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Free energy calculations based on atomistic Hamiltonians provide microscopic insight into the thermodynamic
driving forces of biophysical or condensed matter systems. Many approaches use intermediate Hamiltonians
interpolating between the two states for which the free energy difference is calculated. The Bennett acceptance
ratio (BAR) and variationally derived intermediates (VI) methods are optimal estimator and intermediate states in
that the mean-squared error of free energy calculations based on independent sampling is minimized. However,
BAR and VI have been derived based on several approximations that do not hold for very few sample points.
Analyzing one-dimensional test systems, we show that in such cases BAR and VI are suboptimal and that
established uncertainty estimates are inaccurate. Whereas for VI to become optimal, less than seven samples
per state suffice in all cases; for BAR the required number increases unboundedly with decreasing configuration
space densities overlap of the end states. We show that for BAR, the required number of samples is related
to the overlap through an inverse power law. Because this relation seems to hold universally and almost
independent of other system properties, these findings can guide the proper choice of estimators for free energy

calculations.
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I. INTRODUCTION

Free energy differences provide detailed insights into the
molecular driving forces of biophysical processes, and their
accurate calculation is crucial for their successful applica-
tion, e.g., in pharmaceutical ligand design or material science
[1-7]. To calculate the free energy difference between, e.g.,
two potential drug molecules bound to a receptor, alchemical
equilibrium techniques [8] based on simulations with atom-
istic Hamiltonians are among the most widely used methods.
Aside from the two states of interest, these techniques con-
duct sampling from intermediate states whose Hamiltonians
are constructed from those of the end states. The stepwise
summation of the individual differences then yields the total
free energy difference.

Two choices have to be made that critically affect the
accuracy of free energy calculations: First, the choice of
the estimator that is used to evaluate the free energy differ-
ences between the individual states. Whereas a number of
estimators exist that have practical advantages in different sit-
uations [8—10], it has been shown that between two states the
Bennett acceptance ratio (BAR) method [11] minimizes not
only the variance, but also the mean-squared error (MSE)
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[12]. Remarkably, as will be revisited in the theory section,
the Zwanzig formula [9] yields identical MSEs if applied
together with an optimally chosen virtual intermediate state
in which no sampling is conducted [10,12]. For BAR, the
variance and the bias have been extensively analyzed [10,13—
16]. As the MSE can be decomposed into variance plus the
squared bias and, therefore, accounts for both the variance and
the bias, we will focus our analysis in this paper on the MSE.
Furthermore, from an application perspective, the MSE is the
relevant quantity.

The second choice concerns the functional form of the in-
termediate states, i.e., how these are constructed from the two
end state Hamiltonians. Apart from the conventionally used
linear interpolation intermediates, various functional forms
have been suggested [17-20] with a particular focus on ap-
pearing or vanishing particles in solution [21-25]. In general,
when using the Zwanzig formula or BAR as an estimator,
and assuming independent samples, the variationally derived
intermediates (VI) [12,26,27] have been shown to yield the
optimal MSE among all possible functional forms of interme-
diate states.

However, both BAR and VI have been derived using ap-
proximations that strictly hold only for large sample numbers.
This question becomes particularly urgent for free energy cal-
culations of large systems or when using quantum mechanics
based methods [28-31], which are computationally demand-
ing and, therefore, provide limited sampling. Furthermore,
sample points derived from atomistic simulations are time cor-
related such that the effective number of independent sample
points is often orders of magnitude smaller than the number of
configurations obtained from a simulation. We, therefore, will
analyze how the accuracy of BAR and VI depends on sample
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size and show how the obtained relations provide guidance on
their proper use.

II. THEORY

Several different derivations of BAR have been published
[11,32,33], resting on different assumptions. Here we recapit-
ulate the one with the least restrictive assumptions that also
highlights the unexpected relation between estimators and
intermediate states [12]. The generalization of this relation
to N intermediate states has been used to derive VI. Both
approaches rest on the Zwanzig formula [9]. Accordingly, the
free energy difference between states A and B with Hamilto-
nians Hy (x) and Hp(X), respectively, is given by

AGyp = — In(e” Hr=Ha®N) - (1)

where x € IR** denotes the position of all M particles of the
simulation system. Only sample points from state A are used,
where ()4 denotes the ensemble average. For ease of notation,
all energies are expressed in units of kT .

