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Heat rectification by two qubits coupled with Dzyaloshinskii-Moriya interaction
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We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interac-
tion. We derive analytical expressions for heat currents and thermal rectification and provide possible physical
mechanisms behind the observed results. We show that the anisotropy of DM interaction in itself is insufficient
for heat rectification, and some other form of asymmetry is needed. We employ off-resonant qubits as the source
of this asymmetry. We find the regime of parameters for higher rectification factors by examining the analytical
expressions of rectification obtained from a global master equation solution. In addition, it is shown that the
direction and quality of rectification can be controlled via various system parameters. Furthermore, we compare
the influence of different orientations of the DM field anisotropy on the performance of heat rectification. Finally,
we investigate the possible interplay between quantum correlations and the performance of the quantum thermal
rectifier. We find that asymmetry in the coherences is a fundamental resource for the performance of the quantum
thermal rectifier.
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I. INTRODUCTION

Manipulation of heat at the nanoscale, particularly thermal
rectification by heat diodes, is currently a subject of intense
theoretical [1–47] and experimental [48–55] research. The
theoretical studies explain the change of heat current direc-
tion and magnitude when the thermal bias is reversed due to
inherent asymmetry and nonlinearity in the physical models
[15,56]. The most common naturally occurring interaction
used in such quantum models is the Heisenberg exchange
interaction [20,26,33] where the asymmetry stems from either
the different on-site magnetic fields [26] or from the differ-
ent coupling constants of the subsystem with their respective
baths [4].

Recently, an artificially designed system containing in-
herent asymmetry in the Hamiltonian itself has also been
proposed to operate under symmetric system-bath couplings
and resonant (identical) subsystems, which allows for the
rectification of large heat currents [34]. The model is based
upon coupling z-component of a spin to x-component of the
other spin in a two-qubit system. The coupling is, therefore,
asymmetric under the exchange of the spins. This artificial
model takes only one of the two terms of the y component of
the two spins’ cross product. Intriguingly, there is a naturally
existing, entirely physical interaction depending on the cross
product of the spins, known as Dzyaloshinskii-Moriya (DM)
interaction [57,58]. It is antisymmetric under the exchange
of spins due to its cross-product dependence. Accordingly,
we ask whether DM interaction’s antisymmetry is sufficient
per se to generate heat rectification and, even if it is not,
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how it influences the heat conduction properties. To answer
this question, we take a simple system of two DM-coupled
spin-1/2 particles (qubits) with the DM field along z direction
and analytically derive the quantum master equation and heat
current expression for our model. We also derive an analytical
expression for the rectification factor and discuss the behav-
ior of our model under various parameter limits, providing
possible physical mechanisms for the same. We provide the
possible configuration for optimizing the working of our heat
rectifier. Finally, we explore the role of change of anisotropy
field direction on the heat current and rectification ability.

Some effects of DM interaction on heat transport in spin
chains have been studied [59,60]. In particular, possible con-
trol of heat rectification using DM interaction in a system
of two quantum dots has been proposed [61]. Another study
of magnetic thermal rectification in a single molecule mag-
net concluded that thermal rectification is possible due to
antisymmetry of DM interaction [62]. On the other hand,
these studies include the exchange interaction next to the
DM interaction, as such an interaction is naturally occurring.
However, this may not reveal the role of the DM interaction
on heat current per se. Here we present a more systematic
analysis by focusing on the DM interaction alone and inves-
tigate symmetry in heat flow in various parameter regimes.
In addition, our analysis based on the derivation of a global
master equation [63,64] and analytical results for both heat
currents and rectification reveals the underlying mechanism
that leads to thermal rectification. Based on the analytical re-
sults of rectification, we find the parameter regime for higher
rectification factors, thereby guiding further development of
thermal devices based on DM interaction. We believe such
systematic analysis has not been done in previous studies of
DM interaction-based heat rectifiers. Such a methodological
examination of the DM interaction can also be experimentally
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FIG. 1. A schematic of the model consisting of two qubits cou-
pled by the DM interaction with on-site (local) magnetic fields. Each
qubit is attached to its own local bath.

feasible [65]. Finally, we study the possible effects of the
stationary quantum correlations between the qubits on the
performance of the thermal rectifier. We find coherences are
asymmetrical under the change of temperature bias, and this
asymmetry is sufficient for the emergence of thermal rectifi-
cation.

The rest of the paper is organized as follows. In Sec. II we
introduce our model and physical system. Section III gives the
derivation of the master equation describing the open system
dynamics of the model. In Sec. IV we discuss the analytical
solution of the master equation in a series of subsections.
First, Sec. IV A presents the heat currents, followed by the
rectification abilities of the model system in Sec. IV B. Sec-
tion IV B 1 compares the models with anisotropy fields in
different directions. In Sec. V we investigate the possible role
of the quantum correlations on heat rectification. We conclude
in Sec. VI. Additional details of the derivation of the master
equation and the heat currents are provided in Appendixes A
and B, respectively.

