1 + 3νp), (C11g)

where SD−1 = 2πD/2/�(D/2) is the volume of a unit sphere
in D-dimensions. These generalize the recursion relations in
the main text [Eqs. (41)–(48)] to arbitrary D and dc, which
are recovered by simply setting dc = 1 and D = 4 − ε, and
retaining terms only to O(ε). Note that both Y and μ enter
separately to renormalize κ when D > 2. As expected, the

shear modulus μ, Young’s modulus Y and bulk modulus B, all
renormalize independently. Of course, while we provide the
recursion relations for μ,Y, B, and νp they are all related, and
only two are independent. Furthermore, B and v renormalize
in identical ways as is required to be consistent with the
isometric ensemble.
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To analyze these equations, we once again switch to di-
mensionless variables just as before (now in D-dimensions):

K = κ�2

κ�2 + σ
, Ȳ = kBTY �D

(κ�2 + σ )2
, (C12a)

v̄ = kBT v�D

(κ�2 + σ )2
, μ̄ = kBT μ�D

(κ�2 + σ )2
. (C12b)

The recursion relations for these dimensionless variables can
be obtained after a fair bit of tedious algebra but we do not
quote them here as the equations are cumbersome and not
very illuminating. Instead we directly proceed to the fixed
points. As D = 4 is the upper critical dimension [35,57], we
set D = 4 − ε and work within an ε-expansion. We have two
interacting fixed points, one with v̄ = 0 (vKth) appropriate
for the isotensional ensemble and another with v̄ �= 0 (CvKth)
associated with the isometric ensemble. To leading order in ε

and arbitrary dc, the fixed points are given by

vKth : K∗ = 1, Ȳ∗ = 384π2ε

5(24 + dc)
,

μ̄∗ = 96π2ε

(24 + dc)
, v̄∗ = 0. (C13)

CvKth : K∗ = 1 + dcε

(48 + 2dc)
, Ȳ∗ = 384π2ε

5(24 + dc)
,

μ̄∗ = 96π2ε

(24 + dc)
, v̄∗ = 16π2ε

(24 + dc)
. (C14)

As before, the constrained fixed point CvKth involves bare
compression (as K∗ > 1) signaling the presence of a sponta-
neous thermal tension that is absent in the unconstrained fixed
point vKth. One can also check that, in both ensembles, the
D-dimensional version of the Poisson’s ratio flows to its stable
attracting fixed point given by

νp = λ

2μ + (D − 1)λ
= −1

3
, (C15)

independent of both D (conversely ε) and dc. This confirms
the universal Poisson’s ratio obtained through more sophisti-
cated self-consistent calculations as well [73].

Now, we can linearize about these fixed points to obtain the
relevant anomalous scaling dimensions. For the isotensional
ensemble, we fix v̄ = 0 and diagonalize the Jacobian matrix
about vKth to obtain the eigenvalues

y0 = 2 − 12ε

(24 + dc)
, y1 = − dcε

(24 + dc)
, y2 = −ε.

(C16)
As expected, we have two irrelevant directions (y1,2) corre-
sponding to Ȳ and μ̄ and one unstable or relevant direction
(y0) corresponding to K . This provides the correlation length
exponent as ν = 1/y0, which is quoted in Table I. The anoma-
lous exponent η is obtained by tuning right to the fixed point
and evaluating

η = (D + 1)SD−1[Ȳ∗ + 2(D − 2)μ̄∗]

(2π )DD(2 + D)K∗

∣∣∣∣
vKth

= 12ε

(24 + dc)
,

(C17)

to first order in ε. As can be checked, this also satisfies the
relation ν−1 = 2 − η [Eq. (91)]. The rest of the exponents

quoted in Table I are obtained by using the various exponent
relations derived in the main text.

Similarly, now allowing for v̄ �= 0 in the isometric ensem-
ble, we can diagonalize the Jacobian matrix about CvKth to
obtain the eigenvalues

y0 = 2 − (12 + dc)ε

(24 + dc)
, y1 = y2 = − dcε

(24 + dc)
, y3 = −ε.

(C18)

We have three irrelevant directions (y1,2,3) corresponding to Ȳ ,
μ̄ and v̄, and one relevant direction along K . The correlation
length exponent is obtained via ν ′ = 1/y0, which is given in
Table I. The anomalous dimension η′ is computed just as in
the isotensional case

η′ = (D + 1)SD−1[Ȳ∗ + 2(D − 2)μ̄∗]

(2π )DD(2 + D)K∗

∣∣∣∣
CvKth

= 12ε

(24 + dc)
.

(C19)

To leading order in ε, we find η = η′ consistent with the
scaling identity in Eq. (99). The other exponents in the iso-
metric ensemble are computed through the various exponent
identities and are reported in Table I.