In the following, the free energy estimate governed by
Hamiltonian H4(x) that is obtained when the ensemble av-
erage in Eq. (1) is calculated from a finite sample of size n
will be denoted by AGX‘_)) 5> Whereas AG, p denotes the exact
free energy difference. For statistically independent samples,
the MSE of the free energy calculated via Eq. (1) reads [12]

MSE(AGY ) = E[(AGap — AGY )] )
2
_ 1( psP 1>, )
n pa(Xx)

where pa(x) = e 1™ /7, and pp(x) = e 5™ /Z; denote the
configuration space densities and Z, and Zp denote the parti-
tion functions of the respective end states.

Importantly, the derivation of the MSE of the Zwanzig
formula Eq. (3) and, therefore, also the optimization thereof
leading to BAR and VI, is based on approximations. As a
prior step, we consider the Hamiltonian Hp(x) — C, i.e., the
Hamiltonian of end state B shifted by a constant C. Using
this Hamiltonian with the Zwanzig formula, Eq. (1), the free
energy difference between A and B is calculated as

AGA,B - _ 1n<e*[HB(X)*C*HA(X)]>A +C. 4)

We now denote the sample-based average from Eq. (4) as

1 n
™) = - ~[Hp(x)~C—H\(x))] 5
y(C) nE e , )

i=1

and the exact ensemble average as
€)= / pa(x)dx e HsX)=C—HAT ©)

For large n, using C ~ AGy g implies y"(C) ~ y(C) ~ 1.
After expanding the MSE, Eq. (2) (for the full derivation, see
Ref. [12]), the expectation value of the estimate based on finite
sampling,

E[AGY ;] = - f pa(x1)dx; - - f Ppa(X,)dx, In[y™(C)]

+C, (N

and its square,

E[(AGXZB)Z] = _pr(Xl)dxl v '/pA(Xn)dxn
x {In[y"(C)] + C}? ®)

are approximated by using the first-order series expansion
of the logarithm In[y™(C)] &~ y"(C) — 1 around y"(C) =
1. Along similar lines, the exact difference and its square
are approximated as AGup = —In[y(C)]+C ~ —y(C) +
1+C and (AGa3)* = {—In[y(C)] +C}> ~ [—y(C)+ 1 +
CT? around y(C) = 1.

Critically, for small n the averages y™(C) and y(C) gen-
erally differ, and, therefore, C cannot be chosen such that
both are approximately one. If, as in practice, C is evaluated
based on the acquired samples such that y™(C) = 1, then
y(C) differs from one and, consequently, the first-order series
expansion of y(C) becomes inaccurate. If y*(C) and y(C)
differ by, e.g, less than 10%, then the relative error of this
approximation of the logarithm remains below 5%. However,
for larger differences, the neglected higher-order terms will
contribute markedly. A similar effect is caused by small con-
figuration space density overlaps of the end states: Due to
wider distributions of the exponentially weighted differences
Hp(x) — Hy(x), the variance of the sample-based averages
y™(C) will increase and, therefore, also the average absolute
deviations from y(C).

In the next step, Fig. 1(a) shows how an intermediate state
1 is used to derive the BAR formula via AG(”. , = AGY” | —

AG)(_,;"L ;- We refer to I as a virtual intermediate because it
only serves as an end state for the Zwanzig formula without
actually being used for sampling. The derivation based on the
above approximations [12] yielded an additive MSE in this
case, i.e., the MSE of the total estimate is

MSE(AG{. ;) = MSE(AGY” ) + MSE(AGY”. ). (9)

— —

For easier notation, we assume that the same number
of samples n is available for the two end states. Mini-
mizing Eq. (9) through a variational approach leads to the
Hamiltonian of the optimal virtual intermediate [12],

Hy(x) = In(ef® 4 oHz0=Cy (10)

where the MSE is minimal if C = AG4 g and approaches that
minimum as C approaches AGy g. Figure 1(b) shows this
virtual intermediate state as a black dashed line for a one-
dimensional example where one of the two end Hamiltonians
is harmonic (red), and the other is quartic (blue).

