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We investigate an asymptotic expansion of the solution of the master equation under the modulation of control
parameters. In this case, the nondecaying part of the solution becomes the dynamical steady state expressed
as an infinite series using the pseudoinverse of the Liouvillian, whose convergence is not granted in general.
We demonstrate that for the relaxation time approximation model, the Borel summation of the infinite series
is compatible with the exact solution. By exploiting the series expansion, we obtain the analytic expression of
the heat and the activity. In the two-level system coupled to a single bath, under the linear modulation of the
energy as a function of time, we demonstrate that the infinite series expression is the asymptotic expansion of
the exact solution. The equality of a trade-off relation between the speed of the state transformation and the
entropy production [Shiraishi, Funo, and Saito, Phys. Rev. Lett. 121, 070601 (2018)] holds in the lowest order
of the frequency of the energy modulation in the two-level system. To obtain this result, the heat emission
and absorption at edges (the initial and end times) or the differences of the Shannon entropy between the
instantaneous steady state and the dynamical steady state at edges are essential: If we ignore these effects, the
trade-off relation can be violated.
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I. INTRODUCTION

Time-dependent open systems have been studied actively
in recent years. These studies relate to quantum pump [1–8],
excess entropy production [9–13], efficiency and power of
heat engine [14–18], shortcuts to adiabaticity [19–21], and
speed limits [22–24]. In the studies of quantum pumping
and excess entropy production for systems governed by the
master equation, the time dependence is described using the
pseudoinverse of the Liouvillian [1–3,5–7,12,13,16,25]. How-
ever, the solution using the pseudoinverse of the Liouvillian is
an asymptotic expansion and does not converge in general:
The solution is obtained by iterative applications of the pseu-
doinverse and the time derivative, which can make the series
expansion divergent similarly to the case for the adiabatic
iteration [26]. In the two-level system (like spinless one-level
quantum dot) coupled to a single bath, the solution expressed
by the pseudoinverse is an asymptotic expansion of the exact
solution and provides a good approximation in the first few
terms.

One of the trade-off relations between the speed of state
transformation and the entropy production for the classical
stochastic process is given in Ref. [23]: An inequality

r := 2σA

L2
τ � 1 (1)

holds if the Liouvillian satisfies the local detailed balance
condition. Here, L is the total variation distance between the
states at the initial time t = 0 and the final time t = τ , A is
the average activity, and σ is the total entropy production [for
the definitions, see Sec. IV; we derive (1) in Appendix A]. The
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authors of Ref. [23] considered a two-level system and pro-
vided a specific protocol, which realizes r = (5/2) ln(3/2) =
1.01366 . . . in the limit of slow driving. In the present paper,
based on the asymptotic expansion of the two-level system,
we will demonstrate protocols that achieve the equality of (1).

The structure of the paper is as follows. First, we give an
infinite series expression of the dynamical steady state which
is the solution of the master equation under the modulation
of control parameters (Sec. II). Next, in Sec. III A, we in-
troduce the relaxation time approximation model (which is
analytically tractable) and show that the Borel summation
of the infinite series expression becomes the exact solution.
In Sec. III B, for the two-level system, we consider linear
modulation of the energy as a function of time and show that
the infinite series expression is the asymptotic expansion of
the exact solution. In Sec. IV, we show that the equality of
(1) holds in the lowest order of the frequency of the energy
modulation in the two-level system. In Sec. V, we summarize
this paper. In Appendix A, we derive the trade-off relation
of Shiraishi-Funo-Saito. In Appendix B, we derive the exact
solution of the master equation. In Appendix C, we explain
a prescription getting the exact solution from the asymptotic
expansion in the two-level system. In Appendix D, we discuss
the higher derivative and oscillation. In Appendix E, we give
an instance of the convergent infinite series expression of
the dynamical steady state. In Appendix F, we calculate the
heat current and heat using the asymptotic expansion of the
dynamical steady state for the relaxation time approximation
model.

