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We present the fractional extensions of the porous media equation (PME) with an emphasis on the applications
in stock markets. Three kinds of “fractionalization” are considered: local, where the fractional derivatives for
both space and time are local; nonlocal, where both space and time fractional derivatives are nonlocal; and mixed,
where one derivative is local, and another is nonlocal. Our study shows that these fractional equations admit
solutions in terms of generalized g-Gaussian functions. Each solution of these fractional formulations contains a
certain number of free parameters that can be fitted with experimental data. Our focus is to analyze stock market
data and determine the model that better describes the time evolution of the probability distribution of the price
return. We proposed a generalized PME motivated by recent observations showing that g-Gaussian distributions
can model the evolution of the probability distribution. Various phases (weak, strong super diffusion, and normal
diffusion) were observed on the time evolution of the probability distribution of the price return separated by
different fitting parameters [Phys. Rev. E 99, 062313 (2019)]. After testing the obtained solutions for the S&P500
price return, we found that the local and nonlocal schemes fit the data better than the classic porous media

equation.
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I. INTRODUCTION

Local differential operators have been widely applied to
formulate the physical laws in terms of partial differential
equations. This includes various stochastic processes such
as classical diffusion, which are described in terms of local
stochastic differential equations as well as the Fokker-Planck
equation. The best-known example of the local differential
equations in the stock market with an application of Brownian
motion is the classical Black-Scholes (BSE) equation (see
[1]). However, the situation is different for many physical,
financial, and economic processes that cannot be described
in terms of local differential operators. Such processes are
of a global nature, for which the growth or change of a field
depends on the field configuration over the whole space-time.
The anomalous diffusion is an example of the scaling between
space and time described by a power-law relation with an
anomalous exponent. This constitutes a wide-ranging class of
physical processes to which many systems are mapped, such
as turbulence [2-6], light scattering of clouds [7], and stock
markets [8].

Despite the widespread use of BSE to describe the price
evolution in markets with inherent risk in their expected re-
turns, the BSE fails in many option pricing applications [9].
The BSE limitations open up an opportunity to model the
stock market price by nonlocal operators by considering three
aspects: (1) The experimental measurements of stock market
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price return X exhibits mean-square displacements that scale
as a power law with time as (X2) ~ . In the S&P500 stock
market index, « is larger than the value of 1 given by classical
diffusion, so that is an anomalous diffusion exponent [8].
(2) The observed probability distribution function (PDF) of
price return is non-Gaussian with heavy tails that rules out
normal diffusion. (3) The time series of price return exhibits
short-time correlations.

A scenario for explaining these observations is to assume
that any stock market price change causes an impact across a
time interval, leading to nonlocal effects. As a consequence,
a mathematical description of the stock market price change
should include nonlocal operators [10-12], one way of which
is fractionalizing the differential operators in the governing
equations. The fractional calculus emerges from consider-
ations that the spatiotemporal correlations of a stochastic
process can be translated into time or space fractional differ-
entials [13]. Nonlocal operators are employed in this field to
describe the nonlocal features of the system, be it spatial, cap-
turing the nonlocal interactions in space or temporal capturing
the temporal correlations in the system.

Fractional diffusion equations for anomalous diffusion
govern random walks where a random waiting time separates
random particle jumps. A power-law probability distribution
for particle jumps (Levy flights) leads to fractional derivatives
in space. The Levy flights are defined as Markovian random
walks that converge to stable densities because of power-law
distributed jumps [14-16]. Power-law waiting times corre-
spond to time fractional derivatives. Particle traces are random
fractals, whose dimension relates to the orders of the frac-
tional derivatives [17]. Other examples in financial economics
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FIG. 1. Comparison of the probability distribution of the price return of S&P500 for At = 1 min with two different fittings. (a) For the
Levy-Stable distribution, the fitting values after applying a least-squares fitting method are o« = 0.95 and y = 0.11. (b) A second calculation
was made to obtain the characteristic exponent from the power law of the tails of the PDF. The value of « = 2.43 lies outside the Levy regime,
ruling out the Levy-stable distribution function. (c¢) The g-Gaussian distribution function (blue). Two g-Gaussians capture better the anatomy

probability distribution of the price return of S&P500.

are the pricing contracts, where the fractional partial differen-
tial equations have proved to be a useful tool.

Fractionalization of the classical diffusion equation using
the Riesz fractional derivative gives the a-stable Levy dis-
tribution as its solution, which has been widely used in the
literature of the stock markets. For fractional calculus and
applications in finance, see [9,18-21].

Although being promising in some aspects in stock mar-
kets, the Levy flights have shown some restrictions to model
stock market prices due to its infinite variance and uncor-
related time series. The presence of short time-correlations
of the price return rules out the main hypothesis of the
Levy regime of independent identically distributed random
variables [22]. The Levy-stable distribution provides only an
estimation of the stock market fluctuations at low frequencies
where the correlations can be neglected. However, correla-
tions during the first minutes on the price fluctuations were
observed at high frequencies, making the Levy regime no
longer applicable. Additionally, the characteristic exponents
applying to model the power-law tails of the price return’s
PDF lie outside the Levy regime. These occur since most of
the equations modeling physical phenomena of this kind are
nonlinear. Based on the results shown in Fig. 1, it is clear that
the Levy-stable distribution does not capture the PDF of the
stock market’s price return adequately.

An alternative to describe the Levy diffusion process is
through the porous media equation (PME). The PME is a
generalization (nonlinear version) of normal diffusion that
shows connections with the fluctuations in stock markets
[8,23]. Initially the PME was employed to describe the corre-
lated anomalous diffusion processes with finite variance [24].
Many analytical [25-33] and numerical [34—37] methods have
been developed to study the properties of PME, which admits
modeling anomalous processes in nonextensive statistical me-
chanics with the g-Gaussian function as its solution. Indeed,
the PME is capable of being applied to self-similar and scale-
invariant systems such as financial markets where g-Gaussian
distributions for the price return are observed [8,38—40].
Gluing the two ideas mentioned above (self-similarity and
nonlinearity), one ends up with the fractional PME (FPME),
which has been studied in many papers [24,40—-43], aiming to
study anomalous diffusion in porous media and other prob-
lems related to PME, each of which with a particular (local or
nonlocal) “fractionalization” scheme. The fractional deriva-

tive in FPME is responsible for the power-law behavior of the
mean-square displacement and the heavy-tailed waiting times
in the corresponding continuous-time random walk scheme.

The aim of the present paper is twofold: (1) derive an
alternative diffusion equation for the stock market by frac-
tionalization of the time derivative of the PME (accounting
for the strong short-time correlation observed in the stock
market), and (2) generalize the PME using both time and
space derivatives and study the possible solutions. In physi-
cal systems, the space fractionalization accounts for nonlocal
interaction (see [44]). In stock markets, the space variable
represents the price return of the stock index so that the space
fractionalization accounts for the nonlocal interaction of the
price fluctuations. We then discuss the properties of a class of
solutions of local and nonlocal FPME. We show that these
solutions are normalizable and smooth for any given order
of nonlinearity. Then we apply the findings to the S&P500
stock market index and argue that the solutions of the nonlocal
FPME are more suitable and reliable for this application. We
attribute this to the nonlocal nature of S&P500 markets.