II. THE MODEL

Our physical system consists of two spin-1/2 particles
(qubits) coupled via the Dzyaloshinskii-Moriya (DM) inter-
action in the presence of on-site magnetic fields, which is
effectively realizable in nuclear magnetic resonance experi-
ments [65]. Each qubit interacts with its own (local) bath at
different temperatures, as illustrated in Fig. 1. The Hamilto-
nian of the system is expressed as

HS = H0 + HDM, (1)

where H0 is the Hamiltonian of the noninteracting qubits (we
take the reduced Planck constant as h̄ = 1),

Ĥ0 = ωL

2
σ̂ z

L ⊗ ÎR + ÎL ⊗ ωR

2
σ̂ z

R, (2)

and the DM interaction is described by the Hamiltonian,

HDM = g
(
σ̂ x

L σ̂
y
R − σ̂

y
L σ̂ x

R

)
. (3)

Here σ̂ α
i denote the α = x, y, z components of the Pauli spin-

1/2 operators for the left (i = L) and right (i = R) qubits. The
unit operators are denoted by Îi. We assume on-site magnetic
fields can be used for locally distinct frequencies ωL and ωR

for the left and right qubits, respectively. The DM coupling
coefficient g corresponds to the case where the DM anisotropy
field is aligned in the z-direction so that the general DM
interaction D · (σL × σR) reduces to Eq. (3) with D = gẑ.

We take the spin-boson model to describe dissipative cou-
pling of each qubit to its respective local bath. The free
Hamiltonian of each bath Bi is given by

ĤBi =
∑

n

ωnâ†
i,nâi,n, (4)

where â†
i,n (âi,n) are the bosonic creation (annihilation) op-

erators of the nth mode of the ith bath. The system-bath
interaction is described by

ĤSB =
∑
i,n

gi,nσ̂
i
x ⊗ (â†

i,n + âi,n), (5)

where gi,n represents the coupling coefficient of the nth mode
of the bath Bi to the qubit labeled with i. We assume sym-
metric couplings between the baths and the qubits such that
gL,n = gR,n ≡ gn.

III. MASTER EQUATION

In this section, we outline the derivation of master equation
for our model. The eigenvalues of the system Hamiltonian (1)
are given by

±ωS := ±ωL + ωR

2
,

(6)
±� := ±

√
4g2 + ω2

D,

where ωD := (ωL − ωR)/2 is introduced for brevity of no-
tations. The sign of ωD tells us which qubit is at higher
frequency. The eigenvectors in computational basis associated
with the eigenvalues are expressed as

|1〉 := |ωS〉 = |++〉,
|2〉 := |�〉 = cos θ |+−〉 + i sin θ |−+〉,

(7)|3〉 := |−�〉 = i sin θ |+−〉 + cos θ |−+〉,
|4〉 := | − ωS〉 = |−−〉,

where the parameter θ is defined as

cos θ = 2g√
4g2 + (ωD − �)2

, sin θ = ωD − �√
4g2 + (ωD − �)2

.

(8)

Energy transitions induced by left and right baths are pre-
sented in Fig. 2, which shows all possible transitions that can
be induced by the thermal baths.

The master equation for our model is derived under the
usual Born-Markov and secular approximations and can be
written in the interaction picture as [66] (see Appendix A)

d

dt
ρ̂(t ) = LLρ̂(t ) + LRρ̂(t ), (9)

where the Liouvillian superoperators are given by

LLρ̂(t ) = cos 2θ [GL(ω+)D(σ̃−
L ) + GL(−ω+)D(σ̃+

L )]

+ sin 2θ [GL(ω−)D(σ̃ z
Lσ̃−

R ) + GL(−ω−)D(σ̃ z
Lσ̃+

R )],
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FIG. 2. Energy transitions induced by left (solid lines) and right
(dashed lines) baths for weakly coupled (a) off-resonant qubits and
(b) for nearly resonant qubits.

LRρ̂(t ) = cos 2θ [GR(ω−)D(σ̃−
R ) + GR(−ω−)D(σ̃+

R )]

+ sin 2θ
[
GR(ω+)D

(
σ̃−

L σ̃ z
R

)+GR(−ω+)D
(
σ̃+

L σ̃ z
R

)]
,

(10)

where ω± = ωS ± �, and ρ̂(t ) is the density matrix of the
system of interest, and σ̃±

i (ω) are the jump operators in basis
which diagonalize the system Hamiltonian. The explicit form
of these jump operators is given in Appendix A. Furthermore,
Gi(ω) denotes the spectral response function of the ith bath,
and it is given by

Gi(ω) =
{
γi(ω)(1 + Ni(ω) ω > 0,

γi(ω)Ni(|ω|) ω < 0,
(11)

where Ni(ω) is the Bose-Einstein distribution function (we
take the Boltzmann constant as kB = 1),

