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Fluctuations of a swarm of Brownian bees
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The “Brownian bees” model describes an ensemble of N independent branching Brownian particles. When a
particle branches into two particles, the particle farthest from the origin is eliminated so as to keep the number of
particles constant. In the limit of N → ∞, the spatial density of the particles is governed by the solution of a free
boundary problem for a reaction-diffusion equation. At long times the particle density approaches a spherically
symmetric steady-state solution with a compact support. Here, we study fluctuations of the “swarm of bees”
due to the random character of the branching Brownian motion in the limit of large but finite N . We consider a
one-dimensional setting and focus on two fluctuating quantities: the swarm center of mass X (t ) and the swarm
radius �(t ). Linearizing a pertinent Langevin equation around the deterministic steady-state solution, we calculate
the two-time covariances of X (t ) and �(t ). The variance of X (t ) directly follows from the covariance of X (t ),
and it scales as 1/N as to be expected from the law of large numbers. The variance of �(t ) behaves differently:
It exhibits an anomalous scaling (1/N ) ln N . This anomaly appears because all spatial scales, including a narrow
region near the edges of the swarm where only a few particles are present, give a significant contribution to
the variance. We argue that the variance of �(t ) can be obtained from the covariance of �(t ) by introducing a
cutoff at the microscopic time 1/N where the continuum Langevin description breaks down. Our theoretical
predictions are in good agreement with Monte Carlo simulations of the microscopic model. Generalizations to
higher dimensions are briefly discussed.

DOI: 10.1103/PhysRevE.104.054131

I. INTRODUCTION

This work touches on two distinct basic concepts
of nonequilibrium statistical physics: branching Brownian
motion (BBM) and nonequilibrium steady states (NESSs).
BBM—a combination of Brownian motion of particles and
their random branching—was extensively studied in the past
[1,2], and it continues to attract a great deal of attention from
physicists [3–6] and mathematicians.

In its turn, NESSs of ensembles of reacting and diffusing
particles occupy an important niche of nonequilibrium statis-
tical mechanics [7–11]. The NESSs capture in a simple way
different aspects of physics of more complicated dissipative
systems, both living and nonliving.

Here, we study a simple but nontrivial example of a NESS
in a particle-conserving version of branching Brownian mo-
tion (BBM), which is known under the name of “Brownian
bees” [12–14]. The model involves N independent particles
(bees) located in a d-dimensional space. On a small time
interval �t each particle branches into two particles with
probability �t . It also performs, with the complementary
probability 1 − �t , continuous-time Brownian motion with
diffusion constant 1. When a branching event occurs, the par-
ticle which is farthest from the origin is immediately removed,
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so as to keep the number of particles constant at all times. The
NESS of this relatively simple system has some interesting
and nontrivial properties that will be the focus of this paper.

An additional motivation to study the Brownian bees model
is that it is a close relative of a whole family of Brunet-Derrida
N-particle models: branching Brownian models with selec-
tion, the studies of which were initiated in Refs. [15,16]. A
Brunet-Derrida N-particle model consists of a population of
N particles which undergo BBM. When a branching event
occurs, the particle of the lowest fitness is removed. The mod-
els differ among themselves by their fitness function—thus
mimicking different aspects of biological selection—and by
the dimension of space. The original papers [15,16] consid-
ered discrete-time processes, but much of the subsequent work
[17–22], including the studies of the Brownian bees model
[12–14] and its barocentric variant [23,24], has focused on the
continuous-time branching Brownian motion.

Here, we consider the Brownian bees model on the line,
d = 1. It has been rigorously shown in Ref. [12] that, in the
limit of N → ∞, the coarse-grained spatial density u(x, t ) �
0 of the particles, normalized by N , is governed by a deter-
ministic free boundary problem:

∂t u(x, t ) = ∂2
x u(x, t ) + u(x, t ), |x| � �(t ), (1)

u(x, t ) = 0, |x| > �(t ), (2)∫ �(t )

−�(t )
u(x, t )dx = 1. (3)
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u(x, t ) is continuous at |x| = �(t ), and an initial condition
should be specified. As one can see, the compact support
of u(x, t ), at all t > 0, is centered at the origin. Effectively,
there are two absorbing walls, at x = ±�(t ), which move in
synchrony so as to keep the number of particles constant at
all times.