Let us compare the result using AG;"):B = AG/&”L ;=
AGg') ; with intermediate Eq. (10) to the original approach

—

by Bennett [11],

(w[Ha (%), Hp(x)]e” ™))

AGY ;=1 ’
A=s = (w[Ha(x), Hp(x)]e~Hs®X) 4

(11

which uses a suitably chosen weight function
w[H4(x), Hp(x)]. Bennett optimized the weighting function
with respect to the variance, which yields the widely used
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FIG. 1. (a) Two schemes of free energy estimators. Left: Using the Zwanzig formula to calculate the free energy difference from the two
end states to a virtual intermediate state in which no sampling is conducted. Right: Using BAR where a weighting factor is applied to the
difference in Hamiltonians. The two schemes are identical if the expressions shown beneath the schemes are used for the Hamiltonian of the
virtual intermediate and the weighting function of BAR. (b) Configuration space densities of the virtual intermediate states corresponding to
the linear estimator (green dashed line) and BAR (black dashed line). The densities of the harmonic end state H, (x) = ax? and the quartic end
state Hp(x) = b(x — x)* are shown in red and blue, respectively. (c) VI. States in which sampling is conducted are indicated through solid
lines, whereas virtual intermediates are indicated through dashed lines.

BAR result,

(f[Ha(x) — Hp(x) — Cl)
(f[Hp(x) — Ha(x) + CI)a”

where f(x) =1/(1 +¢") is the Fermi function and C =
AGy p has to be determined iteratively.

From Eq. (11) and AGY)., = AG{’, — AGY’, with
Eq. (1) follows that the two approaches are equivalent if the
weighting function relates to the Hamiltonian of the virtual
intermediate state through

AG, —C=1In (12)

WHA(X), Hp(x)] = e~ MOOHIOOHI0 0 (13)

Therefore, any Hamiltonian of a virtual intermediate state
corresponds to a weighting function.
The variance of BAR [11] is given by

(n) 2 —1
Var(AGy'p) = —[Q7" — 11, (14)
Q— fdxM’ (15)
pa(x) + pp(x)

where €2 can be interpreted as an overlap measure. Within
the limits of the approximations discussed above, Bennett’s
variance Eq. (14) equals the MSE Eq. (3) of using Zwanzig in
two steps as shown in Appendix A.

This link between BAR and VI Eq. (13) allows creating
different estimators and transforming them between the for-
malism of using an intermediate state or a weighting function.
Here, we will apply this result and compare BAR to the
estimator that uses H;(x) = %[HA(X) + Hp(x)] as the virtual
intermediate state. Because Hy(x) is a linear interpolation, we
will refer to the resulting estimator as the “linear estimator,”
also known as the simple overlap sampling method [34,35].
The resulting configuration space density is shown by the
green dashed line in Fig. 1(b). As shown in Appendix B, our
MSE for the Zwanzig formula Eq. (3) yields the MSE for the
linear estimator,

-2
MSE(AGX}; =%[(/p,,(x)1/2p3(x)1/2dx) —1}. (16)

The term in the round parentheses of Eq. (16) can be inter-
preted as an overlap measure, different from above, which
equals one for two identical configuration space densities, and
zero for disjunct supports.

Next, any number of optimal intermediate states can be
derived by extending Eq. (9) with the MSEs of additional
steps. Here, we focus our analysis on only one intermedi-
ate state S for sampling, i.e., calculations of the form A —
I < § — I < B. The optimization with variational calculus
with respect to all intermediate Hamiltonians yields the VI.
These consist of, first, Eq. (10) (the BAR equivalent) as the
optimal Hamiltonian of the virtual intermediates and second,
the optimal sampling Hamiltonian H(x), which is determined
through the solution of

1 H(x)ZA Hs(x) -
Hg(x)z—aln (e*‘ Z—S—i—e s )

2
+ (e”“’“i—B + i) } a7

S

The initially unknown ratios of the partition sums are de-
termined iteratively, similar to the constant C for BAR. The
converged VI states for the harmonic and quartic end states are
shown in Fig. 1(c). For molecular systems, such as the elec-
trostatic decoupling of butanol or nitrocyclohexane [12,27],
a sufficiently accurate estimate of the partition sum ratios
such that VI yields better MSEs than conventional interme-
diates has been obtained within a few percent of the overall
simulation time. Whether this holds true for complex molec-
ular systems with large time correlations has, however, not
been validated as of now. In order to disentangle such effects
from the ones resulting from inaccurate approximations in the
derivation, we here focus on cases with perfectly independent
sample points.