Ni(ω) = 1

eω/Ti − 1
, (12)

and coefficients γi(ω) are described by

γi(ω) = 2π h̄
fi(ω)gi(ω)2

ω
, (13)

where fi(ω) and gi(ω) are the density of modes of the baths
and their interaction strengths to corresponding qubit, respec-
tively. In the following, we consider thermal baths with flat
density of modes, which makes γi(ω) independent of ω and
can be denoted by γi(ω) := κi. In the rest of the paper, we con-
sider both baths have equal coupling strengths κL = κR = κ .
In Eq. (10) the Lindblad dissipator for a jump operator Â is
defined by

D(Â) = Âρ̂Â† − 1
2 (Â†Âρ̂ + ρ̂Â†Â). (14)

We have ignored the dephasing term in Eq. (10) because it
does not influence the diagonal elements of the density matrix;
consequently, it does not affect the steady-state heat currents
[67]. We note that, in Eq. (10), nonlocal jump operators are
present, for example, σ̃ z

Lσ̃−
R , which means both baths have

access to both qubits. Such a master equation is referred to
as a global master equation, which is consistent with the laws
of thermodynamics [63,64,68]. On other hand, a derivation
based on neglecting the interaction term between the qubits
leads to a local master equation which may not be consistent
with the laws of thermodynamics [21,63].

IV. RESULTS

We find that heat rectification in our system can be char-
acterized simply by using a single asymmetry parameter that
can be introduced as

ε = |ωD|
2g

. (15)

It measures the relative strength of detuning between the
qubits compared to the DM interaction and controls the heat
diode action. The significance of ε can be seen by expressing

cos 2θ = 1

2
√

1 + ε2
(√

1 + ε2 − |ωD|ε
ωD

) ,

sin 2θ =
√

1 + ε2 − |ωD|ε
ωD

2
√

1 + ε2
(16)

and recognizing that ε controls the weight factors of different
heat transfer channels described in Eq. (10). Hence we deduce
that ε can be envisioned as a valve to turn on or turn off
various heat channels between the baths. For large values of
ε, depending on the sign of ωD either cos 2θ or sin 2θ is very
small and the other tends to 1, while for small values of ε both
functions are almost equal and tend to 1/2.

A. Heat flow analysis

Heat flux between a bath and the system is given by [34,69]

Ii = Tr[Liρ̂SH̃S], (17)

where Ii represents the left IL or right IR bath current, with
the sign convention of positive heat current if the heat flows
from the bath to the system and vice versa. According to
energy conservation, left and right steady-state heat currents
must be the same but with opposite signs. Consequently, the
evaluation of steady-state right bath current IR suffices for the
qualitative and quantitative analysis of heat flow and thermal
rectification. The right bath heat current IR evaluates to (see
Appendix B for details)

IR(TL, TR) = κ

4(1 + ε2)

[
ω+[NR(ω+) − NL(ω+)]

D(TL, TR, ω+)

+ |ω−|(NR(|ω−|) − NL(|ω−|))
D(TR, TL, |ω−|)

]
, (18)

where

D(Ti, Tj, ω) = cos 2θ [2Ni(ω) + 1] + sin 2θ[2Nj (ω) + 1],
(19)

and IR(TL, TR) indicates that the left bath temperature TL is
greater than right bath temperature TR [it is vice versa for
IR(TR, TL )].

In Eq. (18) the heat current IR depends on the square of
DM interaction strength g, and accordingly the direction of
heat current is independent of the antisymmetric nature of DM
interaction. In Fig. 3 heat current IR is plotted as a function of
temperature and coupling strength g. Since our model contains
two heat baths, we set either one of the bath temperatures
(left or right) as reference temperature and Tref = 1 unless
otherwise specified. In Fig. 3(a) we verify the analytical re-
sult of heat current given in Eq. (18) by comparing it with
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FIG. 3. Steady-state right heat bath current IR as a function of
temperature T and coupling strength g. (a) Comparison between
the analytical (blue solid line) and numerical (red circles) results
of heat current IR evaluated via Eq. (18) and Eq. (17), respectively.
We take Tref = 1 as reference temperature, and TR ≡ T, TL = Tref

describes a forward-biased configuration. (b) Forward-biased (blue
solid line) and reverse-biased (red dashed line) heat current IR, where
reverse-biased (RB) configuration is described by TR = Tref, TL ≡ T .
(c) Forward-biased (FB) heat current for g = 0.01 (blue solid line),
g = 0.1 (red dashed line), g = 1.0 (green dotted line), and (d) IR as
a function of DM interaction strength g for RB current (blue solid
line) and FB current (red dashed line). In both cases we consider
THigh = 10, and TLow = 1. The rest of the parameters are given as
ωL = 1, ωR = 0.1, κ = 0.0001, and g = 0.01. All parameters are
scaled with the left qubit frequency ωL = 2π × 10 GHz.