II. GENERAL THEORY

In this section, we give an infinite series expression of
the dynamical steady state using the pseudoinverse of the
Liouvillian.
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We consider a master equation

d

dt
pi(t ) =

N−1∑
j=0

Ki j (αt )p j (t ). (2)

Here, pi is the probability of state i (= 0, 1, . . . , N − 1) at
time t and αt is the value of the set of the control param-
eters at time t . We assume that the master equation has
a unique instantaneous steady state pss

i (α) which satisfies∑
j Ki j (α)pss

j (α) = 0 and
∑

i pss
i (α) = 1. The pseudoinverse

of the Liouvillian Ki j (α) is defined by∑
k

Rik (α)Kk j (α) = δi j − pss
i (α). (3)

Applying the pseudoinverse R(αt ) to the master equation (2),
we obtain [

1 − R(αt )
d

dt

]
δp(t ) = R(αt )

d pss(αt )

dt
, (4)

where δp(t ) := p(t ) − pss(αt ). Here, R denotes the matrix
(Ri j ) and p is the vector (p0, p1, . . . , pN−1)t . The formal
solution of (4) is given by an infinite series [1,5]

δpdss(t ) :=
∞∑

n=1

[
R(αt )

d

dt

]n

pss(αt ) =:
∞∑

n=1

p(n)(t ). (5)

The general solution of (4) is

δp(t ) = δpdss(t ) + δ̃p(t ). (6)

Here, δ̃p(t ) is the solution of[
1 − R(αt )

d

dt

]
δ̃p(t ) = 0 (7)

under δ̃p(0) = δp(0) − δpdss(0). δ̃p(t ) also satisfies
d
dt δ̃p(t ) = K (αt )δ̃p(t ) and damps exponentially as a function
of time [13]. Then, the general solution of the master equation
is given by [5,13]

p(t ) = pdss(t ) + δ̃p(t ), (8)

where

pdss(t ) := pss(αt ) + δpdss(t )

= pss(αt ) +
∞∑

n=1

p(n)(t ). (9)

We call pdss(t ) the dynamical steady state. The general so-
lution consists of the exponentially damping term δ̃p(t ) and
the dynamical steady state, which is composed of the instan-
taneous steady state and the correction δpdss(t ).

In general, the infinite series pdss(t ) dose not converge. In
the next section, we compare pdss(t ) and an exact solution of
the master equation.

III. EXACT SOLUTION AND BOREL SUMMATION

In this section, first, we study the relaxation time approxi-
mation model for an N-level system and show that the Borel
summation of the infinite series pdss(t ) is the exact solution
of the master equation. Next, we study the two-level system
and demonstrate that pdss(t ) is identical with the asymptotic
expansion of the exact solution.

A. N-level system

We introduce a Liouvillian

Ki j (α) = γ
[
pss

i (α) − δi j
]

(10)

with γ > 0 as an analytically tractable model. This Liouvil-
lian satisfies the detailed balance condition Ki j (α)pss

j (α) =
Kji(α)pss

i (α) [27]. This model is not just a toy model because
it induces the following Liouvillian:

K (α) = γ

(− f 1 − f

f −(1 − f )

)
, (11)

which is the same form with a spinless one-level quantum dot
coupled to leads. Here, f = ∑

b
γb

γ
1

eβb�+1
and

∑
b γb = γ . γb is

the coupling strength and βb is the inverse temperature of bath
b. � is the energy level difference between the two levels. The
master equation of (10) is given by

d

dt
pi(t ) = −γ

[
pi(t ) − pss

i (αt )
]
. (12)

This is the relaxation time approximation of which the relax-
ation time is 1/γ . A pseudoinverse of (10) is given by

Ri j (α) = 1

γ

[
pss

i (α) − δi j
]
. (13)

To simplify, we assume γ is a constant in the following of this
paper. Substituting (5) and (13) into (9), we obtain

F̃i(t ) := pdss
i (t ) =

∞∑
n=0

(−1)n

γ n

dn

dtn
pss

i (αt ). (14)

In Sec. III B, we show that F̃i(t ) diverges in the two-level
system.