The paper is organized as follows: In the next section we
briefly describe the solutions of PME and its fractionalization.
This section gives a feeling how the g-Gaussian PDF resulted
from a PME. We then describe the local-local, local-nonlocal,
and mixed variants of the space and time fractional PME in
Secs. III-V, respectively. We present the results of the applica-
tion of the model to stock markets in Sec. VI. The relationship
between the notion of nonlocality with the empirical study
done in this work is discussed in the last section. We close
the paper with a conclusion. Since the paper contains quite a
few mathematical parts, we collected the definitions and some
properties of the model in Tables I- IV.

II. OVERVIEW: g-GAUSSIAN PDF AND FRACTIONAL PME

The PME is one of the simplest examples of a nonlinear
diffusion widely used to describe processes that involve fluid
flows and heat transfer [53]. Also, it can be used to investigate
any diffusion process where the diffusion coefficient depends
on the state variable. The classical PME is

OP(x,1) _92P24(x,1)
=D .
ot ax2
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TABLE I. Definitions of the most common local (1) and nonlocal (2—4) fractional derivatives.

N Fractional derivative Definition Ref.
1 Katugampola D* f(x) = lim._g w m<a<<n+1l) [45]
1 d n X
RI;Dat.xf(x) — —_ 710(‘[) dt (n —l<a < i’l)
. L I(n—a) o (x =Tyt
2 Riemann-Liouville [46-48]
RLyo,x f(t)
Dy fx) = T(n oz)( dx) / T —xp- n+1d‘r mn—1<a<n)
1 (n)
CaD“”‘f(x): / S dt m—1<a<n)
rn—a) ), (x—rt)*!
3 Caputo b [47-49]
D) = = ( 2 PO e i—1<a<n
O[) o (-[ _ x)afnJrl
o RL o,x | RL o, X
4 Rietz 4 f= Coo D™+ Do )f (%) [47-52]
d|x| 2cos(ma/2)

A solution of this partial differential equation (PDE) is the
Barenblatt function forg > 1 and ¢ > 0,

P(x,t) = 1, (C—
(Dt)3

where C is an integration constant. Equation (1) has been
generalized to analyze several physical situations that present
anomalous diffusion [54].

Using fractional calculus, it is possible to obtain useful
dynamical models, where fractional differential operators in
the time and space variables describe the strong short-time
correlation and nonlocal spatial properties of the complex
processes and media [13]. Intuitively, a nonlocal operator is
defined as the operator that needs the information in a finite
interval upon its operation on a function, contrary to local
operators that need only the information at one point in its
close vicinity (see [55], and Appendix A). In general, many
usual properties of the local (first-order) derivative D, are not
satisfied for fractional derivative operators Dy. For example,
a product rule, chain rule, semigroup property have strongly
complicated analogs for the operators D%. A natural general-
ization of the local derivatives to fractional order is the local
fractional derivatives. The concept of local fractional deriva-
tives keeps some of the properties of ordinary derivatives.
Nevertheless, they lose the memory condition of fractional
order derivatives [56]. The Katugampola operator is an impor-
tant example of the local fractional derivative operators [57].
Recently, fractional local operators have been used to model
phenomena of turbulence [58], and anomalous diffusion [59].

The present paper proposes a generalized form of the PME
that admits a broader range of results:

1

1—gq x2 e )
20-9)B -9 (pryza ]

D5 P(x, 1) = D(CD) PV (x, 1)), (3)

where CDZ’XN denotes the Caputo fractional derivative of the
PDF with respect to x* (see Appendix B). The fractional
derivative D of orders & and y is a function of three variables:
the limits (a and b), the arguments (¢ and x), and the degree
order of the arguments (n and «). This last type of variable

allows us to have a derivative with respect to a function when
n,o # 1.

A particular case of Eq. (3), whenn = o =landa =b =
0, is

&

; : P(x,t) =
No general solution of Eq. (4) is known. In the present paper
we aim to show that a particular solution to this equation is the
Green function. This function is obtained from the boundary
condition P(x,t) = 0, when x — %00, and the initial condi-
tion P(x, 0) = §(x), where §(x) is the Dirac § function. The
Green functions can be expressed in terms of well-known
distributions. Some cases are the Gaussian, the Levy-stable
[54], and the g-Gaussian distributions. We show that Eq. (4)
admits exact solutions that vary depending on the definition of
the fractional derivatives applied. The definitions of the most
commonly used fractional derivatives are contained in Table 1.
Equation (4) allows space and time to scale differently, and as
a consequence, different solutions can be obtained.

In searching for the solutions of Eq. (4), we exploit the fact
that they follow the self-similarity law,

okl
—F|—|. (5)
o) Lo()
Equation (5) has often been used to model the price return
in stock markets. This price return obeys ¢ () ~ t¥, H being
the characteristic exponent of the PDF, and it is known as the
Hurst exponent.

A summary of these self-similar solutions is contained
in Table II. The first four equations of Table II have been
solved previously by applying integer or fractional derivatives
[40,70,73]. The last four equations have been solved in this
manuscript after applying local and nonlocal derivatives. The
local derivatives were used to solve equations N.5 and N.6 in
Table II. The solution of equation N.6 is the first generalized
g-Gaussian function. The fractional derivatives used to solve
equations N.7 and N.8 were of nonlocal character. The equa-
tion N.7 in Table II is proposed as an improvement of equation

a}’
D—P'(x,1). 4
axY

P(x,t) =
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N.4. The equation N.7 presents fractional derivatives on both
variables, time and space. After applying local derivatives
on time and nonlocal derivatives on the space, the solution
of equation N.7 is not a g-Gaussian and does not satisfy
the self-similar law P(x, t) » t "7 F (xt="). Then, a particular
form of Eq. (3) is proposed as equation N.8 in Table II. The
equation N.8 has been solved by applying nonlocal fractional
definitions on time and space. The solution of Eq. (3) is called
a second generalized g-Gaussian function, and it presents a
self-similar form, P(x,t) ~ ¢t #F(xt="). By replacing A =
ﬁ in the second generalized g-Gaussian, the first generalized
g-Gaussian can be recovered.

Here, we aim to get show that local and nonlocal FPME
admit generalized g-Gaussian solutions, so that for local
fractional derivation, the Katugampola definition is applied;
for nonlocal fractional derivation, the Riemann-Liouville and
Caputo derivatives are applied. Especially, for the nonlocal
fractional derivation, we consider a fractional derivative with
respect to another function, in the sense of Caputo derivative.
We consider both local and nonlocal FPMEs focusing on three
distinct cases: (LL) referring to the case where both time and
space derivatives are local, (LN) or (NL) where one of them is
local and the other is nonlocal, and the (NN) referring to the
case where both derivatives of time and space are nonlocal.

