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Failure of standard density functional theory to describe the phase behavior
of a fluid of hard right isosceles triangles
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A fluid of hard right isosceles triangles was studied using an extension of scaled-particle density-functional
theory which includes the exact third virial coefficient. We show that the only orientationally ordered stable
liquid-crystal phase predicted by the theory is the uniaxial nematic phase, in agreement with the second-order
virial theory. By contrast, Monte Carlo simulations predict exotic liquid-crystal phases exhibiting tetratic and
octatic correlations, with orientational distribution functions having four and eight equivalent peaks, respectively.
This demonstrates the failure of the standard density-functional theory based on two- and three-body correlations
to describe high-symmetry orientational phases in two-dimensional hard right-triangle fluids, and it points to the
necessity to reformulate the theory to take into account high-order body correlations and ultimately particle
self-assembling and clustering effects. This avenue may represent a great challenge for future research, and
we discuss some fundamental ideas to construct a modified version of density-functional theory to account for
these clustering effects.
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I. INTRODUCTION

The experimental realization of two-dimensional fluids of
hard polygonal particles in order to study their phase behav-
iors is an active line of research. For example, lithographic
techniques applied to prepare nonoverlapping particles of a
specific polygonal shape, and their adsorption or confinement,
produce single monolayers of Brownian particles that diffuse
in two dimensions [1–3]. A vast body of experimental studies
on these systems have clarified the importance of entropic par-
ticle interactions to stabilize different liquid-crystal and solid
phases with exotic symmetries beyond the standard uniaxial
nematic (N) symmetry. In particular, tetratic (T ) and triatic
(T R) liquid-crystal phases were found when the particles have
cross sections with rectangular [1] or triangular [2] geometry.
Experiments with particles of square sections did not find
the T phase [3], but this was due to the roundness of the
corners, as proved by Monte Carlo (MC) simulations [4].
The stability of T [5–10] and T R [11–13] phases as a func-
tion of particle shape was also confirmed by theoretical and
simulation works on two-dimensional hard-particle fluids.
Experiments on monolayers of vibrated granular cylinders
[14–17] and squares [18] also showed the presence of sta-
tionary nonequilibrium T -like textures in the arrangement of
particles. These results suggested that entropic interactions are
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also important to determine the orientational ordering patterns
observed in dissipative systems. Experiments conducted on
vibrated granular rods [19] and equilibrated colloidal silica
rods [20] under annular confinement showed the presence of
topological defects and domains walls between regions of dif-
ferent orientational and spatial ordering. This in turn suggests
similarities between dissipative and equilibrium systems in
situations where entropic interactions play a dominant role,
i.e., at high packing fractions. Recently, the T phase of kitelike
particles was also found [21,22]. How regular polygons order
in liquid-crystal and crystalline phases as density is varied
depends strongly on the number of polygonal sides, an issue
that was studied intensively via MC simulations [23].

Recently, Gantapara et al. [11] conducted MC simulations
on hard particles consisting of equilateral and right isosceles
triangles. For the latter, the authors found the presence of
a seemingly exotic liquid-crystal phase, which they called
rhombic (R), between the isotropic (I) and its crystalline
counterpart (the rhombic crystal). This phase seems to exhibit
strong octatic (O) correlations, with a high value for the corre-
sponding order parameter, Q8. In an O phase, the orientation
distribution function, i.e., the probability density of a particle
to orient with respect to one of the equivalent directors at
an angle φ, has eightfold symmetry, h(φ) = h(φ + π/4), in
contrast with the T phase where the symmetry is h(φ) =
h(φ + π/2).

Figure 1 shows a schematic of the I , O, T , and N liquid-
crystal phases of hard right triangles. One can anticipate the
importance of particle clustering in this system, with particles
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FIG. 1. Sketches of different liquid-crystal phases of hard right triangles: I , O, T , and N , as labeled in the figure. The equivalent directors
along which particle axes of triangles (defined in the top) are aligned are also indicated.

easily forming squarelike dimers or tetramers that build up
O or T ordering, corresponding to eight or four equivalent
directors, respectively. Note that the axis of a right triangle
is defined by a unit vector connecting the barycenter and the
right-angled vertex.

The phase discovered by Gantapara et al. is probably the
standard T phase since, as shown below, there are good rea-
sons to expect that the phase cannot be purely octatic. In any
case, the main focus of the authors of Ref. [11] was on the
study of chirality in the crystal phase of hard equilateral and
right-angled triangles.

We have recently applied a density-functional theory
(DFT) based on scaled-particle theory (SPT) to study the
phase behavior of a fluid of hard isosceles triangles as a func-
tion of their opening angle [12]. This theory is close in spirit
and qualitatively similar in results to the standard Onsager the-
ory [24] and to extensions of Parsons-Lee-type theories [25]
applied to two-dimensional (2D) particles. For the particular
case of right-angled triangles, we found that the only stable
liquid-crystal phase predicted by the theory was the standard
uniaxial N phase, with the symmetry h(φ) = h(φ + π ). This
is in stark disagreement with the simulations of Gantapara
et al. and points to an essential problem of the above theory
and, by extension, of the (second-order virial) Onsager theory.
We remind the reader that, by contrast, the SPT-based theory
correctly predicts the existence of the exotic T phase in fluids
of hard rectangles with low aspect ratio and of the T R phase
for a fluid of hard equilateral triangles [5,7,12].

The failure of DFT to correctly describe, at least qualita-
tively, the thermodynamically stable symmetry of an oriented
fluid is unusual. It means that the important angular corre-
lations that drive the system to the stable symmetry are not
present at the level of two-particle correlations but in higher-
order terms. This failure brings to mind the inability of DFT
to reproduce the intermediate hexatic phase in systems of
hard disks, although the origin of the problem is completely
different. In this case, even the most sophisticated, albeit
still approximate, versions of DFT applied to the hard disk
fluid predict a first-order transition between the fluid and a
crystal with particles at the nodes of a triangular lattice [26].
However, simulations show an intermediate hexatic phase
between fluid and crystal exhibiting quasi-long-range bond-
orientational ordering [27–29], associated with two-particle
positional correlations. One can speculate on the possibility
to construct an accurate hard-disk density functional based

on two-body density functions, as proposed, for example, in
Ref. [30]: coupling between first nearest-neighbor bonds and
spatial coordinates would be contained explicitly in the theory
by construction, and phases with bond orientational ordering
could in principle be stabilized.