To summarize, for small n, BAR and VI result from the
accurate optimization of an inaccurate MSE. Naturally, this
does not ensure that better estimators and intermediate sam-
pling states exist, which is, therefore, the subject of our test
simulations.
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III. METHODS

In the first step, we assess the MSEs of different estimators.
To this aim, we consider the one-dimensional system with end
states consisting of a harmonic and a quartic Hamiltonian as
shown in Fig. 1(b). Based on n sample points drawn from
the configuration space density of A and B, the free energy
estimate AG/S”; 5 1s obtained and compared to the exact differ-
ence AGy p. Rejection sampling is used to obtain uncorrelated
sample points. The MSE Eq. (2) is then calculated by aver-
aging over 10° of such realizations. We use n = 1, 20, and
1000 sample points per end state. For each n, we consider 82
different setups for which the potential of end state B is moved
horizontally away from A by varying xy, thereby considering
a range of overlap €2, which is obtained through numerical
integration of Eq. (15).

With this procedure, we compare three variants: To sep-
arate the effects of an inaccurate estimate of C, first, BAR
is used where C has been set to the (in practice unknown)
exact free energy difference. Second, using BAR, where C is
iteratively determined based on the sample set as performed
in practice. Third, the linear estimator.

In the second step, aside from sampling in the end states,
sampling is also conducted in one intermediate state S and a
similar procedure as above is used to evaluate the MSEs of
different Hamiltonians Hs(x). Separate sample sets in S are
used to evaluate the free energy differences to either end state
as using the same sample set would introduce correlations
between the two stepwise free energy estimates that would
require a different analytic approach as the one described
above [26]. Again, three variants are compared: First, VI, i.e.,
Eqgs. (10) and (17). For simplicity, only exact estimates for C
and the ratios of the partition sums are considered. Second, as
a comparison, two variants with a linearly interpolated sam-
pling Hamiltonian: One using the linear estimator, and another
one using BAR to evaluate the stepwise free energy differ-
ence. Again, the procedure was conducted for n = 1, 20, and
1000 sample points per sample set.

IV. RESULTS AND DISCUSSION

The MSEs of the three estimator variants are shown in
Figs. 2(a)-2(c) for different configuration space density over-
laps 2 between the harmonic and the quartic end state. The
panels show this relation for different sample sizes n. As can
be seen, for n = 1 both variants of BAR (blue and green)
are suboptimal for all 2 as they yield a worse (larger) MSE
than the linear estimator (yellow). For n = 20, it depends
on 2 whether BAR is suboptimal. Here, a turning point ex-
ists, i.e., the linear estimator is only better for approximately
Q < 107!, whereas both BAR variants yield better MSEs for
the larger 2. For n = 1000, this turning point shifts towards
smaller 2. Here, the BAR variants perform better for around
Q > 1073, Note that as the end states are different in form,
the largest achievable overlap is €2 = 0.935, and, therefore,
no MSE of zero can be seen in Figs. 2(a)-2(c), which would
be expected for 2 = 1.

Unexpectedly, whereas for most n’s and Q’s both BAR
variants have very similar MSEs, the one in blue where
C = AGy p (i.e., the exact free energy difference) was used

yields slightly worse MSEs than the variant that uses a
sample-based estimate of C (green). This finding is in con-
trast to the widespread belief that an estimation for C that
deviates from AGy p is a major contribution to the inaccuracy
of BAR. The reason for this behavior lies in the first-order
series expansions of In y(C) and In y"(C) as shown in the
context of Egs. (7) and (8) in the theory section. For small
n, y™(C), and y(C) differ, and C can, therefore, not be chosen
such that the requirement is met that both are close to one. As
a consequence, even if C = AGy p such that y(C) = 1, then
the first-order series expansion of In y™(C) becomes inaccu-
rate, and the same holds true for the subsequent derivation of
BAR.