The main finding of the present paper is that the local
and nonlocal cases admit generalized g-Gaussian functions as
their Green function solutions. The difference between them
is the number and the form of the fitting parameters. As an
application, the local and nonlocal generalized g-Gaussian
distributions are used to describe the regimes observed during
the time evolution of the PDF of the S&P500 index. After
addressing the g-Gaussian distribution function as a self-
similar solution of the PME in the next section, we present
the solution of the FPME with the local fractional derivative
(LL) in Sec. III. Sections IV and V contain the analysis of
the FPME with (LN) and (NN) fractionalization. In Sec. VI
we present an application of the generalized g-Gaussian dis-
tribution to describe the price return of S&P 500 from the
past 24 years, and we compare the results with previous
solutions.

III. PME WITH LL FRACTIONAL OPERATORS

The generalized forms of PME are obtained by replac-
ing the first time derivative or second space derivative by
fractional orders derivatives in the classical PME. These
generalized PMEs may model more efficiently certain real-
world phenomena, especially when the dynamics are affected
by constraints inherent to the system. Typically, fractional
derivatives are defined with an integral representation. Con-
sequently, they are nonlocal in character. There exist several
definitions for fractional derivatives and fractional inte-
grals like the Riemann-Liouville, Caputo, Hadamard, Riesz,
Griinwald-Letnikov. However, some usual properties of these
fractional derivatives are different from ordinary derivatives,
such as the Leibniz rule, the chain rule, and the semigroup
property. Consequently, these fractional derivatives cannot be
applied for local scaling or differentiability properties. For
further details, we refer the reader to [74,75] and Appendix C.
Recently, the Katugampola [57] local fractional operator was

used as a limit-based fractional derivative that allows zero as
a possible order of the derivative. The Katugampola operator
maintains many of the familiar properties of standard deriva-
tives such as the product, quotient, and chain rules.

A. A local fractional nonlinear time-space diffusion equation

In general, finding solutions for nonlinear anomalous diffu-
sion equations is a challenge since, besides its difficulty to get
exact analytical solutions, the principle of superposition is not
applicable as in the linear case, so that the Fourier analysis
cannot be done. Despite this huge interest and theoretical
studies on the problem, very limited information is available
concerning the possible solutions of these equations and their
properties, especially the dependence of the solutions on the
fractionalization parameters.

In this section we solved a time-space FPME (TS-FPME)
with (LL) fractionalization. Throughout this section we con-
sider the Katugampola derivative and integral (Katugampola
operators) to solve the generalized PME. By applying this
local derivative, our solution will be a generalized g-Gaussian
distribution. Information about Katugampola’s definition and
its properties can be found in Table I, Appendix A, and Ta-
ble IV. The Katugampola fractional definition was applied for
the time and space fractional operators. Such FPME can be
written as

9% v

ﬁP(x, 1) = pr (x, 1), (6)
where 0 < £ < 1 <y < 2,|v|] < 1 are a set of three free pa-
rameters, and D is the diffusion coefficient. To solve Eq. (6),
we express the function P(x, ¢) in its self-similar form:

P(x, 1) = LF<L> 7
o) \o@)

where ¢(¢) is a function to be identified. Equation (7) is
consistent with a symmetric probability distribution.

By considering, z = ﬁ) and inserting Eq. (7) into Eq. (6)
we have the following two equations:

oy p¥ _ ! dyF”
x (X,f)—(pwyy )

#Px,1) -1 E)Eqﬁ[ d }

_ oy LF
PTG o0 ok || T Caz

so that,

—1 a‘fqbd[F]_ D dva

Q2() 0f dz T g dgr
In the above equation, the properties of the Katugampola
derivative were used (see Appendix A and Table IV). Then
we arrange everything in such a way that all quantities in
one side are only a function of z and in the other side are a
sole function of . This procedure leads us to obtain the two
following independent equations:

prir2 e &
s v+y—1°
£ d dr
———— —[zF]=D—F".
v+y—1dz dzv
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TABLE III. Summary of particular forms of the generalized PME Eq. (3) to model the time evolution of the PDFs of price return. The
C-PME, T-FPME, TS-FPME, and G-PME are obtained after setting a specific value of the parameters in the general form of the PME. The
fittings were performed by setting the parameters as shown in the table.

Time fractional

Time-space Particular case of the

Classical (C-PME) (T-FPME) fractional (TS-FPME) generalized PME (G-PME)
§ 2
aPGr) _ ) dP2 ) Bren - pEE S T = DBYPMZ(M) £ ] Cyy
X, 7’” ats - dx 1 — Y. X% py
Forms of PME ot =D ox2 ! 0<£<1 (30) 0<&< oD>7P(x,t) =D("Dy" P'(x,1))
l1<g<3 1<y<2, E,y>0
l<g<3
l1<g<3
g=2-v, g=2-v, g=2—v, §—1+A+1/a
Parameters after y =2, y =2, y>1, v=—1— x+1/a
comparing with E=1 £ = 301;11 £ = |—Z+y v =(1/a— 21 + A+11/a)

general PME

The solution of the first equation is ¢ oc 7=, and for the

second one we have

By applying the property D*(f) = D*~'D!(f) for 1 < u <
2, and taking local fractional integral with respect to z in
Eq. (8), the following expression is obtained:

d d dr
d_z[ZF]=F+Zd_zF=kﬁFU’ /ti[zF]ﬂ—k/t 27 d [d :|dz )
with k = %ﬁl), which can be rewritten as dz 27y PV dzldz
d 4l d In the right-hand side, the integration by parts is used, Z::f +
dz[ Fl= kd v—1 dz —[F]. ®) ¢, choosing ¢ = 0. By considering F = (¢; + czz”)ﬁ to ob-
TABLE IV. Comparison of properties between Katugampola, Riemman-Liouville and Caputo fractional derivatives.
Property Katugampola [45,100] Riemann-Liouville [77,102—-104] Caputo [102-104]
Key property D f(t )f KD f(t) = DI f (1) CDUf() =T D" f(1)
lim, o L0 )=/®
D f (1) = 1"~ 4O n—l<a<n  D'=%L TOf(t) = gy Jy F(O) — 1) dr
Cte. function D% =0 RLpee = ﬁt“’ Cpeec=0
Linearity D(af(t) + g(t)) = aD*f(t) + D*g(t)
CD“(f(t)g(t)) = " DUS)3)).
Product (Leibniz) D(f(t)g(1) = RLD(f(1)g(r)) = %O: QD f@ngh @) - -
i=0 Z (k 1=y (080 )]

F@O)D*g(t) + g)D* f(t)
Quotient rule Da(%) =
87

KD (f Og) =
1 g()f(r)dt
T -a) ()d o [g(x) — g(r)] I+
Chain rule D¥(fog) = Z{g D%g() RLDZ,x(:f 0:)), i x o '

' 1od @S
M —a) g@dx Jo [g(r)— gl

F(p+1) (e
F'p—a+1)
p>-—-1,peR

RLDot(tp) —

)

