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Polymers are frequently deposited on different surfaces, which has attracted the attention of scientists from
different viewpoints. In the present approach polymers are represented by rigid rods of length k (k-mers), and
the substrate takes the form of an L × L square lattice whose lattice constant matches exactly the interspacing
between consecutive elements of the k-mer chain. We briefly review the classical description of the nematic
transition presented by this system for k � 7 observing that the high-coverage (θ ) transition deserves a more
careful analysis from the entropy point of view. We present a possible viewpoint for this analysis that justifies
the phase transitions. Moreover, we perform Monte Carlo (MC) simulations in the grand canonical ensemble,
supplemented by thermodynamic integration, to first calculate the configurational entropy of the adsorbed phase
as a function of the coverage, and then to explore the different phases (and orientational transitions) that
appear on the surface with increasing the density of adsorbed k-mers. In the limit of θ → 1 (full coverage)
the configurational entropy is obtained for values of k ranging between 2 and 10. MC data are discussed in
comparison with recent analytical results [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)]. The
comparative study allows us to establish the applicability range of the theoretical predictions. Finally, the
structure of the high-coverage phase is characterized in terms of the statistics of k × l domains (domains of l
parallel k-mers adsorbed on the surface). A distribution of finite values of l (l � L) is found with a predominance
of k × 1 (single k-mers) and k × k domains. The distribution is the same in each lattice direction, confirming
that at high density the adsorbed phase goes to a state with mixed orientations and no orientational preference.
An order parameter measuring the number of k × k domains in the adsorbed layer is introduced.

DOI: 10.1103/PhysRevE.104.054136

I. INTRODUCTION

The study of systems of particles interacting with only
excluded volume interactions has become an important topic
in statistical mechanics, with applications to equilibrium and
nonequilibrium systems. In equilibrium statistical mechanics,
hard-sphere systems have been used to mimic phase transi-
tions in molecular solids [1–3] and in colloidal crystals [4].
Other examples, corresponding to phase transitions in hard-
sphere systems, can be found in [5–7]. On the other hand,
systems of nonspherical hard objects have also been studied,
showing that particle shape anisotropy can be a sufficient
condition to induce the different phases (nematic, smectic,
and cholestic) and phase transitions found in liquid crystals
[8–14]. In nonequilibrium statistical mechanics, excluded vol-
ume models provide prototypical models for driven systems
and jamming in granular systems [15–17].

*To whom correspondence should be addressed: an-
torami@unsl.edu.ar

In the case of lattice models of hard-core particles, the
study of the phases of assemblies of particles of many differ-
ent shapes has received considerable interest in the literature.
The inherent complexity of the system still represents a major
difficulty in the development of exact solutions, and only the
hard hexagons model has been exactly solved [18]. In this
context, approximate analytical procedures and Monte Carlo
(MC) simulations have been used to study several particle
shapes and their mixtures: Triangles [19], squares [20–26],
dimers [27–32], mixtures of squares and dimers [33,34], Y-
shaped particles [35–37], tetrominoes [38,39], rods [40–57],
rectangles [45,58–60], and disks [61,62]. Experimental real-
izations of such systems include tobacco mosaic virus [63,64],
liquid crystals [12], f d virus [65–67], silica colloids [68,69],
boehmite particles [70,71], and DNA origami nanoneedles
[72], as well as simple models for studying adsorption of
molecules onto 2D substrates [73–75].

Systems of hard rods and cylinders have attracted a great
deal of interest for many years. In a pioneer work, On-
sager [76] predicted that very long and thin rods interacting
with only excluded-volume interaction can lead to long-range
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orientational (nematic) order. The nematic phase, character-
ized by a big domain of parallel molecules, is separated from
an isotropic state by a phase transition occurring at a finite
critical density depending on the length of the needle. For the
lattice problem (which is the topic of this paper), the study
of linear k × 1 hard rods (or straight rigid k-mers) started
with the work of Flory [77] and Zwanzig [78]. The model
assumes that the rods can orient only in one of the d direc-
tions of a d-dimensional hypercubic lattice. In this line, a
system of straight rigid k-mers on a square lattice, with two
allowed orientations, was studied in Ref. [40]. Based on MC
simulations, the authors presented strong numerical evidence
that the system shows nematic order at intermediate densities
for k � 7, over a critical density θ1c. In addition, by means
of high-density expansions, Ghosh and Dhar [40] provided
a qualitative description of a second phase transition from
a nematic order to a nonnematic state occurring at a critical
density θ2c ∝ 1 − k−2 for large k.