In the present case, however, the order is orientational and
characterized by a one-particle distribution function, namely
the orientational distribution function h(φ), not by a bond-
orientational order. The origin of the failure is therefore
different. Retrospectively, it is remarkable how Onsager the-
ory, based solely on two-particle correlations, i.e., on the
lowest-order virial expansion of the free energy, can de-
scribe oriented phases of fluids and fluid phase transitions.
Obviously this is because, for fairly elongated particles, the
second-order term is by far the dominant one in the virial ex-
pansion. It is therefore even more remarkable that, in the past
few decades, Onsager theory and its extensions (e.g., SPT), all
based on two-particle orientational correlations, have been ap-
plied with success even in situations where the latter condition
is clearly not validated, for example in 2D and/or in the case of
anisotropic but not very elongated particles. It is plausible that
the limits of validity of the theory may be revealed in some
cases, and the fluid of hard right triangles is, to our knowledge,
the first example of this breakdown.

Motivated by this negative finding, in the present article
we report on the results obtained using an extended SPT the-
ory that goes beyond two-body correlations by incorporating
three-body orientational correlations through the third virial
coefficient. This is the obvious step to take in an attempt
to remedy the deficiencies of the standard theory. From the
lessons learned in the hard-rectangle case [31], it is known that
higher-order correlations are important to improve the predic-
tions on the stability of high-symmetry orientational phases,
since they more correctly account for particle configurations
typical of these phases. However, the numerical implementa-
tion of such a theory is not easy: the third virial coefficient is
in fact a functional of the orientational distribution function,
h(φ), with respect to which the free energy has to be function-
ally minimized. To make calculations feasible, we consider
a projection of h(φ) on Fourier space, and we represent the
third-virial functional by means of particular low-order mo-
ments that dominate the behavior in the neighbourhood of the
bifurcation point (from the isotropic to the oriented phase).
A combination of MC integration and Gaussian quadratures
is used to evaluate these moments with reasonable accuracy.
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Using these techniques, a bifurcation analysis and the full
minimization of the resulting DFT were implemented, which
produced valid results at least for packing fractions close to
the bifurcation point.

Interestingly, the results from the extended theory are qual-
itatively similar to the predictions of the standard SPT-based
theory: the only orientationally ordered stable phase is the
uniaxial N phase, and the structure of the orientational dis-
tribution function has no indication whatsoever of T or O
correlations. The obvious conclusion is that third-order corre-
lations are still not the important ones in the stability of these
phases. Due to the difficulties associated with the implementa-
tion of even higher-order terms, the virial approach suggested
by Onsager theory in this system seems hopeless in practical
terms.

To understand the problem in more depth, especially in
connection to the stability of high-symmetry orientational
phases, we have also performed NV T -MC simulations of a
fluid of hard right-angled triangles. In line with the findings of
Gantapara et al. [11], we found that, under compression from
the isotropic fluid, the system becomes ordered in configu-
rations where particles exhibit strong O correlations. Under
expansion from a perfect crystal formed by tetramers of trian-
gles arranged in squares, Fig. 8(a) (this is the stable crystal
phase according to [11]), we found a (possibly discontinu-
ous) melting transition to a T phase (with fourfold symmetry
and a high number of tetramers). This T phase is stable
(or metastable) for approximately the same range of packing
fractions as that of the O phase obtained on compression, and
under further expansion it transforms into an isotropic phase
via a discontinuous phase transition. All of these symmetries
are confirmed from the behavior of suitable order parameters
that describe the T and O symmetries, and they are visual-
ized very directly by looking at the orientational distribution
function h(φ).

Although we have not traced out the stability boundaries
of the I , O, and T phases, these results answer definitively
the question as to the inadequacy of a third-virial DFT to
describe the orientational ordering symmetries of a fluid of
right-angled triangles. Obviously the inclusion of even more
high-order virial coefficients could improve the description of
the fluid phase behavior. However, as mentioned above, the
numerical implementation of such a theory would constitute
a huge numerical task, much more demanding than stan-
dard MC simulations on reasonably sized systems. Clearly
a radically new approach is needed. One possibility is the
formulation of new models based on the self-assembling of
particles into clusters or superparticles of different shapes
and sizes; these clusters would in turn be oriented in such
a way that the final orientation of monomers will exhibit
the new exotic symmetries. As recently shown [32], the en-
tropic hard-particle interactions enjoy some similarities with
chemical-bonding interactions, which eventually give rise to
the formation of clusters of particles or supramolecular aggre-
gates, respectively. This view could be fruitful in the present
system and might represent a worthy activity for the future.

The article is organized as follows. Section II is devoted
to introducing the theoretical model for a fluid of hard right-
angled triangles, a model based on the extended third-virial
DFT. In Secs. III and IV we implement a bifurcation analysis

and the full minimization of the model, which is valid for den-
sities close to the bifurcation point. Also, in Sec. V we present
MC simulations that confirm the presence of orientational
symmetries different from uniaxial. Finally, some conclusions
are drawn in Sec. VI.

II. THIRD-VIRIAL DFT

We have already pointed out that the SPT-based DFT (an
effective second-order virial theory) fails to predict the stabil-
ity of the T and/or O liquid-crystal phases. These phases are
characterized by an orientational distribution function h(φ)
with four- and eightfold symmetries, respectively: h(φ) =
h(φ + nπ/4) (n = 1, 2). By contrast, MC simulations [11]
clearly point to the existence of both of these symmetries
in the region between the isotropic and crystal phases, even
though the nature of the stable phase and the relative stability
of the two phases still demand clarification (see below).