the result obtained from the numerical solution of Eq. (10).
From Fig. 3 we conclude the following. (1) The sign of heat
current IR(TL, TR) is independent of the system parameters
(ωS , �, and g), and it changes only with the interchange of
bath temperatures. It is in accordance with the second law
of thermodynamics. (2) For TR > TL, heat current IR is pos-
itive, which indicates that heat current flows from right to left
irrespective of the system parameters, and for TL > TR it is
vice versa. (3) For weak coupling g, heat current IR(TL, TR) <

IR(TR, TL ), which indicates that heat flow is suppressed from
left to right, and it can be seen in Fig 3(b). (4) Higher
temperature gradients are associated with larger asymmetric
heat flow [Fig. 3(c)]. (5) Heat current vanishes for g = 0; ∞,
accordingly there exists a critical value of g for which heat
current is maximum.

To examine the possible physical mechanism behind these
observations, we refer to Eq. (10). There are two heat transfer

channels associated with the decay processes at ω±. For g =
0, qubits are uncoupled, and there is no heat flow, which can
be verified by Eq. (18). As we increase the coupling strength g,
the dressed energy gap ωp (Fig. 2) increases so that the phonon
transfer channel ω+ acts at higher energy. Consequently, the
heat current initially increases with g. However, once the
energy levels are too far apart for the bath phonons to couple
them, the current starts to decrease and eventually becomes
zero. Taking the high temperature limit of (18) for the right
bath, TR ≫ (TL, ω+), we get

IR(TL, TR) ≈ κ

4(1 + ε2)
TR

×
{

1

cos 2θ [2NL(ω+) + 1] + sin 2θ
(
2 TR

ω+

)

+ 1

sin 2θ[2NL(|ω−|) + 1] + cos 2θ
(
2 TR

|ω−|
)
}
.

(20)

This indicates that IR(TL, TR) linearly increases with TR and
eventually saturates if cos 2θ , and sin 2θ are small. For weakly
coupled qubits, either cos 2θ or sin 2θ is small. Consequently,
heat flow saturates for larger temperature gradients. On the
other hand, heat flow saturates at lower temperature gradients
for larger coupling strength g, because both cos 2θ , and sin 2θ

have larger values in the strong coupling regime. If the baths
are sufficiently hot, the maximum saturation current we can
derive in our system is

Imax
R (TL, TR) ∝ κ

4(1 + ε2)
. (21)

We can see that the saturation current is larger for the case
with lower ε. We will see that this is in contrast with how the
rectification behaves in the next section.

B. Heat rectification

From the heat current results, it is straightforward to calcu-
late the rectification factor, which is defined as

R = IR(TR, TL ) + IR(TL, TR)

Max[|IR(TL, TR)|, |IR(TR, TL )|] . (22)

We note that here rectification factor R is based on the heat
current IR. However, identical results can be obtained by re-
placing IR with the left bath current IL. The rectification factor
R can take any value between −1 and 1, where R = 1,−1 de-
scribes perfect rectification, and R = 0 shows no asymmetry
in the heat flow. In addition, R > 0 means heat flow is sup-
pressed from left to right, and R < 0 identifies the opposite
case. To explain the physical mechanism behind rectification,
we write the rate equation for population dynamics from the
master equation (10) (for ωs > �),

d

dt

⎡
⎢⎢⎢⎣

ρ11

ρ22

ρ33

ρ44

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

−(r3 + r4) r1 r2 0

r3 −(r1 + r4) 0 r2

r4 0 −(r2 + r3) r1

0 r4 r3 −(r1 + r2)

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

ρ11

ρ22

ρ33

ρ44

⎤
⎥⎥⎥⎦, (23)
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where r1, r3 are the transition rates in the ω− channel and
r2, r4 are the transition rates in the ω+ channel given as

r1 = κ[sin 2θNL(|ω−|) + cos 2θNR(|ω−|)],
r2 = κ[cos 2θNL(ω+) + sin 2θNR(ω+)],

r3 = κ
[

sin 2θe
|ω−|
TL NL(|ω−|) + cos 2θe

|ω−|
TR NR(|ω−|)],

r4 = κ
[

cos 2θe
ω+
TL NL(ω+) + sin 2θe

ω+
TR NR(ω+)

]
. (24)