Power function D (tP) = ptP~*

k=0

€ D**(fog) =

1 T O f"(v)de
T —a) J, lgtx) — go)ien’
DI (fog) =

U r d@fM e
ra-ow [g(r) — glo)|iren’
fg(f) (%E) f@©
C'Da(tp) _RL Da(tp)’

p>n—1,peR.
‘DY) =0,
p<n—1,peN
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tain a special solution (where c¢; and ¢, are constants), the
following expression is obtained:

d yve
—[F"]= ——=27""'F.
dz[ ] v — 1Z

After incorporating the previous expression into Eq. (9), we
obtain

I a5
Dy(y — 1w +y—1)

Therefore the general solution is

2

(v— D& X )
Dy(y — 1w +y —1) 5= '
(10)
where ¢; is removed after applying the normalization con-
dition in Eq. (10). Then, by defining v = 2 — ¢, considering

1
Py (4

tv+y—l

_ l—gty
=— , and
L §
,V,q,D) =
D = ety = 1)
- : Can
Dy(y — D2 —-q¢)(1 —qg+v)
the following equation is reached:
Aé L x? K
P(X,t) = 1 1+(1 _Q)ﬂq(ﬂa Y, C]aD)t_L ) (12)

where Aé is a normalization factor. In most of physical sys-
tems cases, the P(x, 1) is symmetric with respect to x. This
point leads us to make x — |x| (i.e., its absolute value), or we
can consider some values of y that satisfy this property.
Then the normalization factor was identified as follows:

()

(G —)r(+3)

1 1
L_ _ ¥

where

(B, v, q,D)
(v—1-!

For y =2, these parameters become o = 35;", A

r()
/1 1 L _ é
T 77(5, q’ D)F(Z(;iiq]))’ and nq (Ev Q7 D) - 2D(27q)(37q) .

We call Eq. (12) tIhe local g-Gaussian (Lg-Gaussian) distri-
bution, which is the Green function of Eq. (6) obtained from
a TS-FPME with the Katugampola fractional derivative (local
fractional definition). The Lg-Gaussian has been defined as
gy (x), equation N.6 in Table IL

In Fig. 2 we show the Lg-Gaussians for different g values
as indicated in the plot for r = 1,& = 1, y = 2. In Fig. 2(a),
by increasing g, the peak of curves increase and the distribu-
tion becomes narrower (the tails become heavier). In the case
of Fig. 2(b) something similar occurs, where we denote the
PDFs of the Lg-Gaussian for different & values as indicated in
the plot fort = 1, g = 1.5, and y = 2. The reverse occurs for
Fig. 2(c): by increasing y (considering t = 1,g=1.5,& =
1), the peak of the PDFs decreases. Also, the time evolution
of the Green function of Eq. (6) is shown in Fig. 2(d).

né&,y.q.D)=

L
q

B. A connection between the (g, «)-stable distributions
and Lg-Gaussians

In the previous section, we obtained Lg-Gaussian distri-
butions by solving the TS-FPME. In fact, these Lg-Gaussians
are generalized g-Gaussians by considering |x|?/?, ¢ > 1,i.e.,
a g exponential in the variable |x|”. From the definition of
the g exponential, it follows that f ~ Cf|x|”’/(q’1), Cr >
0, as [|x| > oco. Analogously, for any ¢-Gaussian, g~
Celx|7?@=D | C, > 0, as |x| = oco. By comparing the order
of the power law of the asymptotes, we verify that for a fixed
1 <y <2andforany 1 < g < 2 there exists a proportional-
ity from Lg-Gaussians to g-Gaussian. For further details, see
[76].

Let us denote the class of random variables with (g, y)-
stable distributions by L,[y]. A random variable X €
Lyly] has a symmetric density f(x) with asymptotes f ~
Clx|~H/A+r@=1) x| - oo, where 1 <g<2,1 <y <
2, and C is a positive constant. On the other hand, any
Lg-Gaussian behaves asymptotically when C,/|x|"/¢~!. Es-
pecially any Lg,-Gaussian behaves asymptotically when
C>/|x|7/@ =D Hence we obtain the following relationship:

1
v __ v (14)
l+y@—-1 ¢, —1
Solving this equation with respect to g,,, we have
yQy +1
== =2 —1). 15
P r T Qy=2+y@-1D (15)

Three parameters were linked: y, the parameter of the y-
stable Levy distributions, q, the parameters of correlations,
and g,, the parameters of attractors in terms of Lg,-
Gaussians. Then under Eq. (15) the density of X € £,[y] is
asymptotically equivalent to Lg, -Gaussian.

The Lg-Gaussians have an interesting property. Its suc-
cessive derivatives and integrations with respect to |x|¥
correspond to g, , exponentials in the same variable |x|”,

Za(g—1
where g, , = % [76].

By considering G,, ,[y] as a set of functions {be;Vﬁn\éV’ b>
0,8 > 0} and F, o O be the g, , Fourier transform, the fol-
lowing expression is obtained:

‘qu.n : gqy.n[y] - gqy.»x+l[y]’ -0 <n < [V/(q - 1)]

This is similar to the ¢ exponential with the variable |§|”, i.e.,
eq’ﬂ‘f ", B > 0, which is the g-Fourier transform of (g, y)-
stable distributions [76].

C. The local fractional nonlinear time-space diffusion
equation with the drift

The drift is often an inevitable part of stochastic systems
that should be analyzed in detail for every case study to con-
trol its effects, although it is suggested to define the equations
for the general drift term. For the case where it depends only
on time (as the case for many physical systems of interest), the
situation becomes easier. In this case, the governing equation
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FIG. 2. (a) Lg-Gaussians for different ¢ values as indicated in the plot for t = 1,& = 1, y = 2. (b) Lg-Gaussians for different & values
as indicated in the plot for r = 1, g = 1.5, y = 2. (c) Lg-Gaussians for different y values as indicated in the plot fort = 1,9 =1.5,§ = 1.
(d) Time evolution of the Green function of Eq. (6). Over time, the peaks of curves decrease and the PDFs lose the behavior of heavier tails;
in contrast with (c), by increasing y, the peaks of curves and behavior of heavier tails decreases. In (a), by increasing ¢, the peaks of curves

increase and the distribution becomes narrower (the tails become heavier).

is

0% P(x. 1) (t)aP(x,t) +D8VPV(x, t)

—P(x,t) = —a ,

aré 0x oxv
0<é&< 1<y <2,

v] < 1. (16)

By change of variable T =5 and the definition of the
Katugampola derivative, we have

0:P(x,1) = —d'(v)d,P(x, 1) + D3 P’ (x, 1),
where d'(t) = éa(t(r)). By using the change of variable

(s,y) = (v, x —xo — f(1)), where f(r)= [, a'(r')d7’, and
using the fact that g—i = —d'(tr) and d; + d'(7)d, = 0,5, one
finds that the governing equation P(y, 7) is

0Py, 7) = Day”P"(y, 7),

for which the solution is (xy = 0)

PO T) A < 1—g¢q
’ = 1 1 —
T LDy -2 - +y —q)

1
y}’ T4
X —— .
T +r—q

Let us equate the P(y, 7):

0
P(x.1) = a—zP(y, (1)),

Then, we obtain that

P(xt)—i<c— =g
= U 2Dy - D2 -ty —g)
K XSO _f/(t))y>]_q, A7)

v§
t1+r—q

where f'(t) = f(t(t)), Aisanormalization factor, and ¢ is a
constant. Equation (17) is a Lg-Gaussian solution with a drift.