APPENDIX D: RENORMALIZATION GROUP
CALCULATION: FIXED DIMENSION

Here we provide the details for deriving the recursion re-
lations by using an uncontrolled one-loop approximation at
fixed dimension (D = 2, d = 3). As dc = 1 here, the height
field is a simple scalar, while the in-plane phonons are 2D
vectors. The bare propagators (correlators) for the height and
phonon fields are respectively G0

h(q) and G0
u, while their

renormalized versions are denoted by Gh(q) and Gu(q). The
bare quartic interaction vertex is now written as

Fint =
∫

q

∫
q1

∫
q2

V0(q1, q2, q)hq1 hq2 hq−q1 h−q−q2 , (D1)

V0(q1, q2, q) = Y

8
[q1 · PT (q) · q1][q2 · PT (q) · q2]

+ v

8A
q2

1q2
2 (2π )2δ(q), (D2)

where
∫

q = ∫
d2q/(2π )2. As expected, in 2D, only the

Young’s modulus Y enters the nonlinear stretching term,
which, once again, excludes the zero mode [21,22] (PT

i j (q =
0) = 0).

We once again perform standard Wilsonian renormaliza-
tion [56] by integrating out a shell of wave vectors �/b �
q � �, where � is the UV cutoff. The self energy and vertex
corrections are defined as before and computed to one-loop
order. Upon expanding them for small wave vectors (q → 0),
we obtain

�h(q) = −vq2

4π

�2 ln b

(κ�2 + σ )
− 3Y

16π

q4 ln b

(κ�2 + σ )
, (D3)

�(q1, q2, q) =PT
i j (q)PT

k�(q)

× q1iq1 jq2kq2�

Y 2

8

3�2 ln b

32π (κ�2 + σ )2

+ q2
1q2

2
v2

8A
(2π )2δ(q)

�2 ln b

4π (κ�2 + σ )2
. (D4)
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We have once again used the fact that PT
i j (0) = 0 to set

δ(q)PT
i j (q) = 0 along with the regularization scheme in

Eq. (C10) to eliminate factors of A. By writing ln b = s � 1
and implementing the scaling transformation to restore the
UV cutoff, we obtain the following differential recursion rela-
tions:

dκ

d�
= κ (2ζ − 2) + kBT

3Y

16π (κ�2 + σ )
, (D5a)

dσ

d�
= σ2ζ + kBT

v�2

4π (κ�2 + σ )
, (D5b)

dY

d�
= Y (4ζ − 2) − kBT

3Y 2�2

32π (κ�2 + σ )2
, (D5c)

dv

d�
= v(4ζ − 2) − kBT

v2�2

4π (κ�2 + σ )2
, (D5d)

which match Eqs. (C11) upon setting D = 2 and dc = 1. In
the v = 0 limit, we also recover the fixed dimension recursion
relations derived previously in Ref. [37].

We can also independently compute the renormalization
of the elastic moduli from the fluctuation correction to the
phonon propagator. Looking back at the full Hamiltonian in
Eq. (3), we can similarly define the renormalized phonon
propogator and associated self-energy via

[Gu(q)]−1 = [
G0

u(q)
]−1 − �u. (D6)

At one-loop order, the phonon self energy is given by

[�u(q)]i j = 2 × (−β )2

2!
× 2

∫
d2k

(2π )2
U 0

i

(
q,

q
2

+ k
)

× U 0
j

(
−q,−q

2
− k

)
G0

h

(q
2

+ k
)

G0
h

(q
2

− k
)
,

(D7)

where U 0
i (q, q1) = (−i/2){λqi[q1 · (q − q1)] + μ[(q · q1)

(qi − q1i ) + (q · (q − q1))q1i]} is the bare phonon-height
cubic interaction vertex. Upon expanding this self energy
for small q gives the following corrections to the Lamé
coefficients,

μ′ = μ − kBT μ2�2 ln b

8π (κ�2 + σ )2
, (D8)

(2μ′ + λ′) = (2μ + λ) − kBT �2 ln b

4π (κ�2 + σ )2

[
(μ + λ)2 + μ2

2

]
.

(D9)

This too can be cast into differential recursion relations for the
shear modulus (μ), the bulk modulus (B = μ + λ) as well as
the Poisson’s ratio [νp = λ/(2μ + λ)], which gives

dμ

d�
= μ(4ζ − 2) − kBT

μ2�2

8π (κ�2 + σ )2
, (D10a)

dB

d�
= B(4ζ − 2) − kBT

B2�2

4π (κ�2 + σ )2
, (D10b)

dν

d�
= −kBT

μ�2

16π (κ�2 + σ )2
(1 + ν)(1 + 3ν), (D10c)

once again consistent with Eq. (C11) upon setting D = 2 and
dc = 1.