We calculate the Borel summation of F̃i(t ). For a series
S̃(t ) := ∑∞

n=0 an(t ), if (i) the Borel function B[S̃(t )](s) :=∑∞
n=0

an(t )
n! sn converges to an analytic function for 0 � s < ρ

(ρ > 0) and can be analytically continued along the positive
real axis and (ii) S(t ) := ∫ ∞

0 ds e−sB[S̃(t )](s) is well defined,
S(t ) is called the Borel summation of S̃(t ) [28]. The Borel
function of F̃i(t ) is given by

B[F̃i(t )](s) =
∞∑

n=0

1

n!
sn (−1)n

γ n

dn

dtn
pss

i (t ), (15)

where pss
i (t ) denotes pss

i (αt ). This series converges to an
analytic function pss

i (t − s
γ

) for small s. Then, the Borel sum-

mation of F̃i(t ) is given by∫ ∞

0
ds e−sB[F̃i(t )](s) =

∫ ∞

0
ds e−s pss

i

(
t − s

γ

)
=: Fi(t ). (16)

Next, we show that the exact solution of the master equa-
tion is identical with the Borel summation of F̃i(t ). Using
the general theory of a first-order linear ordinary differential
equation, the exact solution under the initial condition pi(t =
0) = pi(0) is given by

pi(t ) = e−γ t

[
pi(0) + γ

∫ t

0
du pss

i (u)eγ u

]
. (17)
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FIG. 1. F (t ) [:= F1(t )] and F̃(N )(t ) for N = 0, 5, 24, 25, and
26 at V/γ = 0.3. F (t ) and F̃(5)(t ) are overlapping. The asymptotic
expansion above 24th order deviates significantly from the exact
solution.

This equation can be rewritten as (Appendix B)

pi(t ) = e−γ t [pi(0) − Fi(0)] + Fi(t ), (18)

where Fi(t ) was introduced in (16). The first term of (18)
corresponds to δ̃p(t ) because this term damps exponentially.
The second term of (18) corresponds to the dynamical steady
state. We note that the exact solution of the master equation is
identical with the Borel summation of pdss

i (t ) even if γ is time
dependent.

In the following of this paper, we assume that the instan-
taneous steady state pss(α) is the Gibbs distribution pss(α) =
e−βEi/Z where Ei is the energy of the state i, β is the inverse
temperature, and Z := ∑

i e−βEi is the partition function. We
focus on the energy modulation

Ei = α(t )E (0)
i (19)

with fixed E (0)
i and β and study the linear modulation α(t ) =

hi + ωt in particular. In this case, the control parameter is
α(t ).

B. Demonstration in two-level system

In this subsection, we consider the two-level system (11)
and show that F̃i(t ) (i = 0, 1) diverges and is identical with
the asymptotic expansion of the exact solution Fi(t ).

We consider (11) with �(t ) = (hi + ωt )� and fixed γ and
β in the following of this section. In this case, F̃ (t ) := F̃1(t )
is given by

F̃ (t ) =
∞∑

n=0

(−1)n

γ n

dn

dtn
f (W + V t ) (20)

with f (x) := 1/(ex + 1). Here, W := β�hi, V :=
β�ω > 0. Figure 1 shows F (t ) [:= F1(t )] and F̃(N )(t ) :=∑N

n=0
(−1)n

γ n
dn

dtn f (W + V t ) for N = 0, 5, 24, 25, and 26

at V/γ = 0.3. F̃ (t ) does not converge. For N = 5, the
asymptotic expansion F̃(5) well agrees with the exact solution
F (t ). However, for large N = 24, 25, and 26, the deviations
increase and the asymptotic expansions oscillate. Although
probability should be between 0 and 1, F̃(26)(t ) is not.

The dynamical steady state is given by

F (t ) =
∫ ∞

0
ds e−s f

(
W + V

(
t − s

γ

))

= 2F1(1, T ; T + 1; −eW +V t )

= f (W + V t )2F1(1, 1; T + 1; 1 − f (W + V t )) (21)

with T := γ /V . 2F1(a, b; c; z) is the hypergeometric function.
In the third equality of (21), we used the Kummer relation
2F1(a, b; c; z) = 1

(1−z)a 2F1(a, c − b; c; z
z−1 ).

We show that F̃ (t ) is an asymptotic expansion of F (t ).
A divergent series

∑∞
k=0 ak/T k is the asymptotic expan-

sion of a function G(T ) if Rn(T ) := T n[G(T ) − ∑n
k=0 ak/T k]

satisfies |Rn(T )| → 0 (T → ∞). In the third line of (21),
2F1(1, 1; T + 1; z) can be expanded in z as

2F1(1, 1; T + 1; z)

= 1 +
∞∑

k=1

k!