The dashed lines in Figs. 2(a)-2(c) show the predicted
MSEs for BAR, i.e., Eq. (14), whereas the dotted lines show
the ones of the linear estimator Eq. (16). As can be seen from
Fig. 2(a), for n = 1 the prediction completely underestimates
the actual MSEs. Furthermore, BAR is predicted to have
a better (smaller) MSE than the linear estimator which is,
however, not the case for the results of the test simulations.
For n = 20, the MSEs start to agree for large 2 but still
deviate substantially for small 2. For BAR with n = 1000,
the MSEs agree well for most €2’s. For the linear estimator,
the prediction is still mostly only accurate for large 2. Inter-
estingly, unlike at n = 1, Eq. (16) predicts a MSE that is worse
than the one from the test simulations for n = 1000. These
results show that BAR is only optimal in cases where the
predicted MSE is close to the actual one. In cases where
the predicted MSE is inaccurate, BAR as the optimization
thereof becomes suboptimal.

For BAR, the discrepancy between the predicted MSEs and
the actual ones also explains the common experience of users
of free energy calculations that the error is often largely un-
derestimated. Naturally, for atomistic simulations factors that
violate the assumption of independent sample points, such as
time correlations or starting configurations of several states
that all remain close to the initial structure contribute to an
underestimated uncertainty. However, our paper shows that
even in the absence of all of these factors and for perfectly
independent samples, the error is largely underestimated for
small n due to the approximations in the derivation discussed
in this paper. For example, for n = 20 independent sample
points, an overlap of € = 0.1, which is not uncommon, al-
ready leads to an actual uncertainty that is almost ten times
worse than predicted by the uncertainty estimate of Bennett
[11],i.e., Eq. (14).

As the turning point 2 above which BAR becomes optimal
varies with n, the question arises for the relation between the
required n for different 2’s and how this relation compares
for different systems. Therefore, in the next step we test how
many sample points are required for BAR to achieve a better
MSE than the linear estimator, depending on the configuration
space density. To this aim, the first variant is used (C exact).
Starting with n = 1, the MSEs of both BAR and the linear
estimator are calculated, and » is gradually increased until the
turning point is found. In addition to the setup consisting of
end states with a harmonic and a quartic Hamiltonian, three
other diverse systems are considered. The configuration space
densities p4(x) and pg(x) of their end states are shown in red
and blue, respectively, in Fig. 2(d). Again, for each system
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FIG. 2. Comparison of BAR and the linear estimator. (a)—(c) MSEs obtained from test simulations based on the setup shown in Fig. 1(b) for
sample sizes of n =1, 20, and 1000. The MSEs are shown as a function of the configuration space density overlap 2 where different Q’s
were obtained by varying x, of the quartic end state. The results of two variants of BAR are shown: First, using a constant C that equals
the exact free energy difference (blue), and second, for C that was iteratively determined for each set of samples (green). The MSE of the
linear estimator is shown in yellow. The dashed and the dotted lines show the analytical MSEs calculated based on approximations for BAR
and the linear estimator, respectively, i.e., Eqs. (14) and (16). (d) Setups used for the test simulations. The configuration space densities
of the start and end states are shown in red and blue, respectively. Setup I is identical to the one in Fig. 1(b). (¢) The minimum sample
size n required such that the BAR with an exact C yields a better (smaller) MSE than the linear estimator is shown as a function of .
The Roman numbers indicate the underlying test system shown in (d). The solid lines show the function n = b Q7 fitted to the data points in
the respective colors. The fit coefficients a and b are provided in the legend.

different horizontal shifts are used to vary 2. The definitions
and parameters of these systems are described in Appendix C.

The required number of sample points n is shown in de-
pendence of 2 in Fig. 2(e). The four colors indicate the
different test systems with corresponding roman numbers
from Fig. 2(d). The required n closely follows a linear re-
lation in the log-log plot, indicating a relation of the form
n=bQ 4 Fits of this form are shown as solid lines, and
the fit coefficients are provided in the legend of Fig. 2(e).
Interestingly, the relation between n and 2 is very simi-
lar for all four test systems, suggesting that 2 and n are
almost the sole factors that determine which estimator is
superior.