Based on the seminal work of Ghosh and Dhar [40], several
papers were devoted to the detailed study of the transitions
occurring in a system of long straight rigid rods on 2D lattices
with discrete allowed orientations [41–43,50–56]. In these
articles, it was shown that, for k < kmin, there is no phase
transition, but for k � kmin, as density is increased, there are
three phases: a low-density disordered (isotropic) phase, an
intermediate-density nematic phase, and a high-density phase
in which there is no orientational order. The value of kmin

depends on the lattice geometry, being kmin = 7 for square
[40,41] and triangular [42] lattices and kmin = 11 for honey-
comb [43] lattices. The intermediate-density nematic phase,
characterized by a big domain of parallel k-mers, is sepa-
rated from the low-density disordered state by a continuous
transition at a finite critical density θ1c. This first transition,
usually referred to as an isotropic-nematic (I-N) phase tran-
sition, belongs to the 2D Ising universality class for square
lattices [41] and the three-state Potts universality class for
triangular [41] and honeycomb [43] lattices. In the three cases
(square, triangular, and honeycomb lattices), the critical den-
sity characterizing the I-N transition θ1c follows a power law
as θ1c(k) ∝ k−1 [42]. The existence of the first transition was
rigorously proved [56].

The relaxation time increases very quickly as the density
increases. Consequently, usual MC simulations with local
deposition-evaporation moves are very time consuming at
high density and produce artifacts related to nonaccurate equi-
librium states. In order to cope with these difficulties, efficient
MC simulations based on cluster moves were developed in
Refs. [50,51]. The use of these techniques has made it possible
to investigate the behavior of the system at high densities. In
this regime, a second phase transition from the intermediate-
density nematic phase to the high-density phase has been
reported [41,51]. The nature of this phase transition is not
yet clear. There is some indication of the high-density phase
having power-law correlations [51] with the second transi-
tion not being in the Ising universality class [51,52], while
the exact solution of soft repulsive rods on a treelike lattice
[53] suggests otherwise. The orientational transitions in two
dimensions have also been studied using measures such as the
classical entanglement entropy, mutability, Shannon entropy,
and data compression [52,54,55].

Very recently, the asymptotic behavior of the entropy per
site of full coverings of a L × M square lattice by straight
rigid rods of length k was investigated [79]. The authors found
that full coverage is possible only if at least one of L and M
is a multiple of k, and that all allowed configurations can be
reached from a standard configuration of all rods being par-
allel, using only basic flip moves that replace a k × k square
of parallel horizontal rods by vertical rods, and vice versa. In
addition, by combining the lower [79] and upper [80] bounds
obtained for entropy, Dhar and Rajesh showed that, in the
limit of large k, the configurational entropy per site tends to
Ak−2 ln k, with A = 1. Finally, based on a perturbative series
expansion, the authors conjectured that the large-k behavior
of entropy per site is superuniversal and continues to hold on
d-dimensional hypercubical lattices for all d � 2. For low and
intermediate coverage, the configurational entropy per site for
a system of k-mers on square lattices has also been calculated
[81–83].

The study of monodispersed hard rods of length k has also
been investigated in three dimensions (simple cubic lattices)
[84,85]. For k � 4, the system is disordered at all densities.
For k � 7, three density-driven transitions are observed
numerically: isotropic to nematic to layered-nematic to
layered-disordered. In the layered-nematic phase, the system
breaks up into layers, with nematic order in each layer,
but very weak correlation between the ordering directions of
different layers. In Ref. [84] the authors argue that the layered-
nematic phase is a finite-size effect, and in the thermodynamic
limit, the nematic phase will have higher entropy per site.
For 4 < k < 7, there is no nematic phase and a single phase
transition from a disordered to a layered disordered phase
[84,85].

Despite a long history, several basic questions about these
systems remain open. Most of the unknown is in regard to
the high-coverage phase, which has been less studied than the
low and intermediate phases. What is the exact nature of the
nonnematic phase that appears at high coverage? Is this phase
present even when the density saturates in full coverage? How
much of these results are algorithm induced? In this paper, we
attempt to give at least partial answers to these questions dis-
cussing other features presented by these interesting systems.
For this purpose, extensive MC simulations supplemented
by the thermodynamic integration method have been used to
calculate the configurational entropy per site of the adsorbed
phase s(k, θ ) as a function of coverage (0 � θ � 1); the pro-
cess has been done for different k-mer sizes (2 � k � 10).
By comparing s(k, θ ) with the configurational entropy per site
corresponding to a fully aligned system (whose calculation re-
duces to the 1D case), the different phase transitions that occur
on the surface were identified. The results obtained for θ close
to 1 allowed us to test the recent theoretical predictions by
Dhar and Rajesh [79]. The study of the high-coverage phase
was completed by obtaining a basic statistics of domains of
the l consecutive parallel k-mers adsorbed on the surface.
The histograms measuring the accumulated frequencies of
the k × l domains revealed the presence of finite domains (l
much less than the lattice side) with a predominance of two
characteristic lengths l = 1 and l = k. Based on these results,
an order parameter measuring the number of k × k domains
in the adsorbed layer has been introduced.
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This paper is organized as follows. The calculation
methodology is presented in Sec. II. The results are presented
in the form of plots, which are discussed in Sec. III. The
conclusions are summarized in Sec. IV.