(T + 1)(T + 2) · · · (T + k)
zk

=: 1 +
n∑

k=1

k!

(T + 1)(T + 2) · · · (T + k)
zk + δn(T, z). (22)

The second term of the third line of (22) can be expanded in
1/T as

n∑
k=1

k!

(T + 1)(T + 2) · · · (T + k)
zk

=
n∑

k=1

ak (z)

T k
+ rn(T, z) (23)

with rn(T, z) = O(1/T n+1). Here, a1(z) = z, a2(z) = −z +
2z2, a3(z) = z − 6z2 + 6z3, a4(z) = −z + 14z2 − 36z3 +
24z4, and a5(z) = z − 30z2 + 150z3 − 240z4 + 120z5. Then,
2F1(1, 1; T + 1; z) is given by

2F1(1, 1; T + 1; z) = 1 +
n∑

k=1

ak (z)

T k
+ Rn(T, z)

T n
(24)

with Rn(T, z) := T n[rn(T, z) + δn(T, z)]. The first and second
terms of the right-hand side provide F̃(n)(t ). If T is large
enough, 2F1(1, 1; T + 1; z) (0 � z � 1) is well approximated
by first few terms. The truncation error δn(T, z) satisfies

|δn(T, z)| � δn(T, 1)

= (n + 1)!

(T − 1)(T + 1)(T + 2) · · · (T + n)
. (25)

Here, we used the Gauss summation theorem 2F1(a, b; c; 1) =
�(c)�(c−1)

�(c−a−b)�(c−b) [Re(c) > 0, Re(c − a − b) > 0], where �(z)
is the gamma function. The above inequality leads to
|Rn(T, z)| → 0 (T → ∞). Then, F̃ (t ) is the asymptotic ex-
pansion of F (t ). We obtain F̃ (t ) from F (t ) if we expand
2F1(1, 1; T + 1; z) regarding T as larger than any natural num-
ber n. In addition, we explain a prescription getting F (t ) from
F̃ (t ) in Appendix C.

The oscillation of F̃i(t ) is not limited to a two level-system.
In Appendix D, we discuss the higher derivative and oscilla-
tion for a wide class of functions.
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FIG. 2. Protocols A, B, and C.

We note that any infinite series expansion (9) is not
necessarily divergent. For instance, the protocol discussed
in Ref. [23] leads to a convergent series expansion. In
Appendix E, we give an instance of the convergent infinite
series expression of the dynamical steady state.

IV. TRADE-OFF RELATION

In this section, we show that the equality of a trade-off
relation of Shiraishi-Funo-Saito [23] holds in the lowest order
of the frequency of the energy modulation in the two-level
system.

If the Liouvillian satisfies the local detailed balance con-
dition, the trade-off relation (1) holds [23]. There, L :=∑

i |pi(τ ) − pi(0)| is the l1 norm [29]. The average activity

A := 1

τ

∫ τ

0
dt A(t ) (26)

is calculated from the activity

A(t ) :=
∑
i �= j

Ki j (t )p j (t ). (27)

The total entropy production σ is given by

σ := βQ + SSh(p(τ )) − SSh(p(0)), (28)

where Q is the heat flowing into the bath from the system and
SSh(p) := −∑

i pi ln pi is the Shannon entropy of the system.
We consider three protocols (Fig. 2). In the following, we

suppose that α(t ) is constant for t � −δ/2 and t � τ + δ/2,
and α(t ) = hi + ωt while −δ/2 < t < τ + δ/2, where δ is a
small value:

α(t ) =

⎧⎪⎨
⎪⎩

hi − ω δ
2

(
t � − δ

2

)
,

hi + ωt
( − δ

2 � t � τ + δ
2

)
,

hi + ω
(
τ + δ

2

) (
τ + δ

2 � t
)
.