IV. PME WITH LOCAL AND NONLOCAL
FRACTIONAL OPERATORS

To be self-contained, we consider the case where one frac-
tional derivative is local and the other is nonlocal. In this
section we solve a TS-FPME with (LN) fractionalization (the
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equation N.7 from Table II),
9t P _D Y pv
% (x,1) = Py (x,1),

1
0<€<1,0<y<§,v>—1, (18)
where % and % denote the Katugampola and Riemann-
Liouville fractional derivatives, respectively (see Table IT). We
consider the decomposition of Eq. (7). Then, by using the
property of C%F (ax) = a” nyVF (z), and some properties of
the Katugampola derivative, we obtain

1 d”
VP (x,1) = —F",
oY dzy
8$P(x,t)_ -1 9%¢ P d
s @2(r) art ’

so that
1 o d
2(1) 9E dz

D
_¢v+yy

To continue, similar strategies applied in Sec. III A were used.
We transform the previous equation into two independent
equations:

prrra e &
s vty —1°
£ d 47
———————[zF]=D——F",
v+y —1dz dzv

where the solution of the first equation is ¢ = ¢ +-T. For the
second, the solution is

d[F]—F—i— dF— D v+y—1 dVFU

dz T TR T & lao

or diz[zF] = k%F” with k = w. By integrating with
respect to z, we obtain

dar-!
dzv—!
where c is a constant, and we have set ¢ = 0. By considering

F(z) = 7*(c| + ¢»2)* and using the following property for the
RL operators,

F =k [F'] +c, (19)

Mo +1
DIt (a-+ bof) = Dk b 20
we find that
dr—! 4 Tvp+1

We put this result into Eq. (19), and the following expressions
are obtained:

L2y vy +y) C1—y?
T+’ Co1=2y T2y =1
o1 AU T2+ y(y =310 ~ 2y)~ 1}
! D[1+y(y — DICIA —y>)(A =2y)~11°

The recent expressions reveal that the master equation admits
the following solution:

A/ x\Y X —a(l=y)
P(x,t) = —|<—l) (CI +Cz—|> , 21
to \ts to

_ 14y _ 1—yd-y)
where o = 0= Ziy)

1-2y°
Tl —y)]
AT+ ay)l(y)

This solution is named a local-nonlocal (LNL) g-Gaussian
distribution. The solution is not a generalized g-Gaussian dis-
tribution. This occurs due to the factor x*”, which is located
in front of the solution, assuring that this class of PDFs tend
to zero when x — 0. This makes a great difference with the
previous function, the Lg-Gaussian Eq. (12).

Figure 3 shows the LNLg-Gaussian distribution functions.
All the graphs tend to zero as x — 0 for all times, as stated
above, and do not have symmetric form around their peaks
in terms of x. They manifested an abrupt increase before the
peak and long-range tails beyond it, with peaks depending on
q and &. The peak values increase by increasing both y and &.

¢, =1, and

V. PME WITH NONLOCAL FRACTIONAL OPERATORS

Nonlocal fractional operators in PMEs generate nonlo-
cal effects in the dynamics. More precisely, a nonlocal time
derivative implies that the time variation of the PDF depends
on the dynamics of the price return in all times, which should
be compared with the local derivatives for which the change
of PDF depends only on the prices in its close neighboring
times [10]. It is stated that nonlocal derivatives are “aware of”
all points in the phase space, here all times. For a complete
reference see [10,12]. In the stock markets it is not a surprising
fact, since the local change of the prices and consequently the
price PDF depends not only the prices in the close neighboring
times, but also the history of the changes of the price return,
and also the predictions. Therefore one may expect that the
PME with nonlocal fractional derivatives is a good choice to
describe the dynamics of price return [10-12].

In this section we solve one particular case of the G-PME
displayed in Eq. (3), when n = —1, a =0, and b = 1. The
solution is obtained by considering a hybrid case, where the
time derivative is the Riemann-Liouville (RL) operator, and
the space derivative is the Caputo operator (Appendix B). The
other cases (RL-RL, Caputo-Caputo, and Caputo-RL deriva-
tives) are straightforward to be processed following the same
lines as this study. The resulting FPME equation is

&y >0, (22)

where D is the RL operator for the time derivative, and D
is the Caputo operator acting on “space” coordinate x. To
construct our solution, we need to restrict ourselves to the case
V= g, leaving two parameters free for fitting, y and «.

We again search for the solutions of the form of Eq. (7),
where the parameters were defined in Sec. III. In the follow-
ing we show that the above equation admits the solution of
the form F(z) = (1 4+ bz*)*, where b # 0 and o # 1. When
established, this solution serves as another variant of the gen-
eralized g-Gaussian solution. By inserting this form in the

0DF 1 P(x, 1) = DD PV (x, 1),

054140-9



FATEMEH GHARARI et al.

PHYSICAL REVIEW E 104, 054140 (2021)

0.35 i i

030 ~=Indicated |

=1

025

=020

B

A 015
0.10

0.05

0.00

P(z,t)

I
v=0.25
&=Indicated |

FIG. 3. (a) The PDFs of the LNLg-Gaussian distributions for different values of y and & = 1. (b) The PDFs of the LNLg-Gaussian
distributions for different values of & and y = 0.25. (c) Time evolution of the Green function of Eq. (18).

right side of Eq. (22), we obtain

« 1\’ «
CD)I/,X P"(x,t) — (_]) CrDi/,x (1 +bza)kv

@

N\« Tw+1)
=p(| = s | bakv—}/‘
(r) Fowt1—y) L T8

(23)

To obtain the above equation, we have used the following
property of the fractional derivatives, which is valid for all
the fractional differential operators considered here:

Dy [f(an)] = a* DY ()] lv=ar -

Additionally, the following property of the fractional deriva-
tive of a function with respect to another function [77] was
applied:

r
Dy (k) — 0y~ = %(w(b) — Yy

a>0,n<peR, (24)

wheren = «, ifo € Nandn =[] + 1, if ¢ ¢ N.
By inserting Eq. (7) in the left side of Eq. (22) and then
applying Eq. (20) for the RL operators with § = o +  + 1,

we get
1
oD5 1 P(x, 1) = ODE’:{—,(I +bz“>*}
fao
1 1
ZODf-i{—l(l +b/;)k}
ta

r(L+1)
ret+1-¢)

1\#¢
(1+bz°‘)k_€(;> ., (25

where b = bx*. By equating Egs. (23) and (25), one finds that
they match each other, yielding to