For ωs < � we exchange r1 and r3 in the above equations.
Heat rectification in our model can be explained by possible
four-wave mixing cycles responsible for heat flow between the
left and right baths. In these cycles, the decay rates between
two same dressed states of the qubits become significantly
different when the thermal bias is reversed. Consequently, this
causes an asymmetry in the heat flow. To elaborate more on
this, let us look carefully at the rates given in Eq. (24). The
rates depend not only on the temperatures but also on cos 2θ ,
and sin 2θ , whose magnitudes [see Eq. (16)] differ signifi-
cantly for large ε. For appropriate system parameters, we can
exploit this large dissimilarity to make some of the coupling
strengths between the dressed states weaker than the others.
These weak transitions can be induced only if coupled to a
sufficiently hot bath. Accordingly, heat flow is suppressed in
case of coupling the weak transitions with the weak field (cold
bath) [34], due to which heat flow has preferential direction in
our model. As an example, for weakly coupled off-resonant
qubits with ωD 	 g > 0, the transition rates associated with
the left (right) bath ω−(ω+) decay channel become weaker
because of the relative magnitude of cos 2θ 	 sin 2θ [see
Eqs. (10) and (24)]. Consequently, for positively detuned
qubits, the ω− channel is responsible for left to right heat flow
suppression and vice versa for ω+. Hence, these two channels
compete and have opposite signs in the rectification, given by

R ∝ IR(TR, TL ) + IR(TL, TR), (25)

R ∝
|ωD|
ωD

ε
√

1 + ε2

[
ω+[NR(ω+) − NL(ω+)]2

D(TL, TR, ω+)D(TR, TL, ω+)

− |ω−|[NR(|ω−|) − NL(|ω−|)]2

D(TR, TL, |ω−|)D(TL, TR, |ω−|)
]
. (26)

Here the first and second terms are associated with ω+ and ω−
channels, respectively. For ωD > 0, if the right bath is cold, it
may not be able to induce a weak ω+ high-energy transition.
Accordingly, heat flow is suppressed from left to right, and
rectification becomes positive due to the larger contribution of
the first positive term compared to the second negative term in
Eq. (25). This can also be verified from Eq. (26), which shows
that rectification is positive for ωD > 0. Similarly, negative
detuning ωD < 0 results in negative rectification, i.e., heat
flow is suppressed from right to left.

For weakly interacting resonant qubits, i.e., ωL = ωR =
ω 	 g, an example of a process that transfers heat between
the baths is shown in Fig. 4. For resonant qubits, under the
reversal of temperature gradient, the decay rates given in
Eq. (24) become invariant, due to which asymmetry in the
heat flow vanishes. To emphasize this point, we explain the

FIG. 4. Examples of the processed that transfer heat between the
baths for the weakly interacting resonant qubits ωL = ωR = ω 	 g.
The separation between energy levels |2〉, and |3〉 becomes 4g, and
ω± transitions reduce to ω ± 2g. Solid and dashed arrows indicate
the transitions induced by the left and right baths, respectively, and
the thickness of the arrows reflects the magnitudes of the decay
rates between the states. In addition, dot-dashed arrows point in the
direction of the heat flow. For resonant qubits, all transition rates
become symmetrical under the change in temperature bias due to
which rectification becomes zero.

zero rectification for resonant qubits using Eq. (22): heat flow
becomes symmetric if

IR(TL, TR) = −IR(TR, TL ), (27)

and by simple manipulation this translates to

D(TL, TR, ω) = D(TR, TL, ω), (28)

which happens when

cos 2θ − sin 2θ = 0, ε = 0. (29)

Here we note that from Eq. (15) this implies that the recti-
fication is zero for resonant qubits. This is an expected result
because we have already noted that the asymmetry of the cross
product is not enough, and there is no other asymmetry in
our model apart from the off-resonant qubits. Hence, there
should be a direct relationship between the rectification and
that off-resonance.

Figure 5 shows variations in the rectification R as a func-
tion of temperature T and coupling strength g for different
detunings ωD. Higher rectification factors can be achieved for
larger magnitudes of temperature gradients and detunings as
shown in Fig. 5(a). This is because according to Eq. (10),
the transition rates between the dressed states become more
asymmetric for large detunings and temperature gradients.
According to Eq. (15), asymmetry in the heat flow decreases
with the increase in the coupling strength g, and this is graph-
ically represented in Figs. 5(b) and 5(c). In our model, the
direction of rectification can be controlled by the sign of
detuning [see Eq. (26)], which is confirmed in Fig. 5(d).

Finally, from Eq. (26) we see that the rectification is pro-
portional to the constant

R ∝
|ωD|
ωD

ε
√

1 + ε2
. (30)

We have analytical results on the amount of detuning we
need between the qubits in our model for getting significant
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FIG. 5. Variation of rectification (R) with temperature T (top
row) for (a) ωR = 0.005 (blue solid line), ωR = 0.05 (red dashed
line), ωR = 0.4 (green dotted line), ωR = 0.8 (black dot-dashed line),
for (b) g = 0.005 (blue solid line), g = 0.05 (red dashed line), g =
0.4 (green dotted line), g = 0.8 (black dot-dashed line). Variation of
R with g for (c) ωR = 0.005 (blue solid line), ωR = 0.05 (red dashed
line), ωR = 0.4 (green dotted line), ωR = 0.8 (black dot-dashed line)
with TR = 10 and TL = 1. (d) The direction of rectification can be
controlled by detuning ωD. Here ωD > 0 (blue solid line), ωD < 0
(red dashed line). For all cases, the values of parameters if not
otherwise specified are ωL = Tref = 1, ωR = 0.1, g = 0.01, and κ =
0.0001.