(29)

In the first protocol (protocol A), we consider −δ � t � τ +
δ. At time t = −δ and t = τ + δ, the state of the system is the
instantaneous steady state pss. In the second protocol (protocol
B), we consider 0 � t � τ and suppose that the state of the
system at t = 0 and t = τ is the dynamical steady state pdss.
In the third protocol (protocol C), we consider −δ � t � τ

and suppose that the state of the system at t = −δ is the
instantaneous steady state. Protocols B and C can be regarded
as observations of the process of protocol A at different time
intervals. The ratio r defined by (1) can be expanded as

r = r0 + r1ω + r2ω
2 + · · · . (30)

In the following, we show that r0 = 1 for protocols A, B, and
C in the two-level system (11). To calculate r0, we estimate
σ up to first order of ω (we denote this by σ (1)) and the
average activity A and L up to zeroth order. In the zeroth order
of ω, A is given by Ass := 1

τ

∫ τ

0 dt Ass(αt ) with Ass(αt ) :=∑
i �= j Ki j (αt )pss

j (αt ), and L is given by Lss := ∑
i |pss

i (ατ ) −
pss

i (α0)|.
We estimate Ass in the relaxation time approximation

model (10). In this case, we obtain

Ass(αt ) = γ

[
1 −

∑
i

(
pss

i

)2
]
. (31)

In the two-level system (11) with �(t ) = α(t )�, Ass becomes

Ass = 2γ

�(βf − βi )
[ f (βi�) − f (βf�)]. (32)

Here, βi := hiβ, βf := hfβ, and hf := hi + ωτ .
We evaluate the heat current

q(t ) := −
∑

i

Ei
d

dt
pi (33)

using the asymptotic expansion (9). We denote the heat cur-
rent contributed from pss(αt ) and p(n)(t ) by q0(t ) and qn(t ),
respectively. We obtain

q0(t ) = −
∑

i

Ei
d pss

i

dt
, (34)

q1(t ) = −
∑
i,k

Ei

[
Rik

d2 pss
k

dt2
−

(
R

dK

dt
R

)
ik

d pss
k

dt

]
. (35)

Substituting (19) into (34), we obtain

q0(t ) = α′(t )α(t )β[〈(E (0) )2〉 − 〈E (0)〉2], (36)

where 〈(E (0) )n〉 := ∑
i(E

(0)
i )n pss

i (αt ) is the nth moment of
energy. q0(t ) is proportional to the variance of the energy and
does not depend on the Liouvillian. It is also expressed by
using the Fisher information [22,29,30]. For (29), the zeroth
order of the heat Q0 = ∫ τ

0 dt q0(t ) is given by

Q0 = 1

β
[βi〈E (0)〉(βi ) + ln Z (βi )

−βf〈E (0)〉(βf ) − ln Z (βf )]. (37)

The Shannon entropy is given by SSh(p) = SSh(βt ) +
δSSh with SSh(βt ) := βt 〈E (0)〉(βt ) + ln Z (βt ) and βt := α(t )β.
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−
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−
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FIG. 3. (a) (r − 1) for protocol C, (b) (r − 1) for protocol B, (c) (rA − 1)/(rC − 1) and (d) (rA − 1)/(rC − 1) for (hi, hf ) = (0, 10)
(triangle), (hi, hf ) = (1, 10) (square), and (hi, hf ) = (0, 3) (circle). Here, rA and rC denote r for protocols A and C, respectively. In these
figures, we set β� = 1.

Therefore, the zeroth order of the entropy production van-
ishes: βQ0 + SSh(βf ) − SSh(βi ) = 0. For the relaxation time
approximation model, q1(t ) is given by

q1(t ) = α(t )

γ
{[α′(t )]2β2C3(βt ) − α′′(t )βC2(βt )}. (38)

Here, Cn(βt ) is the nth-order cumulant of E (0)
i :

Cn(βt ) = (−1)n ∂n ln Z (βt )

∂βn
t

(39)

and Z (βt ) := ∑
i e−βt E

(0)
i . In Appendix F, we calculate qn(t ).