2
A+ 1/a’

1
y:(l/a—k)(l—}-)\_{_l/a). (26)

Therefore we see that the solution is

E=14+r+1/a, v=—1—

o

A
P(x,t):Aﬁ;'Ltul[l+(1—q)n;VL(a,A,D))CT:| . @7

where the prefactor AIqVL is a normalization constant, and
nmy“(a, A, D) is a constant depending on AJ". If we again
suppose that the distribution is symmetric with respect to x,
therefore, x — |x| (i.e., its absolute value), then the normal-
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FIG. 4. (a) The PDFs of the NLg-Gaussian distributions for &« = 2 and indicated values of q. (b) The PDFs of the NLg-Gaussian
distributions for ¢ = 1.5 and indicated value of «. (c) The time evolution of PDFs of the NLg-Gaussian distributions for ¢ = 1.5 and o = 2.
These are the Green functions of Eq. (22). We can see the NLg-Gaussian for a constant value ¢, and different g values show a multiple
behavior; for ¢ = 1.1, 1.2, 1.3 the peaks of curves and behavior of heavier tails increase, in contrast with ¢ = 1.4, 1.5. Also, for a constant
value ¢ and different « values, by increasing «, the peaks of curves and behavior of heavier tails increase. In time evolution of Lg-Gaussian,
over time, the peaks of curves decrease and the PDFs lost behavior of heavier tails.

ization constant is
(=)
(=2=r(+3)

1.
AN = —pi(a, A, D
g =30 (a )F

nNL(ot,)\.,D) . .
where n(a, A, D) = qT From this expression one can

calculate the final expression of 772] L(a, 1, D),

11
g (@, 2, D) = ~~)»|:21_”oz”DB”<—X -, —)
o o

1 1/&
x T(w + 1)F<—A - E)} , (28)

where B(.,.) is the Beta function. By defining A = ﬁ in
Eq. (27) (where g > 1), we recover the first generalized g-
Gaussian distribution with two free independent parameters.
We named Eq. (27) as the nonlocal g¢-Gaussian (NLg-
Gaussian) distribution.

The NLg-Gaussian distribution Eq. (27) is the Green func-
tion of Eq. (22), obtained using the fractional derivatives of
Riemann-Liouville and Caputo (nonlocal fractional defini-
tions), for time and space, respectively. The NLg-Gaussian

has been defined as g’}]"’ (x), equation N.8 in Table II. The plots

for NLg-Gaussian solutions are shown in Fig. 4 for various «
and g values. With respect to the local case, the behavior for
the nonlocal case is more complicated. As shown in Fig. 4(a),
the case where « is kept constant and ¢ increases is evaluated.
For g < 1.3, the peak rises, and for ¢ > 1.3, it decreases. In
Fig. 4(b), for a constant g, however, the peak increases when
« increases. Figure 4(c) shows the time evolution of the Green
function of Eq. (22), where the solution is the NLg-Gaussian
distribution. The example was made for the values of ¢ = 1.5
and @ = 2. We have shown that the distribution widens as time
goes on.

VI. AN APPLICATION OF Lg-GAUSSIAN IN S&P500
STOCK MARKETS

The price return in stock markets exhibits remarkable char-
acteristic features. Some characteristic features have been
described mostly by Fokker-Planck [78,79] or PME [80] ap-
proaches. The most largely observed feature of price return in
recent studies is the self- similarity law, where the PDF obeys

1 X
o= (Br)HF<(Br)H)’ 2
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in which F' is a normalized distribution that is usually fit to
a g-Gaussian. In earlier work the function F was assumed
as a Levy-stable distribution function, L, . The Levy-stable
distribution was obtained from the analytical approach of
a nonlinear PME to model price dynamics at large scale
[81-84]. However, the Levy-stable distribution has the draw-
back that it presents infinite standard deviation, and it does
not obey the empirical power-law tails [85,86]. For short-time
returns, it has been proved that F is a g-Gaussian distribution
function exhibiting short-time correlations, weak long time
correlations, and power-law tails [8,87]. The g-Gaussian dis-
tribution was obtained from different generalized forms of the
PME to model price dynamics [88,89]. For long time returns,
F is a Gaussian distribution function, where the price return
behaves like independent and identically distributed random
variables but still following the self-similar principle. The
Gaussian distribution can be obtained from the PME when
g = 1 due to a slow convergence to the normal distribution
function.

Particular cases of the generalized PME are presented in
Table III. The solutions of each of these partial differential
equations obey the self-similar law given in Eq. (29) and are
related to the g-Gaussian distribution function.

In this part we analyze the S&P500 stock market data
during the 24-year period from January 1996 to August 2020
with a frequency of 1 min. This analysis is made with the
aim of comparing the efficiency of previous fractional PME
with two particular cases proposed in this manuscript, the
TS-FPME, and the G-PME. These several generalizations are
presented in Table III. The detrended price return is defined as

x(t)=1I"(t, +1) — I"(1,), (€29

where 7*(t,) is the detrended stock market index at time z,,
and I*(¢) is the detrended stock market index for any time
t > t,. The PDF of the detrended price return has been fitted
using the g-Gaussian distribution [8], where different zones
had been captured from the strong- to superdiffusion regime
previously [8,90]. Figure 5 shows the evolution of the PDF
and its regimes in the (x,7) space. Initially, the PDF has a
pronounced bump in the center that fully disappears close to
80 min. During the first 35 min there is a power-law relation
of time against the end points of the bumps at the PDFs (see
Fig. 1(e) in Ref. [8]). This zone is defined as the strong su-
perdiffusion regime (zone A). The remaining area during that
time and the following next area close to 10 days corresponds
to the weak superdiffusion regime (zone B). Finally, the last
regime corresponds to a normal diffusion process (zone C)
and is reached after approximately 30 days.

We have reconstructed the time evolution of the PDFs
of the detrended price return, and we collapsed them after
applying the corresponding rescaling factor. Four equations of
Table II have been used to model this behavior: the classical
PME (C-PME), the time FPME (T-FPME), the time-space
FPME (TS-FPME), and a particular case of the generalized
PME (G-PME). These solutions obey Eq. (29) and are pre-
sented in Table III with more detail.

The TS-FPME and the particular solution of the G-PME
proposed in this manuscript are options to model the time
evolution of the detrended price return. The Lg-Gaussian and
NLg-Gaussian, which are the solutions of the TS-FPME and

1T [ TTTT0T
T T T T T T TR \
10! P Crossover
10°
o 10»1
] 2
~ 110°
m 2 O
) (O]
c a g
o o
N — N
@]
4 10—3
10—3 LA
1072 10 10° 10t 102

t (days)

FIG. 5. Time evolution of the PDF of the S&P500 price return.
Three different zones were determined based on an abrupt slope
change of the fitting parameters o and ¢. The contour plot represents
the PDF of the detrended price return. The black circles represent the
end points of the strong superdiffusion regime (zone A) from ¢t =0
to t = 35 min. These points are the ends of the bump obtained from
the two points at the PDF with an abrupt change of slope (Fig. 1(c) in
Ref. [8]). The remaining area during the first 35 min corresponds to
a weak superdiffusion regime (zone B;). From 80 min to 10 days,
the zone corresponds to a weak superdiffusion regime (zone B,). A
normal diffusion process is reached after 30 days. The gray dashed
lines represent the transitions between each zone.

the particular case of the G-PME, respectively, fit the collapse
of the PDFs of the detrended price return well. Figure 6 shows
the result of these fittings.