Figures 3(a)-3(c) compares MSEs for different intermedi-
ate sampling states S as a function of the overlap 2 between A
and B for n = 1, 20, and 1000 per sample set. For n = 1, the
linear intermediate combined with the linear estimator (yel-
low) yields the best MSE, followed by the linear intermediate
with BAR (red) and VI (blue) that includes BAR as an esti-

mator. For n = 20 and n = 1000, VI yields the best MSE for
all 2’s. For the linear intermediate sampling state, for n = 20
a turning point exists (Q &~ 5 x 1072), above which BAR is
superior, and below which the linear estimator is superior. For
n = 1000, BAR yields better MSEs at all 2’s.

Again, for n = 1 the predicted MSEs largely underestimate
the actual error. However, already for n = 20, the actual MSE
for VI is only slightly worse than the prediction and matches
perfectly for n = 1000. For the linear intermediate, for n = 20
both the predictions for BAR and the linear estimator hold
only for larger overlaps. For n = 1000, the one for BAR
matches the actual MSEs very well, whereas for the linear
estimator the prediction reproduces the trend but slightly over-
estimates the MSEs for small overlaps. We also tested how
many sample points n are required per state for VI to be opti-
mal. Whereas for systems with large Q’s, two or three sample
points per state suffice, in no case does the required number
of sample points exceed seven per state (data, therefore, not
shown).
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FIG. 3. Comparison of the MSEs between using a linear intermediate state and VI. As for Figs. 2(a)-2(c), test simulations with a harmonic
and a quartic end state were used, and (a)—(c) show the results for samples size of n = 1, 20, and 1000, respectively, in each state as a function
of the configuration space density overlap 2 between the end states. The results of two variants using a linear intermediate state are shown:
First, using the linear estimator (yellow) and second, using BAR (red) to evaluate the stepwise free energy differences. The MSE of VI, which
includes using virtual intermediate states that correspond to BAR as shown in Fig. 1(c) is shown in blue. The respective analytical MSEs are

shown as black dashed, dotted, and dashed-dot lines.

These results show that, again, the predicted MSEs are
inaccurate for small n’s. As a consequence, VI, which has
been derived as an optimization thereof, is suboptimal. How-
ever, using an intermediate sampling state, the MSEs become
accurate, and VI becomes optimal for much fewer »’s than for
BAR. We attribute this unexpected result mainly to the fact
that for VI the sampling intermediate still maintains a large
overlap with both end states, even if their configuration space
densities are entirely disjunct.

V. SUMMARY AND CONCLUSION

We have shown that for small sample sizes n the ana-
Iytically calculated MSEs of free energy estimates based on
the Zwanzig formula become increasingly inaccurate due to
approximations in its derivation. As a consequence, BAR
and VI, which have been derived as an optimization thereof,
become suboptimal for small n, which was demonstrated
through the existence of better alternatives. For BAR, as ex-
plained in the theory section following Eq. (8), even if the
constant C is set to the exact free energy difference this sub-
optimality remains, and was even slightly worse in our test
simulations than when C was estimated based on the samples.

Whether BAR and VI are optimal depends, aside from n,
on the configuration space density overlap €2, because for
small €2 the fluctuations in the exponential averages increase.
However, whereas BAR is suboptimal even for n > 1000 if
Q < 1073, VI is already better than all other tested variants
for n = 7 independent of €2, owing to the fact that the overlap
between adjacent states is largely increased when using an
intermediate state. For BAR, ©Q was almost the sole factor
that determined how many sample points were required to be
better than the linear estimator. The relation follows an inverse
power law of the form n = aQ~" with very similar coefficients
a and b for all four test systems considered.

For BAR, the discrepancy between the predicted MSEs
and the actual ones also explains the well-known and frequent
finding that the error of free energy calculations is often dras-
tically underestimated.

For applications, instead of monitoring the variance or
MSE directly (as implemented in many simulation soft-
ware packages), we recommend to first consider 2. Second,
packages, such as ALCHEMLYB.PY [36-38] analyze the time
correlations between sample points and give an estimate for
the number of independent ones. Then, third, the relation
between the required n and 2 from this paper will indicate
whether BAR is optimal or whether another estimator, such as
the linear one should be used instead.