II. METHODOLOGY: FUNCTIONS AND VARIABLES

A. Simulations: Adsorption-desorption algorithm

Lattice gas simulations of rods of length k (linear k-mers)
were done in the grand canonical ensemble using the efficient
algorithm presented by Kundu et al. [50,51], which was de-
signed to overcome the slow sampling at high coverage. The
temperature, T , chemical potential, μ, and system size, L, are
kept fixed, whereas the number of particles, N , is allowed
to fluctuate through nonlocal changes, i.e., insertion and/or
remotion of several k-mers at the time (in contrast to the
standard Metropolis algorithm).

In short, given a particular configuration of k-mers on the
lattice, a Monte Carlo step (MCs) consists first in the removal
of all the horizontal k-mers, keeping the vertical ones. In this
way, each row consists in intervals of different length formed
by contiguous empty sites. Such intervals are separated from
each other by sites occupied by vertical k-mers.

Each interval, independently, could be filled by new hor-
izontal k-mers, provided that its length be greater or equal
to k. Given one of these intervals of length l (�k), it is
very simple to calculate the equilibrium probability (given
the temperature and chemical potential) of having the first
k site of the interval occupied by an horizontal k-mer. Such
probability could be precalculated and stored, for intervals of
different lengths (from 0 to L) to increase the computational
performance. From these probabilities it is possible to fill all
the horizontal intervals of the system with new equilibrium
configurations of horizontal k-mers and empty sites. The MCs
is completed by repeating an identical procedure but emptying
vertical intervals and refilling them with vertical k-mers.

In addition to the just described removal and filling pro-
cesses of horizontal and vertical k-mers, it is found that the
sampling and equilibrating times can be considerably reduced
by adding patch or tile rotation steps. In this process, a site
(i, j) is randomly selected. If that site is occupied by a head
of an horizontal k-mer (i.e., its left-end site), we proceed to
verify if the sites (i, j + 1), (i, j + 2),..., (i, j + k − 1) are
also occupied by heads of horizontal k-mers. If so, we are in
presence of a turnable patch consisting of k horizontal k-mers,
which is replaced by a patch of k vertical k-mers. In the same
way, we could have started with a vertical patch and turned it
into a horizontal patch.

Then the complete MCs will consist of the remotion and
filling processes, both horizontally and vertically, followed by
the patch rotation process, which will be repeated a number
of times equal to L2, i.e., one per site in average. A detailed
discussion can be found in the original works in Refs. [50,51].
The algorithm thus defined is proved to be ergodic and to
satisfy the detailed balance principle.

The equilibrium is reached typically after r0 = 107 MCs. A
square lattice of M = L2 sites with periodic border conditions
was used. The relation L/k was fixed to 120, so that the
finite-size effects can be neglected. The different observables

of interest were obtained along other r = 107 configurations,
i.e., the temporal series of the different order parameters as
well as the average values obtained from these series.

B. Configurational entropy of the adsorbed phase:
Thermodynamic integration method

The advantages of using MC simulations to calculate ther-
mal averages of thermodynamic observables are well known
[86,87]. The estimation of certain quantities such as the to-
tal energy, energy fluctuations, correlation functions, etc., is
rather straightforward from averaging over a large enough
number of instantaneous configurations (states) of a thermo-
dynamic system. However, free energy and entropy are much
more difficult to evaluate, and they cannot be directly com-
puted. To calculate free energy and entropy, various methods
have been developed [87]. Among them, the thermodynamic
integration method is one of the most widely used and practi-
cally applicable [81,82,88–90].