rectification. We get high values of rectification when ε → ∞
or ωD 	 2g. Physically, this is so because the rectification
arises due to the asymmetry in the energy levels of our system,
determined by ωD; however, if g is large compared to ωD, the
asymmetry in energy levels is insufficient, and the rectification
decreases. This is in line with the features we see in Fig. 5.
This constant also gives us an idea about the maximum rectifi-
cation we can extract from our system. To understand why that
is so we recall that the two heat transfer channels work against
each other in rectification, but for high values of rectification
the ω− channel is of very low energy in comparison to the
ω+ channel, hence the heat flow is completely dominated by
the latter. As a result, the rectification is also dominated by it.
Looking again at the expression (26), we can see that if the
ω− channel is ignored, the maximum achievable rectification
is proportional to the constant given in (30). Equations (21)
and (30) reveal that there is a trade-off between the current
and rectification as the saturation current is large for small ε,
whereas rectification diminishes, and vice versa. As pointed
out earlier, this leads to a possibility of optimization, where
we can get large heat currents without compromising the
rectification, as can be seen in Fig. 6(a), where there is a region
of stable rectification while the current is increasing before
sharply falling. Ideally, such a region should be targeted for
the best performance of the thermal diode. The behavior of
the curve further verifies that the saturation of rectification
depends on the detuning between qubits.

FIG. 6. (a) Parametric curve between rectification (R) and IR for
ωR = 0.01 (blue solid line), ωR = 0.05 (red dashed line), ωR = 0.1
(green dotted line), and ωR = 0.5 (black dot-dashed line) with TR =
10, TL = 1. Variation of IR with T for (b) DM along x (blue solid
line), y (red dashed line), and z (green dotted line). Variation of R
with T for (c) DM along x (blue solid line), y (red dashed line), and z
(green dotted line). (d) Changing the sign of R by exchange of qubit
frequencies for DM along x (blue solid line, green dotted line) and
for DM along y (red dashed line, black dot-dashed line). For all cases
the values of parameters if not otherwise specified are ωR = 0.1, g =
0.05, κ = 0.0001, ωL = 1, Tref = 1.

1. Effect of anisotropy field direction

From Figs. 6(b)–6(d), we can see that for low-temperature
regions, the models containing the DM anisotropy field along
x and y directions outperform the one with DM anisotropy
field along the z direction in terms of both the current flow
and rectification. This may be because there are more phonon
transfer channels available for these models as their Hamil-
tonian does not preserve total magnetization. These channels
are of relatively smaller energies allowing even the colder
baths to induce sufficient transitions in them. However, again
for higher temperature regions, the DM along the z model
performs better. We also see that the anisotropy field direc-
tion does not influence the fundamental features in our diode
as again the rectification changes sign on exchanging qubit
frequencies and is zero for resonant qubits.

V. QUANTUMNESS OF CORRELATIONS
AND RECTIFICATION

Finally, we investigate any possible interplay between sta-
tionary quantum correlations and heat rectification in our
model. The dissipative dynamics under Eq. (10) imposes only
two of the off-diagonal elements of the steady-state matrix
in the computational basis remain nonzero. In the two-qubit
computational basis {|++〉, |+−〉, |−+〉, |−−〉}, the steady-
state density matrix ρss is given by a two-qubit X state (for

054137-6



HEAT RECTIFICATION BY TWO QUBITS COUPLED WITH … PHYSICAL REVIEW E 104, 054137 (2021)

ωS > �)

ρss =

⎛
⎜⎜⎜⎝

d1 0 0 0

0 d2 c 0

0 c∗ d3 0

0 0 0 d4

⎞
⎟⎟⎟⎠. (31)

The steady-state diagonal elements (populations) are given by

d1 = r1r2

D∗ , d2 = r2r3 + r1r4 + (r2r3 − r1r4) cos (2θ )

2D∗ ,

d3 = r1r2

D∗ , d4 = r2r3 + r1r4 + (r1r4 − r2r3) cos (2θ )

2D∗ .