It is well known that the third- and higher-order virial coef-
ficients, Bn with n > 2, cannot be neglected if we are to obtain
a quantitatively correct description of the phase behavior of
hard elongated particles in two dimensions [33,34]. This can
be explained in terms of the nonvanishing limit of the ratio
B3/B2

2 as particle elongation goes to infinity (the so-called
Onsager limit). Although the triangular geometry studied here
cannot be defined in such terms, we expect the effect of the
third virial coefficient to be sufficiently important as to merit
its inclusion in a DFT approach. A possible theory was already
proposed and applied by us in a study of the hard-rectangle
fluid [31], where the effect of the third virial coefficient was
found to be important (although not crucial to determine phase
symmetry). The essential idea is to approximate the excess
free-energy density functional per particle (in reduced thermal
units) as

ϕexc[h] = − ln(1 − η) + η

1 − η
b2[h]

+
(

η

1 − η
+ ln(1 − η)

)
(b3[h] − 2b2[h]), (1)

where η = ρa is the packing fraction, defined as the product
of mean number density, ρ, and particle area of the right
isosceles triangle, a = l2/2, with l the length of the equally
sized triangle sides. In Eq. (1) the coefficients bk[h] are de-
fined as

bk[h] = Bk[h]

ak−1
− 1, (2)

where Bk[h], k = 2 and 3, are the second and third virial
coefficients, manifestly functionals of the orientational distri-
bution function h(φ):

Bk[h] = 1

k

(
k∏

i=1

∫ 2π

0
dφih(φi )

)
K(k)(φ),

(3)
φ = (φ1, . . . , φk ).

In turn, the kernels K(k)(φ) are spatial integrals of products of
Mayer functions f (ri j, φi j ) associated with particles i and j
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with relative positions and orientations ri j = r j − ri and φi j =
φ j − φi, respectively:

K(2)(φ) = − 1

A

(
2∏

i=1

∫
A

dri

)
f (r12, φ12)

= −
∫

A
dr f (r, φ) = Aexcl(φ), (4)

K(3)(φ) = − 1

A

(
3∏

i=1

∫
A

dri

)
f (r12, φ12) f (r23, φ23)

× f (r13, φ13)

= −
∫

A
dr

∫
A

dr′ f (r, φ) f (r′, φ′) f (r′ − r, φ′ − φ),

(5)

with A the total area. In the above expressions, we have
implemented the change of variables r ≡ r12 and φ ≡ φ12

(first and second integrals), and r′ ≡ r13 and φ′ ≡ φ13 (second
integral). The object Aexcl(φ12) is the excluded area between
two particles. Using these expressions, Eq. (3) for k = 2 and
3 becomes

B2[h] = 1

2

∫ 2π

0
dφ�2(φ)K(2)(φ), (6)

�2(φ) =
∫ 2π

0
dφ1h(φ1)h(φ1 + φ), (7)

B3[h] = 1

3

∫ 2π

0
dφ

∫ 2π

0
dφ′�3(φ, φ′)K(3)(φ, φ′), (8)

�3(φ, φ′) =
∫ 2π

0
dφ1h(φ1)h(φ1 + φ)h(φ1 + φ′). (9)

The density expansion of Eq. (1) gives ϕexc[h] =
B2[h]ρ + 1

2 B3[h]ρ2 + · · · , and consequently the pressure
is βp = ρ + ρ2∂ϕexc/∂ρ = ρ + B2[h]ρ2 + B3[h]ρ3 + · · ·
(with β the Boltzmann factor). The truncated expressions
provide the exact low-density limit up to third order in
density. Thus our proposed theory treats two- and three-body
correlations exactly.

The ideal free-energy density functional per particle is, as
usual,

ϕid[h] = ln η − 1 +
∫ 2π

0
dφh(φ) ln [2πh(φ)], (10)

where the thermal volume term has been dropped. Therefore,
our theory is completely defined as ϕ[h] = ϕid[h] + ϕex[h].

III. BIFURCATION ANALYSIS

In this section, we perform a bifurcation analysis of the
theory presented above. The bifurcation defines the instabil-
ity of the I phase against orientational fluctuations of some
particular symmetry. We begin by considering the first-order
Fourier expansion of the h(φ) function:

h(φ) � 1

2π
(1 + hn cos 2nφ), (11)

with hn the first-order Fourier amplitudes. The indexes n =
1, 2, 3, 4 account for uniaxial N , tetratic T , triatic T R, and

octatic O symmetries, respectively. Substituting this expres-
sion into Eqs. (7) and (9) gives, to lowest order,

�2(φ) � 1

2π

(
1 + h2

n

2
cos 2nφ

)
, (12)

�3(φ, φ′) � 1

(2π )2

{
1 + h2

n

2
[cos 2nφ + cos 2nφ′

+ cos 2n(φ − φ′)]
}
. (13)

Consequently,

B2[h] � 1
2

(
K(2)

0 + 1
2K

(2)
n h2

n

)
, (14)

B3[h] � 1
3

[
K(3)

00 + (
K(3)

n0 + 1
2K

(3)
nn

)
h2

n

]
, (15)

where the following coefficients have been defined:

K(2)
n = 1

2π

∫ 2π

0
dφK(2)(φ) cos(2nφ),

K(3)
nm = 1

(2π )2

∫ 2π

0
dφ

∫ 2π

0
dφ′K(3)(φ, φ′)

× cos 2(nφ − mφ′). (16)

The Fourier expansion of the ideal free energy Eq. (10)
gives ϕid[h] � ln η − 1 + h2

n/4. Inserting Eqs. (14) and (15)
into (1), we obtain the expansion of the total free-energy per
particle as ϕ = ϕI + 
ϕ, with

ϕI = ln

(
η

1 − η

)
− 1 +

(K(3)
00

3a2
− 1

)
χ1(η)

−
(K(2)

0

2a
− 1

)
χ2(η), (17)