The first best option to fit the price return was obtained by
replacing F as the Lg-Gaussian (g}) in Eq. (29); this equation
can be written as

11 (1 G0 XV ) = o)
A7 - =q)—F ,
(Bt)ﬁ Cz}/ (B[)l—flil/

where C] is the normalization constant. B is related with the
diffusion term, and both of them are detailed in Table II.

The second best option was obtained by replacing F' as the
NLg-Gaussian (g‘;”\) in Eq. (29), this second equation can be

written as
_L(l—u— ) )A (33)
(Bt)« Cy* VB )

P(x,t) =

Px,t) =

C;\"" is the normalization constant, and B is related with
the diffusion term. The definitions of these parameters are
expressed in Table II. By considering A = ﬁ Eq. (32) is
recovered.

The results of fitting the collapse of the PDF of the de-
trended price return are shown in Fig. 6. Figure 6 presents the
collapses of the PDFs of price return for the specific zones
presented in Fig. 5. Each collapse has been fitted by the four
solutions of the equations presented in Table III. The best
fitting for the four cases is the NLg-Gaussian. However, the
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FIG. 6. This figure shows the collapse of the time evolution of the PDFs for each zone displayed previously in Fig. 5. (a) The collapse of
the PDFs of the strong superdiffusion regime is represented in zone A. The collapse in zone A has been fitted with the solution of the C-PME
(y =2,9g=194), -FPME (y =2,9q =2.73,§ = 0.21), TS-FPME (y = 197,49 =2.70, ¢ = 0.21), and G-PME (@ = 2.18,¢ = 3.14, A =
—0.52). (b) The collapse of the PDFs of the weak superdiffusion regime for the first 35 min while the bump remains in the PDFs occurs in
zone By. The collapse in zone B; has been fitted with the solution of the C-PME (y =2, g = 1.85), T-FPME (y = 2,9 = 1.72,§ = 0.82),
TS-FPME (y =2.09,9 = 1.91,& = 0.75), and G-PME («¢ = 2.05, g = 2.44, A = —0.99). (c) The collapse of the PDFs during the weak
superdiffusion regime after 100 min, when the bump disappears completely, occurs in zone B,. The collapse in zone B, has been fitted with
the solution of the C-PME (y =2, ¢ = 1.81), T-FPME (y = 2,9 = 1.42, & = 0.92), TS-FPME (y = 1.73, ¢ = 1.41, £ = 0.77), and G-PME
(¢ =1.56,g = 1.19, . = —4.62). (d) The collapse of the PDFs for the normal diffusion regime occurs in zone C. The collapsed data is fitted
by a Gaussian distribution function, which is a concurrent solution for the four previous PDEs when y = 2, ¢ = 1.00, £ = 1.00.

four solutions constitutes an acceptable solution for the corre-
spondent collapses of the PDFs. A convergence to a Gaussian
normal distribution is observed for long time returns.

Before closing this section, it is worth discussing the
relation between the governing equation (fractional Fokker-
Planck equation or PME) and the stochastic differential
equation (Langevin equation) of their associated time series.
More specifically, we want to discuss the relation between
the autocorrelation of the time series and the fractionalization
scheme in the governing equation. The key point is the scaling
properties of the governing equation describing a self-similar
time series. In fact, denoting a self-similar time series by
{Y (¢)},cz with the property

VY2 ot (34)

where (.) denotes time average, the corresponding governing
equation should have the same symmetry, i.e., it should be
invariant under the transformation ¥ — ¢Y and t — c'/ft.

(For any positive real number ¢, note also that the invariance
of the governing equation means the invariant of the PDF
up to a scaling factor, i.e., P(Y,t) =t~ f(Y/t'), where f
is a function to be fixed by the governing equation.) One
can show by inspection that a governing diffusion equation
comprised of ordinary time and space differential operators
is not invariant under this transformation. (Note that the
symmetry transformation of the normal diffusion equation is
Y — cY and t — c?t.) Therefore the governing equation for
a self-similar time series should include fractional operators,
or one should use space- or time-dependent diffusion coef-
ficient with power-law dependence. The former strategy is
more convenient and is often taken, since the latter results
in nonanalytical solutions. The symmetry of the system can
easily be found in the corresponding PDF of the time se-
ries, and also by calculating the second moment of Y, i.e.,
the fractionalization exponent is manifest in the PDF. Note
also that this transformation argument only fixes the order
(exponent) of fractionalization, not the exact form of the func-
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tion f which should be obtained by solving the governing
equation. In fact, the scheme of fractionalization (local or
nonlocal, and also the definition of the fractional derivatives)
is determined by the physics of the system under study. As
a toy model for self-similar correlated time series, consider
the fractional Brownian motions (fBms), which includes the
notion of nonlocality; see, for example, Ref. [91], which is a
particular case of the classical fractional stochastic volatility
model of [92]. fBm is a non-Markovian self-similar Gaussian
stochastic process with stationary power-law correlated incre-
ments. Its mean-square displacement fulfills the relation (34)
[93,94]. fBms are described by an exponential PDF P(Y, t)
= exp[—%(r%f] with nontrivial symmetry transformation.
Let us consider a general H-self-similar time series {Y (¢)};cz
defined by the relation {Y(ct)},ez = {c?Y (t)},ez, where ¢
is any positive number, and H is the Hurst exponent. If this
process has stationary increments X, = Y(n) —Y(n — 1),n €
Z, then the autocorrelation yyx (k) = (X;Xo) — (Xi)(Xo) be-
haves like [95] k**~! as k — oo, whered = H — 1, and 0 <
d < 1/2, ensuring that Z,fi_oo yx (k) = oo. From a spectral
domain perspective, the spectral density of {X,} behaves as
w24 as the frequency w — 0. This relates a self-similar time
series with nonlocality, which is applied to the price return
time series which becomes stationary by normalizing the de-
trended data set [see Eq. (31)] [96]. Following these facts, we
suggest a relation between the Hurst exponent H = 1/ =
& — A —1 given in Egs. (22) and (26), with a self-similar
function Eq. (27) for the nonlocal-nonlocal case. A similar
argument holds for the local-local case.

Although we did not propose any Langevin equation corre-
sponding to our FPME (for which the It6 stochastic calculus
does not apply [97]), in some limits this equation is already
known. As an example, for the fractional-linear Fokker-
Planck equation, a fractional stochastic equation is used [98].
Another example is the stochastic differential equation [99],
which is found for the nonlinear normal derivative Fokker-
Planck equation.