While the one-loop approximation is uncontrolled, we can
nonetheless obtain the fixed points and scaling exponents
within this approximation. To do so we now use the 2D ver-
sions of the dimensionless variables [set D = 2 in Eq. (C12)]
to get the following recursion relations:

dK

d�
= 2(K − 1)

[
K − 3Ȳ

32π

]
− v̄K

4π
, (D11a)

dȲ

d�
=

[
4K − 2 − v̄

2π
− 15Ȳ

32π

]
Ȳ , (D11b)

dB̄

d�
=

[
4K − 2 − v̄

2π
− B̄

4π
− 3Ȳ

8π

]
B̄, (D11c)

d v̄

d�
=

[
4K − 2 − 3v̄

4π
− 3Ȳ

8π

]
v̄, (D11d)

dν

d�
= − Ȳ

32π
(1 + 3ν). (D11e)

These can be solved to obtain two physically relevant inter-
acting fixed points given by

vKth: K∗ = 1, Ȳ∗ = 64π/15, B̄∗ = 8π/5, v̄∗ = 0 (νp =
−1/3).

CvKth: K∗ = √
2, Ȳ∗ = 64π (2

√
2 − 1)/21, B̄∗ =

8π (2
√

2 − 1)/7, v̄∗ = 8π (2
√

2 − 1)/7 (νp = −1/3).

As before, the vKth fixed point controls buckling in the
isotensional ensemble and it matches previous fixed dimen-
sion calculations [37], while CvKth is new and controls
buckling in the isometric ensemble. The universal Poisson’s
ratio in both ensembles is once again νp = −1/3.

In the isotensional ensemble, we set v̄ = 0 and linearize
about vKth to obtain the Jacobian eigenvalues

y0 = 6
5 , y1 = −2, y3 = − 2

5 , (D12)

with two irrelevant directions along Ȳ and B̄ and one relevant
direction along K . This directly gives the correlation length
exponent as ν = 1/y0 = 5/6. The anomalous dimension is
given by

η = 3Ȳ∗
16πK∗

∣∣∣∣
vKth

= 4

5
, (D13)

matching the value obtained in Ref. [37]. Both the exponents
(ν and η), computed within this uncontrolled approximation
are fortuitously close in numerical value to more accurate
estimates of the exponents produced via self-consistent cal-
culations [73] (see also Table I).

In the isometric ensemble, we now allow v̄ > 0 and lin-
earize about the new fixed point CvKth. The eigenvalues of
the corresponding Jacobian matrix are irrational and given by

y0 = 1.1056, y1 = −2.6729, y2 = y3 = −0.5224,

(D14)
with three irrelevant directions (Ȳ , B̄, and v̄) and one relevant
direction (K). We once again obtain the correlation length
exponent simply via ν ′ = 1/y0 ≈ 0.9045. This does not sat-
isfy the inequality ν ′ > 1, nor does it satisfy ν ′ = 1/η (with
η = 4/5 from above), both of which are expected in D = 2
from general scaling arguments (Sec. IX). The discrepancy is
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attributed to the uncontrolled nature of the one-loop approxi-
mation here. We can similarly compute the anomalous scaling
dimension at this fixed point, to get

η′ = 3Ȳ∗
16πK∗

∣∣∣∣
CvKth

= 2

7
(4 −

√
2) ≈ 0.7388, (D15)

which evidently does not satisfy the identity η = η′ [Eq. (99)].
Once again, we attribute this discrepancy to the uncontrolled
one-loop approximation.

APPENDIX E: SIMPLIFIED SCALING FORM AND
WIDOM’S IDENTITY

Here we formulate a scaling form for the order parameter
〈h〉 that is a function of a single (albeit size-dependent) scaling
variable. A comparison of the size-dependent asymptotics
in Eqs. (81), (83), and (87) suggests such a simpler scaling
solution is possible. This allows us to write

�h

( E
|σ |φ

)
= R

Y 1/2
|σ |ν(1+ηu/2)�h

(ERY 1/2

|σ | f

)
, (E1)

that is now solely a function of one scaled variable with no
additional dependence on system size or elastic moduli. This
form behaves correctly near zero, provided �h(0) and �′

h(0)
both approach finite constants. We can now ensure the cor-

rect asymptotics (and now R,Y independent) by demanding
that �h(x) ∼ x1/δ for x → ∞. The modified gap exponent
f = φ − ν(1 − ηu/2) = 3ν(2 − η)/2. This observation leads
to an alternate scaling form for 〈h〉, namely,

〈h〉 = |σ |β R

Y 1/2
�h

(ERY 1/2

|σ | f

)
, (E2)

from which we can easily derive the exponent relations,

f = β + γ , f ′ = β ′ + γ ′, (E3)

δβ = γ + β, δ′β ′ = γ ′ + β ′. (E4)

Equation (E4) is Widom’s identity [56]. Both these equations
are consistent with our previous results given in Eqs. (82),
(84), (86), and (88). The modified gap exponent f = 3/2, in
the isotensional ensemble, which is exact and independent
of dimension. The modified gap exponent in the isometric
ensemble takes on the following value within an ε-expansion

f ′ = 3

2
+ 3dcε

96 + 4dc
+ O(ε2). (E5)

If we use an estimate for η for D = 2, dc = 1 from self-
consistent calculations [73], then we obtain f ′ ≈ 2.154.
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