ϕ =
[

1

4
+ 1

3a2

(
K(3)

n0 + 1

2
K(3)

nn

)
χ1(η)

− K(2)
n

4a
χ2(η)

]
h2

n, (18)

χk (η) = η

1 − η
+ k ln (1 − η), (19)

with ϕI the I phase contribution. 
ϕ is different from zero in
the presence of a weak orientational ordering. All that remains
is to calculate the coefficients defined in Eq. (16). As shown
in [12], the expression for K(2)

n , for the particular case of right-
angled isosceles triangles, is

K(2)
n

2a
− δn0 = − 1

π (4n2 − 1)

×
[

2 + (−1)n + 2
√

2 cos

(
nπ

2

)]
, (20)

with δi j the Kronecker delta. The coefficients K(3)
nm cannot be

calculated analytically and have been obtained numerically.
MC integration was used to evaluate the spatial kernels in (5),
while the angular integrals in Eq. (16) were evaluated using
Gaussian-Legendre quadratures. 2 × 106 random configura-
tions of three particles with fixed orientations were generated,
using the usual protocol: one particle is located at the origin,
two particles are generated at random, both overlapping with
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TABLE I. The bifurcated values of packing fractions η(α)
n (with

α = SPT or B3) resulting from SPT and B3 approaches corresponding
to bifurcations from I to N (n = 1), T (n = 2), T R (n = 3), and O
(n = 4) phases. The differences 
η(α)

n ≡ η(α)
n − η

(α)
1 for n � 2 are

also shown. Asterisks indicate that the corresponding values are not
true bifurcation points at a second-order transition; see [35].

n 1 2 3 4

η(SPT)
n 0.8249 0.9928∗ 0.9821 0.9444

η(B3 )
n 0.7325 0.9794∗ 0.9328 0.8353


η(SPT)
n 0.1679 0.1572 0.1195


η(B3 )
n 0.2469 0.2003 0.1062

the first one, thus ensuring that the first two Mayer functions
are equal to −1, and the third Mayer function connecting
the latter is checked. In the case of the angular integrals, a
density of 12 points per period was used for the four cases
n = 1, . . . , 4. The estimated error of the coefficients is less
than 0.1%.

The minimization of the expanded total free energy per
particle ϕ[h] with respect to hn gives the bifurcation condi-
tion ∂
ϕ/∂hn = 0 for hn �= 0, with 
ϕ given by (18). The
solutions to this equation are obviously the same as the zeros
of the term enclosed in brackets. We have solved this equation
numerically for the values of packing fractions ηn at bifurca-
tion, considering separately the cases n = 1, 2, 3, and 4. The
results are collected in Table I. Also included are the results
obtained from the SPT approach, which can be obtained easily
by considering the first two terms of Eq. (1) for the excess
free-energy per particle. In this case, the bifurcation points are
given analytically by

η(SPT)
n = 1

1 − K(2)
n /a

. (21)

A first conclusion that can be drawn from the results of the
table is that, compared to the second-virial approximation, the
third-virial approximation dramatically decreases the bifurca-
tion packing fractions from the I phase to the orientationally
ordered phases. In general, the third-virial approximation
gives a value for the I-N bifurcation, η

(B3 )
1 ≈ 0.73, which is

quantitatively similar to that for the I phase coexisting with the
liquid-crystal phase, as predicted by simulations [11]. Note
again that simulations predict a very different symmetry (four-
or eight- instead of twofold) for the latter phase: both second-
and third-virial approaches predict a stable uniaxial N phase
beyond the I phase.

The failure of DFT to predict the correct symmetry for the
liquid-crystal phase could have one or two of the following
explanations: (i) the importance of four and higher-order par-
ticle correlations, quantified through the corresponding virial
coefficients, to correctly predict the stability of the T/O phase
(note that, strictly speaking, the theory generates these virial
coefficients from a density expansion; however, the angular
correlations will be poorly represented); (ii) the presence
of strong clustering effects, which a low-order virial theory
would be unable to account for.

In any case, from the sequence η
(α)
1 < η

(α)
4 < η

(α)
3 < η

(α)
2

and the corresponding differences 
η(α)
n ≡ η(α)

n − η
(α)
1 (see

Table I), we can conclude that, within the context of DFT
theory, the T R and T symmetries can be discarded as possible
liquid-crystal symmetries for hard right isosceles triangles:
while both theories give approximately the same value for

η

(α)
4 , the values of 
η

(α)
3 and 
η

(α)
2 are much higher

when the third virial coefficient is introduced (see, however,
Ref. [35]).

IV. MINIMIZATION

A next step beyond the bifurcation analysis consists of
analyzing the equilibrium solutions of the extended density
functional by minimization. An important motivation for this
calculation is to examine the orientational distributions and
search for the possible existence of secondary peaks in h(φ)
at φ = {π/4, π/2, 3π/4} in the interval φ ∈ [0, π ] (which
would point to four- or eightfold orientational symmetry).
Then, we are probing the ability of three-body correlations to
capture this symmetry. First we introduce a parametrization
for the orientational distribution function, which we simply
take as a truncated Fourier expansion:

h(φ) = 1

2π

(
1 +

nmax∑
k=1

hk cos(2kφ)

)
, (22)

We choose nmax = 5, which will be valid sufficiently close to
the bifurcation point. Substituting (22) into Eqs. (12) and (13),
we obtain

�2(φ) = 1

2π

(
1 + 1

2

nmax∑
k=1

h2
k cos(2kφ)

)
, (23)

�3(φ, φ′) = 1

(2π )2

{
1 + 1

4

max(k1+k2 )=nmax∑
(k1,k2 )�=(0,0)

hk1 hk2

×hk1+k2 [cos (2(k1φ + k2φ
′))

+ cos(2(k2φ − (k1 + k2)φ′))

+ cos(2(k2φ
′ − (k1 + k2)φ))]

}
. (24)

After substitution into Eqs. (1) and (10), the total free en-
ergy per particle ϕ = ϕI + 
ϕ is obtained, with ϕI calculated
from (17). The excess part over the isotropic contribution, 
ϕ,
is now