In the grand canonical ensemble, the thermodynamic in-
tegration method relies upon integration of the chemical
potential μ on coverage along a reversible path between an
arbitrary reference state and the desired state of the system.
This calculation also requires the knowledge of the total en-
ergy U for each obtained coverage. Thus, for a system made
of N particles on M lattice sites, we have

μ =
(

∂F

∂N

)
M,T

, (1)

where F = U − T S is the Helmholtz free energy and S is the
configurational entropy. It follows that

S(k, M, N, T ) = S0(k, M, N0, T )

+ U (k, M, N, T ) − U (k, M, N0, T )

T

− 1

T

∫ N

N0

μdN . (2)

In our case U (k, M, N, T ) = 0 and the determination of
the entropy in the reference state, S0(k, M, N0, T ), is trivial
[S0(k, M, N0, T ) = 0 for N0 = 0]. Then, after writing the last
equation in terms of intensive variables, the configurational
entropy per site (s = S/M) results in

s(k, θ, T )

kB
= − 1

kBT

∫ θ

0

μ

k
dθ, (3)

where θ = kN/M and kB is the Boltzmann constant. Given
that all chemical potentials are being measured in units of
kBT , all results will be independent of the temperature. Ac-
cordingly, for the rest of the paper we will use s(k, θ ) to denote
the configurational entropy per site (for simplicity we will
drop the “T ”).

The curve of μ vs θ can be obtained by following the
adsorption-desorption algorithm described in Sec. II A. In
our MC simulations, we varied the chemical potential and
monitored the density θ , which can be calculated as a simple
average:

θ = k〈N〉
M

, (4)
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FIG. 1. Chemical potential (a) and configurational entropy per
site (b) as function of coverage for k = 3. The figure illustrates the
implementation of the thermodynamic integration method. The value
of A is −1.3586. The adsorption isotherm in (a) was measured in the
range from μ/kBT = −15 to μ/kBT = 25. A shorter range is shown
(−10 � μ/kBT � 15) for a better visualization.

where the brackets 〈·〉 denote the average over the r MC
simulation runs after equilibrium is settled.

In order to illustrate the implementation of the methodol-
ogy, an example corresponding to k = 3 is shown in Fig. 1.
In Fig. 1(a) the curve μ(θ ) is reported. The error bars are
smaller than the size of the symbols, which tells the accuracy

of the simulated data. To apply the method, a given point θi

is chosen, and the integral A = ∫ θi

0 (μ/kBT ) dθ is calculated.
In the figure, θi = 0.4748 (solid triangle) and A = −1.3586.
The corresponding entropy per site yields s(k = 3, θi )/kB =
−A/3 = 0.4529 [see solid triangle in Fig. 1(b)]. By repeating
the procedure for all values of θi, the curve of entropy vs
coverage can be calculated.

The integration required in Eq. (3) is carried out us-
ing the well-known trapezoidal rule [91]. Accordingly, two
error sources affect the entropy calculations: (1) the simula-
tion error associated with the measurement of the adsorption
isotherm and (2) the error inherent to the integration method.
With respect to the simulation error, each point in the adsorp-
tion isotherm curve is obtained with an error of the order of
10−5. Then, since the integral A is calculated by summing
over all points of the adsorption isotherm between θ ≈ 0 and
θ = θi [91], the resulting simulation error for A increases with
the coverage. On the other hand, the error coming from the
integration method can be controlled by choosing appropri-
ately the number of integration points nμ (number of discrete
values in the adsorption isotherm) [91]. In the present study,
the choice of nμ is made such that the integration error is much
smaller than the simulation error.

The complete range of integration extends from μ/kBT =
−15 (θ ≈ 0) to μ/kBT = 25 (θ ≈ 1); our main interest is
precisely in the approach to this upper limit. Such interval
is covered upon increasing μ/kBT in intervals of 0.5, thus
defining curves with nμ = 81 points. With these values for
the parameters, the simulation error is of the order of 10−3,
and the integration error is negligible with respect to the
simulation error. All of this leads to the total error for the en-
tropy per site at full coverage that will be reported in the next
section (see the sixth column in Table I below).

III. RESULTS AND DISCUSSION

The phase properties of systems with purely steric interac-
tions are important from a statistical mechanical perspective
because the potential energy, U , of a steric system is, by
definition, constant. Consequently, the Helmholtz free energy

TABLE I. Configurational entropy per site for straight rigid rods on square lattices (at full coverage) with k in the range [2,10]. First
column, k-mer size k; second column, lower bound for entropy per site obtained by solving exactly a system of rods on semi-infinite strips
k × ∞ [79]; third column, same as second column but for semi-infinite strips 2k × ∞ [79]; fourth column, upper bound for entropy per site
obtained in Ref. [80]; fifth column, theoretical predictions from Eq. (6) (the values are rounded to five decimal places) [79]; sixth column, MC
results obtained in the present work, where statistical errors are in the last digit and are indicated in parentheses; and seventh column, relative
differences between theoretical data in fifth column and MC results in sixth column (see definition in the text).