VII. CONCLUSIONS

Some limitations of the previous approaches based on Levy
processes opens up an opportunity to model the stock market
price by considering (1) correlations during the first minutes
on the price fluctuations were observed at high frequencies,
making the Levy regime no longer applicable, and (2) the
characteristic exponents applying to model the power-law tails
of the price return’s PDFs lies outside the Levy regime. To
solve these problems, this paper deals with two issues: first
the solutions of the FPME were obtained and discussed. In
the second part we applied the solutions obtained in the first
to the S&P500 stock markets. For the first part we provided
different solutions for the generalized form of the FPME by
considering generalized g-Gaussian trial functions and insert-
ing them into the anomalous PME. The solutions were built
by considering the local and nonlocal fractional derivatives
assuming a Dirac’s § function as the initial condition. More
precisely, the fractional derivatives were classified as local
and nonlocal, where the Katugampola’s is the local fractional
derivative and the Riemann-Liouville, Caputo, and Riesz are
nonlocal fractional derivatives. Our analysis proves that the

generalized PME admits generalized g-Gaussian PDF as a
class of solutions which obey a self-similar law. For the local
derivatives the resulting solution was proved to be the Lg-
Gaussian, which is called the first generalized L.g-Gaussian
function. This solution fits the PDF of the detrended price
return well (Sec. VI). The second analyzed class of G-PME
is the one in which the time and space derivatives are given
by nonlocal fractional generalizations, Riemann-Liouville and
Caputo, both of which are based on the Laplace transform and
proved to admit so-called second generalized NLg-Gaussian
solution, which is symmetric about its mean (peak). The
NLg-Gaussians hold a different self-similar law. The main
difference is that for the Lg-Gaussians we have three free
parameters (exponents) & and y and ¢, whereas for the NLg-
Gaussians there are two free self-similarity parameters «, y.
For the mixed (hybrid) equation where the time fractional
derivative is considered to be local and the spatial one is
nonlocal, the solution is again proportional to the generalized
g-Gaussian (LNLg-Gaussian), but they obey a power in x
that causes the PDF to vanish in the limit x — O and are not
symmetric in x.

The Lg-Gaussian and NLg-Gaussian have been used to
model the detrended price return of S&P500. Although both
distribution functions describe well the fitting of the detrended
price return, we found that the NLg-Gaussian is the best
model to fit the probability of the detrended price return. The
solutions presented here assume Dirac delta initial conditions.
For arbitrary initial conditions, the generalized form of the
PME could be solved by applying the g-Fourier analysis. The
ordinary Fourier analysis only applies for linear operators.
The generalized PME contains nonlinear operators, prevent-
ing us from using the ordinary Fourier analysis.

APPENDIX A: PROPERTIES OF KATUGAMPOLA
DERIVATIVE

Here we give a brief summary of the definition of the
Katugampola fractional operator and some of its properties.
This local fractional operator is used to construct the TS-
FPME in Sec. III. If 0 < « < 1, the Katugampola operator
generalizes the classical calculus properties of polynomials
[100]. Furthermore, if @ = 1, the definition is equivalent to the
classical definition of the first-order derivative of the function
f. The Katugampola derivative is defined as

et~
D (1) = lim 11 =0 (Al)
fort > 0 and o € (0, 1]. When o € (n, n + 1] (for some n €
N, and f is an n-differentiable at ¢t > 0), the above definition
generalizes to

n—a

P @) = f )

€

D f(x) = lim

e—0

and if f is (n + 1)-differentiable at ¢ > 0, then
Daf(t) — tn+17af(n+l)(t).

In the rest, we review some properties of the Katugam-
pola derivative in Table IV. If f is «-differentiable in some
0,a), a >0, and f(0) = lim,_o+ D*f(¢) exists, the fol-
lowing properties hold for the Katugampola derivative. For
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f, & to be «-differentiable at a point ¢ > 0,
D“ f(at) =f'(at)D*(at)
= af'(at)D"t
=af'(at)t'™
= (at)'""%a“f(at).

One can define the inverse of the D* operator as a fractional
integral,

)

yl-a’

t
D) =D "=1"= / dx

where the (.) symbol is serving as place holder for the function
to be operated upon. One verifies that

t l—a g7
ﬂm%m=/dfﬁj=ﬁ

where f vanishes at the lower limit. Then

DT f)] =D°‘[/ dxxljiai| =t1“</ dt)%)

[17“L :f

tl—a

APPENDIX B: CAPUTO FRACTIONAL DERIVATIVE OF A
FUNCTION WITH RESPECT TO ANOTHER FUNCTION

This section contains definitions of nonlocal fractional op-
erators that are used in this paper to construct the TS-FPME:s.
The Riemann-Liouville fractional derivative is a fractional
operator that is used in Secs. IV and V as a nonlocal fractional
operator to construct the TS-FPMEs with (LN) and (NN)
fractionalizations. The integral representation for this operator
is

ar (* dief@)
Fn—a)dx" J, (x—t)t!’

where n — 1 < o < n [74]. A recent variation of the RL oper-
ator is the Caputo derivative [101], defined as

(=1 [P dtf™@)
F'n—oa) ), (x—t)tt-n’

a D) =

DY f(t) = n—1<a<n,

where C stands for Caputo and f is the nth derivative of
f. The main advantage of the Caputo derivative is that the

derivate of a constant is zero, which is not the case of the RL
operator. Substantially, this kind of fractional derivative is a
formal generalization of the integer derivative under Laplace
transform [40].

A generalized fractional operator that we used to construct
the TS-FPME with (NN) fractionalization in Sec. V is the Ca-
puto fractional derivative of a function with respect to another
function [77], and is defined as

o, (x (_l)l’l
DYV () = TEm i

b
X/ V() (Y () — Py !

1 d\" J
X(wwm>ﬂ”L

Note that the recent integral representation in the special case

¥ (x) = x is reduced to the integral representation of the Ca-

puto derivative.

We solve a particular case of the generalized PME, Eq. (3),
described by a fractional derivative of a function with respect
to another function. This innovative approach will be useful
to solve other physical problems that present a self-similar
pattern and can be modeled by a g-Gaussian.

APPENDIX C: FRACTIONAL
DERIVATIVES—DEFINITION AND PROPERTIES

In this section we give a short review of the properties of
the fractional derivatives: Katugampola, Riemann-Liouville,
and Caputo. The Katugampola is one definition for the local
fractional derivative. The Riemann-Liouville and Caputo are
definitions of nonlocal derivatives. A comparison between
each property of these fractional derivatives is presented in
Table I'V.

Katugampola’s corresponds to the ordinary derivative
when o = 0 and « = 1. The Riemann-Liouville and Caputo
derivatives are an analytical continuation of the ordinary
derivatives. The main difference between them is that the
Caputo derivative of a constant is zero, a property that does
not hold for the Riemann-Liouville derivative. This desirable
property is satisfied by the Katugampola local derivative, too.
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