We calculate σ (1) for the relaxation time approximation
model. For each protocol, σ (1) is given by

σ (1) = β(Q1 + δQ1|t=τ − δQ1|t=0) (protocol A),

σ (1) = βQ1 + δSSh|t=τ − δSSh|t=0 (protocol B),

σ (1) = β(Q1 − δQ1|t=0) + δSSh|t=τ (protocol C). (40)

Here,

Q1 :=
∫ τ

0
dt q1(t )

= ω

γ
[βiC2(βi ) + C1(βi ) − βfC2(βf ) − C1(βf )]. (41)

δQ1 is the heat contributed from the term [α′′(t )] including the
delta function in (38) and given by

δQ1 = ω

γ
βtC2(βt ). (42)

δSSh is given by

δSSh = −
∑

i

p(1)
i ln pss

i = ω

γ
ββtC2(βt ). (43)

Then, σ (1) becomes

σ (1) = ω

γ
β[C1(βi ) − C1(βf )] (44)

for protocols A, B, and C. In the two-level system,

σ (1) = ω

γ
β�[ f (βi�) − f (βf�)] (45)

holds.
From (32), (45), and

Lss = 2[ f (βi�) − f (βf�)], (46)

we obtain

r0 = 2σ (1)Ass

(Lss)2
τ = 1 (47)

for protocols A, B, and C. To obtain (47), the heat emission
and absorption at edges (t = −δ/2, τ + δ/2) or the correction
of the Shannon entropy δSSh at edges (t = 0, τ ) are essential.
If we ignore these corrections, r0 can be less than 1.

Figure 3 shows the numerical results of (r − 1) for the
three protocols calculated from (26) and (33) by exploiting
the exact solution for the two-level system (21). For all pro-
tocols, during the duration 0 � t � τ , the system is driven as
α(t ) = hi + ωt . The initial states for the protocols A, B, and C
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are the instantaneous steady state p1(t = 0) = f (W ), the dy-
namical steady state p1(t = 0) = F (0), and the instantaneous
steady state p1(t = 0) = f (W ), respectively. In addition, for
the protocol A, after we turn off the driving at time τ , we
fix α(t ) = hf = hi + ωτ (τ � t � τ + 30/γ ) and wait until
the system relaxes to the instantaneous steady state. In this
duration the heat is emitted from the system.

In Fig. 3, we plot (rC − 1), (rB − 1), and (rA − 1)/(rC − 1)
for various hi and hf : (hi, hf ) = (0, 10) (triangle), (hi, hf ) =
(1, 10) (square), and (hi, hf ) = (0, 3) (circle) at β� = 1.
Here, rA and rC denote r for protocols A and C, respectively.
Figure 3 shows that r0 = 1, r1 > 0 for protocols A and C and
r0 = 1, r1 = 0, r2 > 0 for protocol B. Namely, for small ω,
the correction (r − 1) is a linear function for protocols A and
C and a quadratic function for protocol B.

In systems described by the master equation having the
Liouvillian (10) or more general Liouvillians, in general,
r0 > 1 if N � 3. For instance, in the relaxation time ap-
proximation model, r0 of protocol A of an N-level (N � 2)
system of which energies are E (0)

0 = 0 and E (0)
i = � (i =

1, 2, . . . , N−1) is given by

r0 = N

2(N − 1)
+ N − 2

2(N − 1)2

ln 1+(N−1)e−βi�

1+(N−1)e−βf �

1
N−1+eβi�

− 1
N−1+eβf �

. (48)

V. SUMMARY

In summary, for the relaxation time approximation model,
we calculated the infinite series expansion of the solution of
the driven master equation using the pseudoinverse of the
Liouvillian. We demonstrated that the Borel summation of the
series becomes the exact solution. For the two-level system
coupled to a single bath, we considered the linear modulation
of the energy and showed that the series expression is the
asymptotic expansion of the exact solution. Based on the
asymptotic expansion for the relaxation time approximation
model, we demonstrated that the equality of the trade-off
relation of Shiraishi-Funo-Saito [23] holds in the lowest order
of the frequency of the energy modulation in the two-level
system. To our knowledge, this is the first instance where the
equality sign holds in the trade-off relation of Ref. [23]. If we
ignore the heat emission and absorption at edges (the initial
and end times) or the differences of the Shannon entropy be-
tween the instantaneous steady state and the dynamical steady
state at edges, the trade-off relation can be broken.
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APPENDIX A: DERIVATION OF
THE TRADE-OFF RELATION

To be self-contained, we repeat the derivations of (1) for
the single heat bath case (Ref. [23] studied the multiple heat
baths case). Suppose the local detailed balance condition

Ki j (t )e−β(t )Ej (t ) = Kji(t )e−β(t )Ei (t ). (A1)