ϕ =
∫ 2π

0
dφ h(φ) ln [2πh(φ)] + 1

6a2

n+m�nmax∑
(n,m)�=(0,0)

hnhm

× hn+m

[
K(3)

−n,m

2
+ K(3)

n,n+m

]
χ1(η)

− 1

4a

(
nmax∑
n �=0

h2
nK(2)

n

)
χ2(η). (25)

It is understood that hn = 1 for n = 0 in the double sum of
Eq. (25). As in Sec. III, the coefficients K(3)

nm are evaluated
numerically using MC integration and Gaussian quadrature
(note that in this case a total of 71 coefficients need to be
evaluated instead of only 9 in the bifurcation analysis). The
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FIG. 2. Distribution functions h(φ) of an N fluid of hard right triangles obtained from the minimization of (i) SPT theory (dashed curve)
and (ii) extended SPT theory (solid curve). Three cases of different densities are shown: (a) η = 0.8437 (SPT) and 0.7500 (extended SPT),
(b) η = 0.8500 (SPT) and 0.7547 (extended SPT), and (c) η = 0.8600 (SPT) and 0.7636 (extended SPT). In each case, densities have been
chosen with the same relative departure from the respective bifurcation densities: 3.0% in (a), 4.2% in (b), and 5.5% (c). In panel (a), SPT
results are plotted for the cases with nmax = 5 and 40 Fourier coefficients; both results cannot be distinguished at the scale of the graph. The
extended SPT theory has been calculated with nmax = 5 Fourier coefficients, as explained in the text.

total free energy is then minimized with respect to the Fourier
amplitudes {hk} (k = 1, . . . , nmax) (nmax = 5) using a Newton-
Raphson procedure.

Figure 2 shows an example of a minimization of the B3-
extended SPT approach for a packing fraction η = 0.75; this
is not far from the I-N bifurcation point at η1 = 0.7325.
The orientational distribution function h(φ) is represented,
together with the result from the second-virial SPT theory of
Ref. [12]. In the latter case, h(φ) was calculated using nmax =
5 and also nmax = 40, which practically gives the exact result
considering that the last Fourier coefficient, h40, obtained from
the minimization has an absolute value of less than 10−7. The
functions of panel (a) (dashed curve) cannot be distinguished
one from the other at the scale of the graph, their mean-square

difference being ε ≡
√∫ 2π

0 dφ(h(φ) − h̃(φ))2 = 5.2 × 10−4.
The packing fraction η = 0.8437 was chosen so as to give the
same relative distance (η − η1)/η1 from the I-N bifurcation
point as the B3-extended theory (solid curve). We can see
that the two theories give a qualitatively similar orientational
structure, with the function from the extended theory be-
ing more weakly oscillatory because of the smaller density.
We also show the functions obtained from the SPT and B3-
extended theories for higher packing fractions corresponding
to the same relative departures from the respective bifurcation
densities. What is important from these calculations is that
neither theory predicts any trace of secondary peaks and, con-
sequently, of tetratic or octatic correlations, in contrast with
the simulation results.

One may wonder which of the following scenarios takes
place at densities above the I-O bifurcation: (i) The O and N
free-energy branches cross each other at some density, or (ii)
the N branch continues to be the lowest one. To investigate
this point, we minimized the SPT functional restricting the set
of Fourier coefficients {hk} to only those with index k = 4 j
[giving a distribution h(φ) with perfect O symmetry]. A free-
energy branch was generated for a density interval starting
at the I-O bifurcation point and up to densities where the
octatic order parameter is Q8 � 0.97 (in this situation, the

truncated Fourier series still gives correct results). We also
calculated the N branch up to densities for which Q2 � 0.97.
As expected, we obtained a “metastable” O phase. However,
the first scenario above can be discarded, as the difference
between the O and N free-energy branches is huge (note that
the latter bifurcates at much lower densities); this conclusion
results from a simple extrapolation to the region where the O
phase is stable. The same situation applies to the TR symme-
try. For the T phase, see [35]. Even though these calculations
were restricted to the SPT theory, we can be quite confident
that the same scenario results from the B3 theory (note that the
latter theory is difficult to implement at high densities due to
the prohibitively large number of three-body kernels projected
on Fourier space that are necessary to describe a phase with
high orientational order).

V. MONTE CARLO SIMULATIONS

Gantapara et al. [11] have presented a detailed Monte
Carlo simulation study of the fluid and crystal phases of hard
right-angled triangles. Their isothermal-isobaric simulations
on systems of 1600 particles point to the existence of a liquid-
crystal phase between the isotropic fluid and the crystal. Based
on the analysis of order parameters and angular correlation
functions, this phase was named rhombic (R) and is character-
ized by the Q8 order parameter. Order parameters are defined,
in terms of the orientational distribution function, as

Qk =
∫ 2π

0
dφ h(φ) cos (kφ). (26)

These order parameters characterize the N (k = 2), T (k = 4),
T R (k = 6), and O (k = 8) symmetries. The term “rhombic”
used in [11] reflects the structure of the stable crystal phase,
Fig. 3(a), which consists of a square lattice of tetramers,
each formed by four triangles in a square configuration [11].
Unfortunately, the information provided by Gantapara et al.
does not allow us to ascertain the true symmetry of the liquid-
crystal phase. A pure octatic phase would be characterized by
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FIG. 3. Possible particle configurations for crystal phases of right
triangles. (a) Square lattice of tetramers. Each tetramer is formed
by four triangles. This is the starting configuration of the expansion
run indicated by open circles in Fig. 4(a). (b) Square lattice of
dimers with ordered orientations. This is the starting configuration
of the expansion run shown in Fig. 6. (c) Square lattice of dimers
with disordered orientations. This is the starting configuration of the
expansion run shown in Fig. 7.