Entropy per site at full coverage, s(k, θ = 1)/kB

k Strips k × ∞ [79] Strips 2k × ∞ [79] Upper bound [80] Eq. (6) [79] MC results (this work) δ

2 0.2406059 0.2609982 0.2915677 0.17329 0.293(2) 0.409
3 0.1274150 0.1410668 0.1746373 0.12207 0.159(2) 0.232
4 0.0805712 0.0899073 0.1162136 0.08664 0.101(2) 0.142
5 0.0562399 0.0629820 0.0833025 0.06438 0.070(3) 0.080
6 0.0418189 0.0469143 0.0629134 0.04977 0.052(3) 0.043
7 0.0324961 0.0364864 0.0493680 0.03971 0.040(3) 0.007
8 0.0260854 0.0292992 0.0398838 0.03249 0.032(3) 0.015
9 0.0214689 0.0241160 0.0329673 0.02713 0.027(3) 0.005
10 0.0180229 0.0202437 0.0277571 0.02303 0.021(3) 0.095
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FIG. 2. Configurational entropy per site as function of coverage
comparing simulations (symbols) and theory (solid line) according
to expression in Eq. (5). The values have been obtained for k = 4.

F = U − T S is controlled by entropy (S) alone, and all phase
transitions are entropy driven. In this way, the behavior of
entropy as a function of coverage appears as a useful property
to explore the possible ordered phases present in these systems
for increasing values of the density.

As established in previous works [40,41] the system does
not present long-range order at all densities for k < 7. This
can be visualized for k = 4 in Fig. 2, where the config-
urational entropy per site obtained by the thermodynamic
integration method (symbols) is compared with the config-
urational entropy per site obtained analytically for a fully
aligned system (line). In the fully aligned or nematic state,
the system would be characterized by a big domain of parallel
k-mers (tetramers in the case of Fig. 2), and the entropy of this
nematic state having density θ can be reduced to the entropy
of a 1D problem [92]:

s1D(k, θ )

kB
=

[
1 − (k − 1)

k
θ

]
ln

[
1 − (k − 1)

k
θ

]

− θ

k
ln

θ

k
− (1 − θ ) ln (1 − θ ). (5)

As observed in Fig. 2, the aligned system has smaller en-
tropy over the entire range of coverage. This finding indicates
that, in the case of k = 4 and according to the principle of
maximum entropy, the adsorbed phase does not reach nematic
order at any point when the density varies between 0 and 1.

The behavior of these systems becomes more interesting
for k � 7 [40,41]. When this condition is satisfied, the ad-
sorbed phase shows nematic order at intermediate and high
densities, and goes to a state with mixed orientations at very
high density where the long-range orientational order is lost.
The high-density phase is characterized by the formation of
local arrangements (or islands) of parallel k-mers. Next, this
picture will be analyzed in terms of entropy.

In Fig. 3(a) the configurational entropy per site has been
studied for a system with k = 8. Symbols represent MC sim-
ulation data, and the solid line corresponds to the analytical
exact entropy corresponding to a fully aligned state [Eq. (5)
with k = 8].

For low coverage, the systems present no order, and, ac-
cordingly, the true 2D entropy is higher than that from Eq. (5).

FIG. 3. (a) Same as Fig. 2 but for k = 8. (b) The departure
of the theoretical expression [Eq. (5), solid line] from simulations
(symbols) at high coverage.

At intermediate densities, there exists a range of densities for
which the system is characterized by a big domain of parallel
k-mers and the configurational entropy per site can be well
approximated by Eq. (5). In this range, the nematic order
is almost perfect (the number of nonaligned k-mers is neg-
ligible), and, accordingly, simulation and theoretical curves
are practically overlapping (within the statistical errors). This
result provides a physical interpretation of the I-N transition
occurring in the system, showing that it is more favorable for
the k-mers to align spontaneously, since the resulting loss of
orientational entropy is by far compensated by the gain of
translational entropy. Finally, as the coverage approaches 1,
the configurational entropy of the 2D system departs from the
corresponding one to the nematic phase, indicating the loss of
orientational order in the adsorbed phase [see Fig. 3(b)].