Here, β(t ) is the inverse temperature of the bath. The entropy
production rate σ̇ (t ) is defined by

σ̇ (t ) := d

dt
SSh(p(t )) + β(t )q(t ). (A2)

The heat current q(t ) defined by (33) can be rewritten as

q(t ) =
∑
i �= j

Kji(t )pi(t )[Ei(t ) − Ej (t )]. (A3)

Here, we used the master equation

d pi

dt
=

∑
j( �=i)

[Ki j (t )p j (t ) − Kji(t )pi(t )]. (A4)

Using (A3), (A4), and the local detailed balance condition,
(A2) becomes

σ̇ (t ) = 1

2

∑
i �= j

(Kji pi − Ki j p j ) ln
Kji pi

Ki j p j

�
∑
i �= j

(Kji pi − Ki j p j )2

Kji pi + Ki j p j
. (A5)

Here, we used the inequality (a − b) ln a
b � 2 (a−b)2

a+b , which is
valid for non-negative a and b. The distance L = ∑

i |pi(τ ) −
pi(0)| is evaluated as

L �
∫ τ

0
dt

∑
i

∣∣∣d pi

dt

∣∣∣. (A6)

Here,

∑
i

∣∣∣d pi

dt

∣∣∣ =
∑

i

∣∣∣∣∣
∑
j( �=i)

(Ki j p j − Kji pi )

∣∣∣∣∣
�

∑
i

∑
j( �=i)

|Ki j p j − Kji pi|

�
∑

i

√√√√(∑
j( �=i)

(Ki j p j − Kji pi )2

(Ki j p j + Kji pi )

) ∑
j( �=i)

(Ki j p j + Kji pi )

�

√√√√(∑
j �=i

(Ki j p j − Kji pi )2

(Ki j p j + Kji pi )

) ∑
j �=i

(Ki j p j + Kji pi )

�
√

2σ̇ (t )A(t ) (A7)

holds. Here, we used the Schwarz inequality in the third and
fourth line. Then, we obtain

L �
∫ τ

0
dt

√
2σ̇ (t )A(t ) �

√
2στA. (A8)

Here, we used σ := ∫ τ

0 dt σ̇ (t ), (26) and the Schwarz in-
equality. The above equation leads to (1). If β(t ) is time
independent, σ is given by (28).

If

|Ki j (t )p j (t ) − Kji(t )p j (t )|

=
√

σ

2τA
[Ki j (t )p j (t ) + Kji(t )pi(t )] (A9)
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holds for all i �= j, the inequalities for the third and fourth
lines in (A7) hold exactly and the second inequality in (A8) is
satisfied with a relative error O(ω2) where ω is the modulation
frequency. For the two-level system in Sec. IV, the above
equation is satisfied up to the first order of ω while 0 � t � τ .
The equality of the last line in (A7) holds with a relative error
O(ω2).

APPENDIX B: DERIVATION OF (18)

By variable transformation s = γ (t − u), (17) becomes

pi(t ) = e−γ t pi(0) +
∫ ∞

0
ds pss

i

(
t − s

γ

)
e−s

−
∫ ∞

γ t
ds pss

i

(
t − s

γ

)
e−s. (B1)

Using variable transformation − s′
γ

= t − s
γ

in the last term,
we obtain (18).

APPENDIX C: A PRESCRIPTION GETTING
F(t ) FROM F̃(t )

We can obtain F (t ) from F̃ (t ) by the following prescrip-
tion. Because of the analytic continuation, it is enough to
consider the |eW +V t | < 1 case. Then, F (t ) is given by

F (t ) = 2F1(1, T ; T + 1; −eW +V t )

=
∞∑

n=0

1

1 + n/T
(−eW +V t )n. (C1)

On the other hand, F̃ (t ) is expressed as

F̃ (t ) =
∞∑

m=0

(
− 1

γ

)m dm

dtm

∞∑
n=0

(−eW +V t )n

w=
∞∑

n=0

∞∑
m=0

(
− 1

γ

)m

(nV )m(−eW +V t )n

=
∞∑

n=0

[ ∞∑
m=0

(
− n

T

)m

]
(−eW +V t )n

w=
∞∑

n=0

1

1 + n/T
(−eW +V t )n. (C2)

In the second line, we changed the order of the sum, and in
the fourth line, we suppose that T > n for all n. Then, F̃ (t )
becomes F (t ).