Q8 > 0 and Q2 = Q4 = 0, and by an orientational distribution
function h(φ) with eight equivalent (equal-height) peaks in the
interval [0, 2π ), fulfilling the condition h(φ) = h(φ + π/4).
A focus on the Q8 order parameter in [11] may indicate the
occurrence of octatic symmetry in the intermediate phase
between isotropic and crystal phases.

To further investigate this issue in more detail, and to obtain
a test bed for the DFT results, we performed NV T Monte
Carlo simulations on samples of 576 triangles (some selected
N pT simulations were also performed to investigate some

specific issues). Although our sample sizes are smaller, our
results complement the work of Gantapara et al. in the sense
that they focus on the complete set of order parameters (rather
than only on Q8), and also on the orientational distribution
function.

Several NV T runs were performed, following compres-
sion or expansion starting from configurations with different
symmetries. All runs comprised 2 × 105 MC steps for equili-
bration and 3 × 105 MC steps for averaging. N pT runs were
10 times longer. Figure 4 shows the order parameters Qk , with
k = 4 and 8, for some of the runs. Results for compression and
expansion runs are shown by squares and circles, respectively.
Two compression runs in the NV T ensemble were performed.
The first (open squares) started at a low density, η = 0.536,
in the isotropic fluid region, and continued up to a density
η = 0.812. Along this run all order parameters are low except
Q8, which shows a steady increase with density. This seems
compatible with the results of Gantapara et al. Since their
system size is three times larger, changes in the order parame-
ter near the isotropic-liquid-crystal transition are more abrupt
in their case. At the end of our compression run, values of
the order parameters are Q2 = 0.023 ± 0.003, Q4 = 0.053 ±
0.004, Q6 = 0.023 ± 0.006, and Q8 = 0.785 ± 0.016, point-
ing to octatic symmetry. The orientation distribution function
for a density η = 0.802 is plotted in Fig. 5 using open
squares. The peak heights are not exactly the same, which
may be due to statistical fluctuations or imperfect orientational

FIG. 4. Order parameters Qk (with k = 4 and 8) as a function of packing fraction η, as obtained from NV T and N pT Monte Carlo
simulations on 576 hard right triangles. Compression runs are represented by squares, while expansion runs are represented by circles. Panel
(a) shows the Q4 order parameter, while (b) shows the Q8 order parameter. In both panels the different runs, indicated in the key, are as follows:
filled circles, NV T expansion from an initial crystalline configuration of tetramers at η = 0.8 shown in Fig. 3(a); open circles, NV T expansion
from an initial crystalline configuration of tetramers at η = 0.98; filled squares, NV T compression from an initial crystalline configuration of
tetramers at η = 0.82; open squares, NV T compression from an initial isotropic configuration at η = 0.54; gray squares, N pT compression
from an initial isotropic configuration at low pressure. The isotropic-liquid-crystal coexistence reported by [11] is shown as a shaded region,
bounded by vertical dashed lines corresponding to the transition densities: (a) Coexistence density for isotropic at 0.733. (b) Coexistence
density for liquid-crystal phase at 0.782. Also, the vertical line c is the density of the transition from the liquid-crystal phase to the crystal
phase of tetramers at 0.87 obtained in [11]. The order parameters Q2 and Q6 are not represented as their values are <0.1 for all densities and
runs. Nonvanishing values of Q8 below η = 0.733 in panel (b) might be a finite-size effect. Regions of stability of the I , T , and K phases,
according to [11], are indicated with the corresponding labels. The inset in panel (a) is a zoom of the liquid-crystal–crystal phase transition.
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FIG. 5. Orientational distribution function h(φ) from simulation
for two cases: η = 0.802, obtained by compression from the isotropic
fluid (open squares); and η = 0.8, obtained by equilibration of a
perfectly ordered configuration of tetramers (filled squares).

sampling. To check the compression NV T results, additional
N pT simulations were performed (gray symbols in Fig. 4).
These results confirm the previous findings on the octatic-like
phase obtained by compressing the system from the isotropic
phase.

However, the identification of the liquid-crystal phase as an
octatic phase is challenged by the results from our expansion
runs. These are indicated in Fig. 4 by means of circles. We
focus first on the run starting at η = 0.8 (filled circles) in a
(crystalline) configuration of tetramers, Fig. 3(a). This den-
sity was chosen because the free-energy calculations reported
in Ref. [11] led the authors to conclude that the isotropic
and liquid-crystal phase coexist along the density gap 0.733–
0.782, indicated in Fig. 4 by a shaded region bounded by
vertical lines labeled “a” and “b,” respectively. A quasiperfect
arrangement of tetramers would give Q4 � 1 � Q8. From this
perspective, it is no surprise that the largest order parameter
in this expansion run is Q4. The system finally collapses to
the isotropic phase below η � 0.73. The orientational distri-
bution function along this run (see Fig. 5) confirms that the
equilibrium configuration corresponds to a T phase, with four
equivalent peaks in the interval [0, 2π ), fulfilling the condi-
tion h(φ) = h(φ + π/2). Note that no signs of O symmetry,
in the form of local maxima at π/4, 3π/4, 5π/4 and 7π/4,
are visible. We conclude that the T phase is at least metastable
for the system size used, but our analysis cannot say anything
definite as to the true stable phase in the interval 0.733 < η <

0.782, either O or T (detailed free-energy calculations would
be necessary to settle this question).

Compression and expansion runs were also conducted to
study the transition between liquid-crystal and crystal phases.
In the compression run (filled squares) we started from the
equilibrated point at η = 0.8 of the previous expansion run
(filled circles). The expansion run (open circles) starts from
a perfect crystal of tetramers, Fig. 3(a), at η = 0.98, which,

as shown by the simulations of Gantapara et al. [11], is the
most stable crystal phase. The path ends at a density of η =
0.86. These runs indicate the presence of a first-order phase
transition between T and K (crystal) phases, since the two
branches are not connected smoothly; see the inset (a vertical
line labeled “c” in Fig. 4 at density η = 0.87 indicates the
density of the reportedly continuous transition [11]).