The value of the critical density associated with the I-N
phase transition, θ1c, can be estimated from the minimum
value of θ which occurs the near superposition of the 1D and
2D data. The coverage where the two curves separate should
be indicative of the critical density corresponding to the N-O
phase transition, θ2c. However, it is important to emphasize
that the calculation of the entropy of the nematic phase from
the 1D model is an approximation (especially in the region
near the critical densities, where the phase is not completely
aligned). Consequently, a precise determination of θ1c and
θ2c requires an extensive work based on MC simulations
and finite-size scaling techniques [42,54,55]. In the case of
Fig. 3(a), the border regions vary between 0.62 and 0.68 (I-N),
and between 0.89 and 0.95 (N-O). The values of θ1c and θ2,c

previously obtained in the literature for k = 8 are θ1,c ≈ 0.643
[42,54] and θ2,c ≈ 0.92 [55].

Schematic representations of the different phases that ap-
pear on increasing the density are shown in Fig. 4: Fig. 4(a)
the disordered-isotropic phase, D region in Fig. 3(a); Fig. 4(b)
the nematic phase, N region in Fig. 3(a); and Fig. 4(c) the
ordered-isotropic phase, O region in Fig. 3(a). In spite that the
results reported here were obtained for L/k = 120, we have
chosen L/k = 10 (and k = 8) for clarity in Fig. 4.

D and N phases have been well studied and characterized
[40]. The same has not happened so far for the case of the
O phase. In the limit case of θ → 1, Dhar and Rajesh [79] re-
cently showed that the configurational entropy per site of fully
packed k-mers on d-dimensional hypercubic lattices follows
the law

s(k, θ = 1)

kB
= k−2 ln k (k → ∞). (6)
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FIG. 4. (a) Snapshot for an example of a disordered-isotropic
phase [D region in Fig. 3(a)]. (b) Snapshot for an example of a
nematic phase [N region in Fig. 3(a)]. (c) Snapshot for an example of
an ordered-isotropic phase [O region in Fig. 3(a)]. The configurations
shown in (a)–(c) have been obtained for square lattices with k = 8
and L/k = 10, which are appropriate for illustrative purposes.

Based on a perturbative series expansion, the authors conjec-
tured that Eq. (6) holds for all d � 2.

Equation (6) has not been corroborated yet by MC meth-
ods. As is well known, the relaxation time increases very
quickly as the density increases, and, consequently, MC sim-
ulations at high density are very time consuming and may
produce artifacts related to inaccurate equilibrium states. With
these ideas in mind, exhaustive MC simulations supplemented
by the thermodynamic integration method were developed
here to calculate s(k, θ → 1)/kB. In the calculations, the curve
of μ(θ ) was integrated following the procedure described in
Sec. II. The results are shown in Fig. 5. Solid squares rep-
resent MC results, and the solid line corresponds to Eq. (6).
Numerical and theoretical values are also compiled in Table I.

Figure 5 also includes two theoretical bound curves. The
lower bound (dotted line) was obtained by solving exactly
the entropy per site of rods on semi-infinite strips 2k × ∞
[79]. The corresponding numerical values are shown in Ta-
ble I (third column). In Ref. [79] the entropy per site at
full coverage was also calculated for semi-infinite strips k ×
∞. The obtained values are compiled in the second col-
umn of Table I but are not shown in Fig. 5. On the other
hand, the upper bound (dashed line) represents the result ob-
tained by Gagunashvili and Priezzhev [80] for the entropy on
the square lattice: s(k, θ = 1)/kB � k−2 ln(γ k), where γ =
exp(4G/π )/2 and G = 0.91596 . . . is Catalan’s constant. The
numerical data corresponding to the upper bound curve in
Fig. 5 are collected in Table I (fourth column).

The data in Fig. 5 were divided in two parts for a better
visualization. In Fig. 5(a) the curves are plotted in the range
2 � k � 5. Significant differences are observed between MC
data (which remain between the two bound curves) and theo-
retical results from Eq. (6). For the case of dimers (k = 2), the
entropy per site for the square lattice has been exactly cal-

FIG. 5. Configurational entropy per site at full coverage (θ = 1)
as a function of k: (a) 2 � k � 5 and (b) 5 � k � 10. Solid squares
correspond to MC simulation data (this work). The open triangle and
open star represent theoretical values obtained for dimers [27–30]
and trimers [93], respectively. The solid line indicates results ob-
tained from Eq. (6) [79]. The lower bound (third column in Table I,
Ref. [79]) is denoted by the dotted line, while the upper bound (fourth
column in Table I, Ref. [80]) is denoted by the dashed line.

culated, s(k = 2, θ = 1)/kB = G/π = 0.29156 . . . [27–30].
The exact value in Refs. [27–30] coincides with the value
of the upper bound for k = 2: 2−2 ln(2γ ) = 2−2(4G/π ) =
G/π . In addition, a precise estimate s(k = 3, θ = 1)/kB =
0.158520(15) has been obtained for trimers on square lattices
[93]. The theoretical values for k = 2 and 3 agree, within the
statistical errors, with those obtained here by MC simulations.
See the fifth column in Table I and Fig. 5(a): dimers (open
triangle) and trimers (open star). In Fig. 5(a) the error bars are
smaller than the size of the symbols. The perfect agreement
between previous and current results validates our computa-
tional approach and calculation method.