APPENDIX D: HIGHER DERIVATIVE

f (W + V t ) can be written as

f (W + V t ) = 1

2
− 1

V

∞∑
k=0

[
1

t − [−W/V + i(π/V )(2k + 1)]

+ 1

t − [−W/V − i(π/V )(2k + 1)]

]
. (D1)

The dominant contribution of dn

dtn f (W + V t ) (for large n)
comes from two poles (k = 0) most nearly above and below

t . In general, the nth derivative of g(t ) = ∑
k Ak/(t − ak ) (ak

are complex numbers) is given by

g(n)(t ) = (−1)nn!
∑

k

Ak

(t − ak )n+1
. (D2)

The factorial increase with n of the coefficients underlies the
divergence commonly encountered in asymptotic series, and,
together with the increasingly fast oscillations, reflects the
instability of differentiation [31]. In the studies of the full-
counting statistics, the oscillations coming from the higher
derivative by the counting field have been observed [2,32–34].

APPENDIX E: INSTANCE OF THE CONVERGENT
INFINITE SERIES EXPRESSION OF
THE DYNAMICAL STEADY STATE

In Ref. [23], a two-level system of which the Liouvillian is
K10 = 1 and K01(α) = 4τ+1

2τ−α
with αt = t has been studied. In

this case, the instantaneous steady state is given by pss(α) =
( 2τ+1+α

4τ+1 , 2τ−α
4τ+1 )

t
. The pseudoinverse is given by

R(α) =
(

0 2τ−α
4τ+1

2τ−α
4τ+1 0

)
. (E1)

Then, p(n+1)(t ) (n = 0, 1, . . .) becomes

p(n+1)(t ) = R(αt )

[
dR(αt )

dt

]n d pss(αt )

dt
. (E2)

The infinite series expression of the dynamical steady state (9)
converges to pdss

1 (t ) = 1
2 − t

4τ
and is identical with the exact

solution.
Reference [23] set the energies as E0 = 0 and K01(αt ) =

eβE1(t ). For αt = t for 0 � t � τ under the initial distribution
p0(0) = 1/2, r defined by (1) converges to (5/2) ln(3/2) =
1.01366 . . . for large τ .

APPENDIX F: HEAT CURRENT AND HEAT

For our energy modulation (19), we can also interpret that
the inverse temperature is time dependent βt := α(t )β. Then,
from (35), we obtain

q1(t ) = βα(t )(−{α′′(t ) + 2〈E (0)〉β[α′(t )]2}μ1(βt )

+β[α′(t )]2μ2(βt )), (F1)

where

μ1(βt ) := −
∑
i,k

E (0)
i R(0)

ik E (0)
k pss

k , (F2)

μ2(βt ) := −
∑
i,k

E (0)
i R(0)

ik

(
E (0)

k

)2
pss

k

−
∑
i,k

E (0)
i

(
R(0) dK

dβt
R(0)

)
ik

E (0)
k pss

k . (F3)

Here, R(0)
ik is defined by (3) and

∑
k R(0)

ik (α)pss
k (α) = 0 is called

the Drazin inverse [35].
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We consider the Liouvillian (10) with fixed γ and β. In this
case, using the Faà di Bruno formula [36], we obtain

qn−1(t ) = (−1)n

γ n−1
α(t )

∑ n!

m1!m2! · · · mn!

× (−1)kβkCk+1(βt )
∏

j

(
α( j)

j!

)mj

, (F4)

where k := ∑
mj and the sum is over all n-tuples of

non-negative integers (m1, . . . , mn) satisfying the constraint∑n
j=1 jm j = n. If α(t ) = hi + ωt while 0 < t < τ , (F4) be-

comes

qn−1(t ) = 1

γ n−1
α(t )ωnβnCn+1(βt ). (F5)

The heat is given by

Qn :=
∫ τ

0
dt qn(t ) =

(
ωβ

γ

)n 1

β
[βiCn+1(βi ) + Cn(βi )

−βfCn+1(βf ) − Cn(βf )]. (F6)
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