We should reemphasize that in atomistic simulations sub-
sequent sample points are correlated, whereas the theory
developed and tested in this paper assumes independent sam-
ple points. Therefore, the critical number of sample points n
identified here for which BAR becomes optimal will typically
refer to the effective number of statistically independent sam-
ple points, which, due to long correlation times, is typically
much smaller than the actual sample size. The small number
effects on the MSE assessed here, therefore, are likely to be
relevant also for the (seemingly) quite large sample sizes used
in typical macromolecular free energy calculations.

To summarize, whereas BAR will remain the optimal esti-
mator in many cases, our findings offer guidance in choosing
the optimal estimator particularly for challenging applica-
tions.

APPENDIX A: PROOF OF MSE EQUIVALENCE
TO BAR VARIANCE

The Zwanzig formula [9] Eq. (1) is used in two steps as
shown in Fig. 1(a). The MSE of a single step is given through
Eq. (3). Therefore, the total MSE is calculated through

MSE(AGY.,) (A1)
= MSE(AGY”, ) + MSE(AGY”. ;) (A2)

I 1 I
= — dx —21. (A3
n[/[pl(x)] (pA(X)+pB(X)> X ] (A3)
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Using the configuration space density of the optimal virtual
intermediate Eq. (10),

[pax)~! + pp(x)~1!
[ dx[pa(x)~" + pp(x)~'1!

pi(x) = (A4)

leads to

1 [delpa®@~ + s 2

n ([ dxlpa®)~" + psx)-1 -1 7

1(/ 1 )‘1 2
= - dx - -
n pa(x)~! + pp(x)~! n

_ 1</d Pa(X)P5(X) )‘ 2
= Z X— —

pa(x) + ps(x) n
which equals the variance from Bennett [11], Eq. (14).

MSE(AGY,) =

)

n
(A5)

APPENDIX B: MSE DERIVATION OF THE
LINEAR ESTIMATOR

The linear estimator uses the linear interpolation H;(x) =
%[HA(X) + Hp(x)] as the virtual Hamiltonian. The corre-
sponding MSE is calculated by inserting the configuration
space density,

e~ (1/DIHA(X)+Hp(X)]

pi(x) = =z (BI)

MSE for us-
which

into the expression of the
ing Zwanzig in two steps Eq. (A3)

yields

S " 1 e~ [Ha(x)+Hp(x)]
MSEiin (AG, . ,) = —
hn( AﬁB) n / (f e—(l/2)[HA(X)+HB(X)]dx)2

Zs 2\l —2b @2
X<e—HA<x>+e—H3<x>> x—2p (B2)

L[ [(Zye™H5®  Zge ™)) dx )
AW [ eI +Hs 01 )

(B3)
T\ ([ e WD H M )
(B4)
) -2
- 'K/ PA<x>‘/2pB<x>”2dx) - 1}'
n
(BS)

APPENDIX C: PARAMETERS OF TEST SYSTEMS

The test systems shown in Fig. 2(d) are based on the Hamil-
tonians provided below. These were used to determine the
results shown in Fig. 2(e), i.e., the minimum required number
of sample points n as a function of 2 such that BAR yields a
smaller MSE than the linear estimator.

System I: Hy(x) = 0.75x% and Hp(x) = (x — xp)* using
46 values for xy with 0 < x¢ < 4.5.

System II: Hg(x) = 0.1 sin(20x) +x> and Hp(x) =
0.3x* — 0.8(x — x9)? using 47 values for xo with 0 < xo < 23.

System III: H4(x) = ¢* — x and Hp(x) = 0.15(x — X0)? us-
ing 24 values for xy with 0 < xp < 9.

System IV: Hy(x) = 0.3x* — 0.8(x — x¢)? and Hp(x) =
46[()%)(0)12 — (x%m)ﬂ for 0 < x — xp < 15 and Hp(X) = 00
otherwise, using € = 2.0446 and o = 3.405 and 22 values for
xo with 0 < xg < 4.03.
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