As the k-mer size increases [see Fig. 5(b) where the data
are presented in the range 5 � k � 10], the differences be-
tween the MC values and those predicted by Eq. (6) diminish.
This effect can be easily rationalized with the help of the rela-
tive difference δ, which is defined as |sMC − stheo|/sMC , where
sMC denotes the simulation data (sixth column in Table I) and
stheo represents theoretical data from Eq. (6) (fifth column in
Table I). The relative differences are collected in the seventh
column of Table I. For k � 6, these differences are less than
the relative simulation errors. In other words, theoretical and
simulation results coincide, within the statistical uncertainty,
in the range k � 6. Note, in addition, that the Dhar and Rajesh
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curve falls between the upper and lower bounds for k � 5.
These findings represent the first numerical validation of the
expression obtained in Ref. [79] and allows for an accurate
determination of of its validity range.

In addition to analyzing the entropy, it is also interesting
to be able to characterize the structure of the O phase. For
this purpose, and following the scheme of Dhar and Rajesh
[79], the study will be restricted to fully occupied lattices. As
shown in Fig. 4(c), the high-density phase is characterized
by the formation of k × l domains of parallel k-mers (with
variable l). These domains are randomly oriented so that the
O phase has no net orientational order.

The length l of a domain is somewhat difficult to define
since pure k × l domains are hard to be found near saturation
density as can be appreciated from Fig. 4(c). We counted all
the perfect domains with length k and length l . When there
is an discontinuity due to the shift of even just one k-mer the
count for a new domain begins. This is the simplest possible

way of measuring l , but it certainly biases the measure in
favor of shorter l values. Take, for instance, the domain of
vertical k-mers in the upper part of Fig. 4(c), beginning about
L/3 from the left margin: the width is k = 8 with five initial
vertical k-mers (l1 = 5), then there are two shifted single bars.
How do we count them? Then the original domain seems to
continue beyond this break with a tile k × k; again we see
single vertical bars followed by another k × k domain, which
bifurcates returning to the left margin via periodic boundary
conditions. What is the effective l for this domain? No unique
way of answering this question is in sight. In spite of this
shortcoming we go ahead and obtain histograms for l (k)
which can give insight into some of the properties of these
domains.

The number of domains of length l has been measured in
the simple way proposed above for a number n of equilibrium
high coverage configurations. For each value of k, the appari-
tion frequency of a domain of length l is denoted as fk (l ):

fk (l ) = total number of domains of length l in the n measured samples

total number of domains in the n measured samples
. (7)

In Fig. 6 the frequency fk (l ) is shown (in a semilog scale)
as a function of the length l for two different values of k:
(a) k = 4, and (b) k = 8. The simulations were performed
for L/k = 120. r0 = 106 MCs were used to equilibrate the
systems. Then the number of domains of length l was aver-
aged over n = 105 independent configurations. The procedure
was carried out for a very high value of the chemical poten-
tial (μ/kBT = 20), being the corresponding coverage close
to 1 (θ ≈ 0.998). The results in the figure indicate that sin-
gle k-mers (domains with l = 1) and k × k islands dominate
the distributions. The procedure in Fig. 6 was repeated for
2 � k � 10, always obtaining similar qualitative trends. In
addition, identical histograms were obtained in each lattice di-
rection, corroborating that the O phase has no net orientational
preference.

The results obtained from the statistical analysis presented
in Fig. 6 indicate that the high-coverage phase presents a
short-range order leading to finite k × l domains with pre-
dominance of lengths l = 1 and l = k. Accordingly, the
dependence on coverage (and k) of the number of k × k do-
mains, or flippable blocks as they are called in Ref. [79], could
be used to describe the transition occurring at high density. For

FIG. 6. (a) fk (l ) as a function of the length l (see discussion in
the text) for k = 4. (b) Same as (a) for k = 8.

this, it is more convenient to define the parameter φ as

φ = number of flippable k × k domains

(L/k)2 , (8)

where (L/k)2 is a normalization term that ensures that φ varies
between 0 and 1.