It is difficult to explain the existence of a strict octatic
symmetry for the liquid-crystal phase of hard right triangles
on purely theoretical grounds. The reason is that this symme-
try requires a delicate balance of particle arrangements so as
to give equivalent orientations at multiples of π/4. We are
inclined to think that the global symmetry of the stable phase
should be tetratic, but the problem persists that simulations
indicate two competing liquid-crystal phases, one phase pos-
sessing strong octatic correlations and another phase without
such correlations.

In any case, the results reported up to this point indicate
that the liquid-crystal phase of hard right triangles is not the
standard uniaxial N phase, as predicted by DFT, but rather a
more symmetric phase with tetratic symmetry and possibly
strong octatic correlations. To investigate this result from the
point of view of simulation, we performed additional simula-
tions following two strategies. First, we conducted expansion
runs from the crystal region, starting with particle configura-
tions different from a square lattice of tetramers. We stress
that, according to the free-energy calculations of Gantapara
et al. [11], the crystal of tetramers, Fig. 3(a), is slightly more
stable than the crystal of dimers, Fig. 3(b). The latter has
uniaxial symmetry and can be considered as the crystalline
“precursor” of the uniaxial liquid-crystalline phase predicted
by DFT. An obvious question is, could the uniaxial N phase
be at least metastable with respect to the other, more plausible
symmetries? Figure 6 presents an expansion run from a crystal
phase made of dimers with identical orientations at density
η = 0.92. The crystal transforms continuously into a fluid
phase with the same uniaxial symmetry (all order parameters
are high and in the order Q2 > Q4 > Q6 > Q8). Along the
simulations no indication of even weak tetratic or octatic
correlations could be detected: the orientational distribution
function h(φ) (not shown) only exhibits peaks at 0 and π ,
with local maxima at other angles being completely absent
even at low densities. This is an indication that the uniaxial
N phase predicted by DFT may be metastable with respect to
other more symmetric phases, at least at the scale of our 106

MC-step simulations.
A second run was performed on the same system but now

from a configuration consisting of a square lattice of dimers
with random orientations, Fig. 3(c). The results are shown in
Fig. 7. This configuration was not considered by Gantapara
et al. as a possible candidate for equilibrium crystal phase,
but clearly enjoys a higher entropy than the uniaxial crystal of
dimers and could compete with the crystal of tetramers [note
that the entropy difference per particle between the crystal of
tetramers, Fig. 3(a), and the crystal of orientationally ordered
dimers, Fig. 3(b), is only 0.011k per particle at η = 0.91, the
only density investigated [11]; the extra entropy of a crystal
of orientationally disordered dimers, Fig. 3(c), could easily
overcome the free-energy balance with a crystal of tetramers
in some density range]. The initially crystalline configuration
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FIG. 6. Order parameters Qk (with k = 2, 4, 6, and 8) as a
function of packing fraction η, as obtained from NV T Monte Carlo
simulations on 576 hard right triangles. A single expansion run from
an initial configuration of ordered dimers [shown in Fig. 3(b)] at
η = 0.92 is shown. Meanings of symbols are explained in the key
box. Vertical dashed lines correspond to the transition densities re-
ported in [11]: (a) Coexistence density for isotropic. (b) Coexistence
density for liquid-crystal phase. (c) Density of the transition from the
liquid-crystal phase to the crystal phase of tetramers.

transforms into a fluid tetratic phase at η � 0.86 (see Fig. 7).
An interesting point is that this tetratic phase is slightly dif-
ferent from the one obtained by compression of the isotropic
phase, Fig. 4. Clearly a relatively small system of hard right
triangles is very prone to developing metastable phases with
a structure sensitively dependent on the initial configuration
and the path followed by the simulation.

As a final analysis, we performed N pT simulations at a
fixed value of pressure, βpa = 13.5 (which should be right at
the liquid-crystal density interval [11]), starting from config-
urations with uniaxial, tetratic, and octatic symmetries. The
average densities obtained are given in Table II. Note that
ηoctatic < ηuniaxial < ηtetratic. As a general rule, one expects the
stable phase to have the highest density at fixed pressure. Of
course, from a thermodynamic point of view, this is no proof
that the T phase is more stable than the others, but it certainly
gives a hint. Interestingly the O phase is considerably less
compact than the T phase, with the uniaxial N phase quite
close to the latter.

From the above discussion, we cannot strictly discard the
existence of a purely O phase between the isotropic fluid
and the crystal of a system of hard right-triangle particles.
However, in the region where the O phase could be stable,
a competing phase with clear tetratic symmetry also arises
in simulations (starting from the crystal of tetramers). The T
phase is more plausible than the O phase from the point of
view of particle configurations. Even though the N pT simula-

FIG. 7. Order parameters Qk (with k = 2, 4, 6, and 8) as a
function of packing fraction η, as obtained from NV T Monte Carlo
simulations on 576 hard right triangles. A single expansion run from
an initial configuration of disordered dimers [shown in Fig. 3(c)] at
η = 0.92 is shown. Meanings of symbols are explained in the key
box. Vertical dashed lines correspond to the transition densities re-
ported in [11]: (a) Coexistence density for isotropic. (b) Coexistence
density for liquid-crystal phase. (c) Density of the transition from the
liquid-crystal phase to the crystal phase of tetramers.

tions indicate that the T phase might be more stable, a definite
answer can only come from free-energy calculations.

The different symmetries obtained depend very sensitively
on the starting configuration and the path, either compression
or expansion, followed in the simulation runs. Obviously the
high packing and the two-dimensionality of the system causes
particles to have a low rotational diffusion and to find diffi-
culties in exploring different local symmetries. An additional
effect is the clustering tendencies of particles with right lin-
ear sectors. A recent study relates the formation of clusters
of polyhedral particles with chemical bonding [32]. Local
particle configurations vary in type according to the global
symmetry of a phase. For hard right triangles, several clusters
can be identified; see Fig. 8. In the T phase, we expect a
high fraction of dimers (two triangles or “monomers” in close
contact along their long or short sides, forming groups with
square and triangular shape, respectively) and tetramers [four
close monomers in configurations as shown in Fig. 8(a)], and
a low proportion of dimers forming a rhomboid. The latter are

TABLE II. Average densities of phases at pressure βpa = 13.5
according to N pT simulations. Each 106 MC step-simulation starts
from a different configuration (uniaxial, tetratic, or octatic) obtained
in different NV T runs.