Furthermore, it has been proven in Ref. [13] that, at long
times, the solution of the deterministic problem (1)–(3) ap-
proaches a unique steady state

U (x) =
{1

2
cos x, |x| � �0,

0, |x| > �0,
(4)

where �0 = π/2. Correspondingly, �(t ) approaches �0.
A natural next step is to study fluctuations in the Brown-

ian bees model at large but finite N , caused by the random
character of the elemental processes of the branching Brown-
ian motion. Persistent fluctuations, including large deviations,
of the swarm size �(t ) have been recently considered in
Ref. [14]. Here, we study typical (that is small) Gaussian
fluctuations of the swarm center of mass X (t ) and the swarm
radius �(t ). Our goals in this work are to calculate the steady-
state two-time covariances of X (t ) and �(t ), which we call
gX (τ ) and g�(τ ), respectively. Here, τ is the time between two
measurements of the corresponding quantities in the steady
state. To this end we introduce a pertinent Langevin equa-
tion for the Brownian bees model and linearize it around the
deterministic steady-state solution (4). Solving the linearized
equation, we obtain explicit expressions for small random
deviations of X (t ) and �(t ) from their deterministic stationary
values 0 and �0, respectively. Then we use these solutions to
compute the functions gX (τ ) and g�(τ ).

We find that the covariance gX (τ ) remains finite at τ → 0
and yields the variance of X (t ) which scales as 1/N , as to be
expected from the law of large numbers.

The covariance g�(τ ) behaves markedly differently. At
τ � 1 it exhibits a logarithmic scaling with τ , giving an
unexpected example of a system with 1/ f noise. Furthermore,
g�(τ ) formally diverges logarithmically as τ → 0. As we
argue, the continuum Langevin description of the Brownian
bees breaks down when τ becomes comparable with the mi-
croscopic time of the model, 1/N . Using the microscopic time
as a cutoff, we evaluate, with a logarithmic in N accuracy,
the variance which scales as (1/N ) ln N . This and other the-
oretical predictions are in good agreement with Monte Carlo
simulations of the microscopic model that we performed.

Here is a plan for the remainder of this paper. In Sec. II
we introduce a coarse-grained stochastic formulation of the
problem, based on the Langevin equation for the BBM. In
Sec. III we formulate a linearized version of the problem by
expanding the solution around the (deterministic) steady-state
solution (4). In the same Sec. III we obtain the solution to the
linearized problem at long times. This solution is then used in
Secs. IV and V to calculate the two-time covariances, and then
the variances, of X (t ) and �(t ), respectively. The theoretical
predictions are compared with results of Monte Carlo simula-
tions. We summarize and briefly discuss our results in Sec. VI.
The Appendix includes a brief description of the Monte Carlo
simulation algorithm.

II. LANGEVIN EQUATION

To account for fluctuations resulting from the intrinsic ran-
domness of the elemental processes of the BBM, one must
go beyond the deterministic equation (1). At large N typical
fluctuations are small, and they are captured by the Langevin
equation: a stochastic partial differential equation [25,26]. In
our case the Langevin equation can be written as

∂t u(x, t ) = ∂2
x u(x, t ) + u(x, t ) + R̃(u, x, t ), |x| � �(t ).