As an illustrative example, Fig. 7 shows the order parame-
ter φ as function of coverage for straight rigid k-mers with k =
8 (and L/k = 120). When the system presents nematic order,
the number of perfectly aligned k-mers is small [see Fig. 4(b)]
and the order parameter is minimum. As the chemical po-
tential is increased above a certain critical value, adsorbed
k-mers form k × k structures and φ is different from zero.
In the figure, the critical chemical potential is μ/kBT ≈ 8.
This value corresponds to a density θ ≈ 0.94, which is in the
border between the N and O phases [see Fig. 3(b)].

The study presented in Fig. 7 shows that φ appears as a
good order parameter, evidencing the phase transition occur-
ring in the adsorbed layer at high density. Taking advantage

FIG. 7. Parameter φ [Eq. (8)] as function of coverage for straight
rigid k-mers with k = 8.
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of its definition (and related functions such as susceptibility,
reduced fourth-order cumulant, etc.), a complete analysis of
criticality and universality will be an object of future work.

IV. CONCLUSIONS

In the present work, we have addressed the critical prop-
erties of straight rigid rods adsorbed on square lattices. The
process was mainly analyzed in terms of the configurational
entropy of the adsorbed phase. The results were obtained
by combining Monte Carlo simulations, the thermodynamic
integration method, and theoretical analysis.

Special interest was devoted to the study of the high-
coverage phase (O phase), which has been much less explored
in the literature. Using MC simulations and the thermody-
namic integration method, the behavior of the configurational
entropy per site at full coverage as a function of the k-mer
size was obtained and compared with the recently reported
expression s(k, θ = 1)/kB = k−2 ln k (k → ∞) [79]. The MC
study presented here represents, to our best knowledge, the
first numerical validation of the theoretical predictions of Ra-
jesh and Dhar [79]. The structure of the O phase was also
investigated by analyzing the statistics of the k × l domains
that occur in the adsorbed phase in the regime of high densities
(close to 1). Based on this study (and previous research), the
following conclusions can be drawn.

The high-coverage transition presented by systems with
k � 7 is nothing but the recovery of the natural tendency of
approaching a short-range ordering in the form of paths of
width k; these paths occur randomly for all k values, in both
horizontal and vertical directions, leading to nil results for the
long-range orientational order parameter at high coverage.

This monotonic sequence is interrupted for k � 7 when
a nematic transition occurs for θ � θ1c when an ergodicity
breaking occurs and the system tends to present a preferred
direction for subsequent depositions. This transition is entropy
driven as large enough rods present more translational degrees
of freedom leading to larger entropy. As coverage increases
another form of entropy of no previous importance takes over:
the relative distributions of domains with vertical or horizontal
k-mers. Then the nematic phase is abandoned, and the system
at θ � θ2c breaks into a system of short-range labyrinthine
domains with mixed orientations.

As longer rods are considered, θ1c moves to lower values
while θ2c moves to larger values, thus making the nematic
phase wide in the range of θ . These critical densities behave
differently, and θ2c moves very fast to the saturation value 1.0.
On the other hand, θ1c → 0 at a slower rate with respect to k
values.

The exact nature of the O phase cannot be obtained from
entropic considerations, and it must relay in order parameters
that reflect the new ordering. Obviously the long-range ori-
entational order parameter is not appropriate for this purpose
since it vanishes without being an indicator of the kind of new
order reached. So this question will remain open because to
answer it new parameters need to be defined, tested, measured,
and interpreted. The parameter φ measuring the number of
k × k domains in the adsorbed layer seems to be a promising
way in this direction. This extensive computational work is at
the moment beyond the scope of the present paper.

However, we can say that we expect the N phase to prevail
near the saturation coverage for large enough k values, since
the ergodicity breaking defining the N phase is favored for
large k. At the same time, the O phase is pushed away quickly
as θ2c → 1 for large k values.

The way the configuration space is swept is likely to be
determinant in the way the configurations at high coverage are
found. The step in which k × k tiles are turned by 90◦ favors
configurations with such structures in detriment of configu-
rations with no such possibility. Thus, a random sampling of
the configuration space, although needing huge computational
times, could eventually produce histograms different from
those reported in Fig. 6. But the entropy functions, handling
logarithms of similar numbers, will differ only very slightly,
and the discussions and general conclusions outlined above
will still hold.

Future efforts will be done following two directions: (1) to
extend the present analysis to other d-dimensional hypercu-
bical lattices (d � 2), where the validity of Eq. (6) has been
conjectured and has not yet been rigorously proved [79]; and
(2) based on the definition of the parameter φ and other order
parameters characterizing the O phase, to develop a complete
finite-size scaling study of the phase transition occurring in
the adsorbed layer at densities close to 1.
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