Phase Uniaxial Tetratic Octatic

η 0.820 ± 0.004 0.822 ± 0.004 0.790 ± 0.003
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FIG. 8. Possible two- and four-particle configurations for hard
right triangles. (a) Tetramer. (b) Square dimer. (c) Triangular dimer.
(d) Rhomboidal dimer.

present in the isotropic and octatic phases, which means that
a compression of the isotropic phase will lead to an octatic
texture or frustrated tetratic phase. In turn, a T phase may
also form in the absence of tetramers, giving rise to different
tetratic configurations with a history-dependent structure.

In any case, our simulations seem to rule out the existence
of the uniaxial N phase predicted by the standard SPT-based
DFT or the extended SPT theory including the third virial co-
efficient. The intermediate phase between the isotropic and the
crystal phases most likely exhibits strong tetratic and octatic
correlations, none of which are detected in the DFT calcula-
tions. However, a final answer will have to wait for a more
detailed simulation study including free-energy calculations,
and the stability of a uniaxial N phase in a limited density
interval cannot be ruled out.

VI. CONCLUSIONS

In the present study, we have shown that a SPT-based DFT
incorporating the exact second and third virial coefficients is
not capable of predicting stable T and O liquid-crystal phases
in a fluid of hard right isosceles triangles. In addition, the
orientation distribution function h(φ) of the only stable phase
predicted, namely the uniaxial phase, has no signature of T
or O correlations. However, these symmetries were found in
the MC simulations of Ref. [11] and in our own simulations,
as shown by the orientational distribution function h(φ) and
the order parameters Qk (k = 4, 8) in some range of packing
fractions.

Our results imply that the stable symmetries of the fluid
of hard right triangles are driven by particle correlations in-
volving more than three particles. In view of the practical
impossibility to implement higher-order correlations in a DFT
model, the results of the present article point to the necessity
to formulate some new theoretical description, still within the
framework of DFT, but different from its standard form, to de-
scribe the phase behavior of right isosceles triangles. Indeed,

virtually all theoretical DFT models constructed so far for the
description of uniform phases of two-dimensional or three-
dimensional anisotropic particles are ultimately based on the
knowledge of the second virial coefficient. These models have
been successfully applied to the description of liquid-crystal
symmetries for a vast variety of hard particles, and in general
they correctly predict the symmetry of these phases and their
stability ranges qualitatively, and even quantitatively in some
cases. The present fluid is, to our knowledge, the first example
in which the standard theoretical tool that has been used by the
liquid-crystal community since Onsager formulated his theory
breaks down.

However, there are different avenues to remedy the de-
ficiencies of the standard theory, still within the framework
of DFT. We suggest that clustering (or self-assembling) of
particles may be a fruitful point of view to overcome the
difficulties posed by an approach based on a virial expan-
sion. Particle shape alone is enough to identify particularly
stable local particle configurations, which can be taken as
entities upon which to formulate a DFT model. This approach
would automatically incorporate the important correlations
through the very identification of the possible clusters, the
distribution of which would be obtained in a thermodynam-
ically consistent way, providing a mechanism to explain the
peculiar (four- or eightfold) orientational symmetries of the
liquid-crystal phases of hard right triangles. For example, the
presence of a large amount of dimers and tetramers form-
ing squarelike superparticles and both arranged in a T -like
configurations can lead to monomer axes, depending on their
relative fractions, that orient parallel to four or eight, ap-
proximately equivalent, directors. Consequently, the angular
distribution functions of monomers could approach the sym-
metries h(φ) = h(φ + nπ/4) (n = 1, 2).

It is reasonable to appeal to the clustering effect to explain
why the T and O phases, observed in simulations, cannot
be stabilized by the usual implementation of DFT. A more
realistic model to account for clustering is to treat the fluid
as a polydisperse mixture of clusters of different sizes and
shapes. An internal energy for clusters, in the line of standard
models for associated fluids, should be introduced. A study of
the relation between phase symmetry and particle clustering,
and the formulation of a cluster model, which we believe is a
promising line of research, is left for the future.

To end, we would like to comment on two distinct exten-
sions of the problem. First, our DFT study is restricted only to
uniform phases as by construction these are the liquid-crystal
orientational symmetries that the present DFT can predict.
The study of nonuniform phases can be tackled with a theory
optimized for inhomogeneous density profiles. One of the
promising versions of DFT is that constructed from funda-
mental measure theory (see, for example, Ref. [36]). This
theory was formulated for any hard particle geometry. Even
though the theory is computationally expensive, it should be
possible to fix different crystalline lattices with T symmetry,
for example the ones formed by tetramers or by randomly
oriented dimers, and minimize the functional with respect to
the density profile. The relative stability between different
crystalline phases or between the fluid and the crystal could
then be studied and compared with the predictions of MC
simulations [11].
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Finally, one might wonder about the effect of polydis-
persity in the present system. A perfect nematic phase of
monomers and also a perfect tetratic phase of tetramers under
compression lead to perfect plane tiling at close packing,
with the latter having greater orientational entropy and con-
sequently lower free energy. If polydispersity in the opening
angle is present, it could affect the stability of these two
phases. In particular, the balance between the orientational
and configurational entropy can severely be affected in the
T phase of tetramers. The stability of the crystal phase of
tetramers should be more affected by polydispersity because
polydisperse monomers cannot fit into identical tetrameral

units to form a crystal. However, the effect could be less for
the uniaxial crystal formed by monomers, possibly resulting
in a stable uniaxial N phase at lower densities.
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