(32)

For ωs < �, exchange r1 and r3 in the above equations. The
off-diagonal term (coherence) is given by

c = −i
(r2r3 − r1r4) cos θ sin θ

D∗ , (33)

and for 4g2 < ωLωR its absolute value is given by

|c| = cos2 θ (N−
R − N+

L ) + sin2 θ (N−
L − N+

R )

2
√

1 + ε2D∗ ,

and for 4g2 > ωLωR

|c| = cos2 θ (N−
R + N+

L ) + sin2 θ (N−
L + N+

R ) + 1

2
√

1 + ε2D∗ . (34)

For convenience, we have used the following notations:

N±
R(L) = NR(L)(ω±)

D∗ = D(TR, TL, |ω−|)D(TL, TR, ω+). (35)

As expected, for the uncoupled qubits, the coherences
vanish because of cosθ = 0 in Eq. (33), and the coherences
are purely imaginary for any set of system parameters. For
very large g in comparison to ωS , ωD and temperatures, the
coherences saturate to

|c|s = 1

2
√

1 + ε2
, (36)

which reflects that coherences are inversely proportional to ε.
We note that the coherence is necessary for the steady state
ρss to be in an entangled state; however, only coherence is not
sufficient for its emergence. The precise condition for the two
qubits to be in an entangled state is given by the positivity-of-
the-partial-transpose separability criterion [70]

|c| >
1

2

d1 + d4

d1 − d4
. (37)

This condition is satisfied in the limit g 	 {ωL, ωR}. To quan-
tify the entanglement, we use concurrence as a measure of
entanglement between the two qubits, and it is given by [71]

C(ρss ) = max[0, λ1 − λ2 − λ3 − λ4]. (38)

Here λ’s are the eignevalue in decreasing order of the matrix

P̂ =
√√

ρssρ̃ss
√

ρss (39)

and

ρ̃ = (σ̂y ⊗ σ̂y)ρ∗
ss(σ̂y ⊗ σ̂y). (40)

FIG. 7. (a) Variation of rectification and coherence with g for
TR = 5 (blue solid line for R) and (green dotted line for coherence)
and TR = 10 (red dashed line for R) and (black dot-dashed line for
coherence) and (b) variation of rectification and concurrence with
g for TR = 5 [blue solid line for R, green dotted line for C(ρss )]
and TR = 10 [red dashed line for R, black dot-dashed line C(ρss )].
The values of the parameters are ωR = 0.1, g = 0.05, κ = 0.0001,
ωL = 1, Tref = 1.

Here the complex conjugate operation is denoted by ∗.
Figure 7 shows that both the stationary coherence |c| and

concurrence C(ρss ) are monotonically increasing functions
of the interqubit coupling g, and both saturate to their max-
imum values in the limit g 	 1. This is in contrast with
the qualitative behavior of rectification, as a larger value
of g, is associated with lower rectification [see Fig. 5(c)].
Accordingly, strong quantum correlations and coherences
are detrimental to the performance of our quantum thermal
rectifier.

It is interesting to note that similar to heat currents, coher-
ences are also asymmetrical under the reversal of temperature
bias [see Eq. (34)]. Recall that the asymmetry in heat flow
vanishes for ε = 0 [given in Eq. (29)], which is possible for
(1) resonant qubits ωL = ωR and (2) g 	 {ωL, ωR}, in this
limit sin2θ ≈ cos2θ . Remarkably, the asymmetry in the co-
herences under the reversal of temperature bias also vanishes
for these same conditions. Accordingly, similar to heat current
rectification, we define asymmetry in coherences

A := |c(TR, TL )| − |c(TL, TR)|
Max[|c(TL, TR)|, |c(TR, TL )|] . (41)
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FIG. 8. (a) Variation of rectification R and asymmetry in the
coherences A as a function of g for Thigh = 5 (red dashed line for
R, green dotted line for A) and Thigh = 10 (blue solid line for
R, black dot-dashed line A). Parameters: κ = 0.0001, ωL = 1, and
ωR = 0.01.

To investigate the possible interplay between the asym-
metry in the coherences and heat rectification, we plot both
heat rectification R and asymmetry in coherence A as a
function of the control parameter g in Fig. 8. In the limit of
weak interqubit coupling, R and A have similar qualitative
behavior, and it becomes quantitatively identical as well for
g > {ωL, ωR}. The increase in the temperature bias results in
an increased asymmetry in the coherences. Accordingly, the
quality of heat rectification also improves, which indicates
that asymmetry in the coherences and heat rectification are
associated. Asymmetry in the coherences is sufficient for the
emergence of thermal rectification in our model.

All the preceding analysis shows that the quantumness
of correlations established between the qubits and heat rec-
tification are related. We note that (1) the emergence of
entanglement between the qubits kills the asymmetry in heat
flow and (2) asymmetry in the coherence is required for the
asymmetry in the heat flow and vice versa. Along with the
previously reported sources of asymmetry for thermal rectifi-
cation [34], we find that asymmetry in the coherences appears
to be the fundamental resource for a thermal rectifier.

VI. CONCLUSIONS

We investigate the heat rectification ability of a two-qubit
thermal diode in which the qubits interact via the DM inter-
action with the DM exchange field in the quantization axis.
We find that thermal diode action is controlled by the relative
strength of the detuning between the qubits compared to the
DM field. We find that a single asymmetry parameter can be
used to characterize the rectification in our system. We also
see that there is a trade-off between current and rectification
in our system, and larger current leads to a decrease in rec-
tification but a possibility of optimization exists. We identify
the high-stability regions of the diode operation in terms of
the bath temperatures and DM field amplitude. Furthermore,
the direction of rectification can be controlled by the sign of
the detuning of the qubits. Similar features arise when we
change the direction of the anisotropy field, though such DM
thermal diodes operate more efficiently at lower temperatures.
For higher temperatures, the DM exchange field along the
quantization direction gives the optimum results.