(5)
This equation replaces the mean-field equation (1), whereas
Eqs. (2) and (3) remain unchanged. Now the solution u(x, t )
and the size of its support �(t ) are random functions of their
variables. The multiplicative noise term R̃(u, x, t ) comes from
two independent multiplicative noises: the branching noise
R̃b(u, x, t ) and the noise of Brownian motion R̃d (u, x, t ),

R̃(u, x, t ) = R̃b(u, x, t ) + R̃d (u, x, t ),

R̃b(u, x, t ) =
√

u√
N

η(x, t ), (6)

R̃d (u, x, t ) = 1√
N

∂x
[√

2u χ (x, t )
]
, (7)

where η(x, t ) and χ (x, t ) are two independent Gaussian white
noises with zero mean:

〈η(x1, t1)η(x2, t2)〉 = 〈χ (x1, t1)χ (x2, t2)〉
= δ(x1 − x2)δ(t1 − t2). (8)

A few words are in order about the origin of Rb and Rd .
The branching noise Rb can be derived from the exact master
equation for the branching process. For typical fluctuations
in a system of many particles one can use the van Kampen
system size expansion to approximate the master equation
by a Fokker-Planck equation (see, e.g., Refs. [25,26]). In the
equivalent language of the Langevin equation, one obtains
Eq. (6). The Brownian motion noise term Rd is best known
in the context of a large-scale and long-time description of the
dynamics of a lattice gas of independent random walkers (see,
e.g., Ref. [27]).

Differentiating the conservation law (3) with respect to
time and using Eq. (5), we obtain

∂xu[−�(t ), t] − ∂xu[�(t ), t] = 1 +
∫ �(t )

−�(t )
R̃ dx. (9)

We will use this equation instead of Eq. (3) at t > t0, where t0
is the initial time.

One should bear in mind that a Langevin description pro-
vides a macroscopic description of fluctuations in microscopic
models such as the one we are dealing with here. In this
particular case it is accurate only at times much longer than
the typical time between two consecutive branching events,
�t � 1/N , and at distances much larger than the typical
interparticle distance. The latter is of order 1/N in the bulk
of the swarm, but much larger—of order 1/

√
N—at the edges

of the swarm, where the macroscopic density [see Eq. (4)]
approaches zero.
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III. LINEARIZATION AND SOLUTION

A. Linearization

The small parameter 1/
√

N � 1 in the noise term in
Eq. (5) calls for a perturbation expansion. In the leading order
one can simply linearize Eq. (5) around the deterministic
steady state (4). We write

u(x, t ) = U (x) + v(x, t ), |v| � 1, v ∝ 1√
N

, (10)

�(t ) = π

2
+ δ�(t ), |δ�| � 1, δ� ∝ 1√

N
. (11)

The linearized versions of Eqs. (5), (2), and (9) are

∂tv(x, t ) − ∂2
x v(x, t ) − v(x, t ) = R̃(x, t ), (12)

−1

2
δ�(t ) + v

(
±π

2
, t

)
= 0, (13)

∂xv
(
−π

2
, t

)
− ∂xv

(π

2
, t

)
=

∫ π/2

−π/2
R̃(x, t )dx, (14)

where we have denoted R̃(x, t ) ≡ R̃(U (x), x, t ). At the initial
time t = t0 we have∫ π/2

−π/2
v(x, t0)dx = 0. (15)

In the steady-state regime that we are interested in, the results
will depend neither on the initial condition v(x, t0), nor on t0
itself. Therefore, we will set v(x, t0) = 0 and ultimately send
t0 to −∞.

The two conditions in Eq. (13) can be rewritten as

v
(
−π

2
, t

)
= v

(π

2
, t

)
, (16)

δ�(t ) = 2v
(π

2
, t

)
. (17)

Equation (16) allows us to formally extend v and R̃ as func-
tions of x periodically to the whole x axis. As follows from
Eq. (14), the derivative ∂xv experiences jumps at the points
x = π/2 + mπ , m = 0,±1, . . . . Each jump is equal to

∂xv
(π

2
+ 0, t

)
− ∂xv

(π

2
− 0, t

)
=

∫ π/2

−π/2
R̃(x, t )dx. (18)

We can explicitly account for these jumps by modifying the
source term in Eq. (12),

∂tv(x, t ) − ∂2
x v(x, t ) − v(x, t ) = R(x, t ), (19)

where the new source term is R = Rb + Rd ,

Ri(x, t ) = R̃i(x, t )