The heat rectification is found to be related to the sta-
tionary quantum correlations established between the qubits.
The asymmetry in the heat flow vanishes with the emergence
of entanglement between the qubits. However, asymmetry in
the coherences is found to be a fundamental resource for the
performance of a quantum thermal rectifier. Correlation prop-
erties of the environment may result in more efficient quantum
thermal diodes; however, it requires further investigation.
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APPENDIX A: MASTER EQUATION

The system Hamiltonian given in Sec. III can be trans-
formed into its diagonal basis using the transformation

Û = cos 2

(
θ

2

)
ÎL ⊗ ÎR + sin 2

(
θ

2

)
σ̂ z

L ⊗ σ̂ z
R

+ i
sin θ

2

(
σ̂ x

L ⊗ σ̂ x
R + σ̂

y
L ⊗ σ̂

y
R

)
. (A1)

The relation between the operators in a new (dressed) basis
with the operators in the old (computational) basis is

Ã = Û †ÂÛ , (A2)

Â = Ũ ÃŨ †, (A3)

where Ã is the operator in the dressed basis and Â is the
operator in the computational basis. It can be proved that
under the transformation Û , the system Hamiltonian becomes
a diagonal matrix with the following form in terms of dressed
operators:

H̃S = (ωS + �)

2
σ̃ z

L + (ωS − �)

2
σ̃ z

R. (A4)

Now we want to write the system interaction operators in
terms of these dressed operators. Using Eq. (A2), we have

σ̂ x
i = Ũ σ̃ x

i Ũ †, (A5)

with i either left or right and

Ũ = cos 2

(
θ

2

)
ĨL ⊗ ĨR + sin 2

(
θ

2

)
σ̃ z

L ⊗ σ̃ z
R

+ i
sin θ

2

(
σ̃ x

L ⊗ σ̃ x
R + σ̃

y
L ⊗ σ̃

y
R

)
. (A6)
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Performing the above calculations, we get

σ̂ x
L = cos θσ̃ x

L + sin θσ̃ z
Lσ̃

y
R,

σ̂ x
R = cos θσ̃ x

R + sin θσ̃
y
L σ̃ z

R. (A7)

The interaction picture version of these operators is
(eiH̃St Ãe−iH̃St )

σ̂ x
L (t ) = e−i(ωS+�)t cos θσ̃−

L + ie−i(ωS−�)t sin θσ̃ z
Lσ̃−

R + H.c.,
(A8)

σ̂ x
R (t ) = e−i(ωS−�)t cos θσ̃−

R + ie−i(ωS+�)t sin θσ̃−
L σ̃ z

R + H.c.
(A9)

Once we know the interaction picture operators, it is easy
to arrive at the the Lindblad form of master equation given in
(10) [66].

APPENDIX B: HEAT CURRENT

Again from the master equation (10), we can see that

LRρ̂(t ) = cos 2θ [GR(ω−)D(σ̃−
R ) + GR(−ω−)D(σ̃+

R )]

+ sin 2θ
[
GR(ω+)D

(
σ̃−

L σ̃ z
R

)
+ GR(−ω+)D

(
σ̃+

L σ̃ z
R

)]
. (B1)

Using the definition of current (17), we get

IR = ω+
2

{
sin 2θ

[−GR(ω+)
〈
I + σ̃ z

L

〉 + GR(−ω+)
〈
I − σ̃ z

L

〉]}

+ ω−
2

{
cos 2θ

[−GR(ω−)
〈
I+σ̃ z

R

〉+GR(−ω−)
〈
I − σ̃ z

R

〉]}
.

(B2)

We can find the dynamic equations of the average quantities
required above:

d σ̃ z
L

dt
= cos 2θ

[−GL(ω+)
〈
I + σ̃ z

L

〉 + GL(−ω+)
〈
I − σ̃ z

L

〉]
+ sin 2θ

[−GR(ω+)
〈
I + σ̃ z

L

〉 + GR(−ω+)
〈
I − σ̃ z

L

〉]
,

(B3)

d σ̃ z
R

dt
= sin 2θ

[−GL(ω−)
〈
I + σ̃ z

R

〉 + GL(−ω−)
〈
I − σ̃ z

R

〉]
+ cos 2θ

[−GR(ω−)
〈
I + σ̃ z

R

〉 + GR(−ω−)
〈
I − σ̃ z

R

〉]
.

(B4)

For finding the steady-state solution the l.h.s. of both the
equations above goes to zero. Using the steady-state value of
the above averages and putting it in the expression of current
(B2) we obtain the analytical form of the current in (18).
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