−
(∫ π/2

−π/2
R̃i(x, t )dx

) ∑
m∈Z

δ
(

x − π

2
− mπ

)
, (20)

and i = b, d . For this R (and also separately for Rb and Rd ) the
condition ∫ π/2+�

−π/2+�

R(x, t )dx = 0 (21)

is obeyed automatically for all �. To avoid uncertainty with
the positions of the delta function, we can shift the interval of

interest [−π/2, π/2] by an infinitely small �. Equation (14)
now reads

∂xv
(
−π

2
+ 0, t

)
− ∂xv

(π

2
+ 0, t

)
= 0. (22)

The linearized problem is now completely defined by Eq. (19),
the conditions (16), (17), and (22), and a zero initial condition
v(x, t0) = 0.

B. Expanding over eigenfunctions

We can solve the linear equation (19) by expanding the so-
lution over the eigenfunctions Vn(x)e−λnt of the linear operator
on the left-hand side of Eq. (19), subject to periodic boundary
conditions (16) and (22). The complete set of eigenfunctions
and eigenvalues is the following,

{1, cos(2nx), sin(2nx)}, λn = 4n2 − 1, (23)

where n = 1, 2, 3, . . . . Let us introduce the Green’s function
G(x, x′; t, t ′) of the problem, that is, the solution of Eq. (19)
with the source term R = δ(x − x′)δ(t − t ′), subject to the
boundary conditions (16) and (22) and a zero initial condition
at t = t ′. The Green’s function has the form

G(x, x′; t, t ′) =
[

et−t ′

π
+ 2

π

∞∑
n=1

cos 2n(x − x′)e−λn (t−t ′ )

]

× θ (t − t ′), (24)

where θ (t − t ′) is the step function. Using the Green’s func-
tion, we can write an explicit expression for v(x, t ) and, by
virtue of Eq. (17), for δ�(t ). Sending t0 to −∞, we arrive at
the following results:

v(x, t ) = 2

π

∞∑
n=1

∫ ∞

0
e−λnt ′

∫ π/2+0

−π/2+0
R(x′, t − t ′)

× cos 2n(x − x′)dx′dt ′, (25)

δ�(t ) = 4

π

∞∑
n=1

(−1)n
∫ ∞

0
e−λnt ′

∫ π/2+0

−π/2+0
R(x, t − t ′)

× cos 2nx dx dt ′. (26)

We will use these expressions in Secs. IV and V to analyze
the fluctuations of the swarm center of mass (c.m.) and of the
swarm radius, respectively.

IV. FLUCTUATIONS OF THE CENTER OF MASS

In the Langevin description, the coordinate of the c.m. of
the system is

X (t ) =
∫ �(t )

−�(t )
xu(x, t )dx =

∫ π/2

−π/2
xv(x, t )dx, (27)

where, to the leading order, we can use our result (25)
for v(x, t ). Let us evaluate the c.m.’s covariance in the
steady state,

gX (τ ) ≡ cov[X (t ), X (t + τ )] = 〈X (0)X (τ )〉. (28)
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Combining Eqs. (25) and (27), we obtain

X (t ) =
∞∑

n=1

(−1)n+1

n
fn(t ),

fn(t ) =
∫ ∞

0
e−λnt ′

∫ π/2+0

−π/2+0
R(x, t − t ′) sin(2nx)dx dt ′. (29)

Plugging X (t ) into Eq. (28) and performing the averaging over
the noises η and χ , we obtain after some algebra

gX (τ ) = 1

N

∑
n, m�1

s(X )
nm , (30)

where

s(X )
nm = −16(n2 + m2) exp [−(4n2 − 1)|τ |]

[4(n + m)2 − 1][4(n − m)2 − 1](2n2 + 2m2 − 1)
.

(31)

Fortunately, the infinite sum over m can be evaluated exactly
using Mathematica. This leaves us with a single infinite sum,

gX (τ ) = 1

N

∞∑
n=1

r (X )
n exp

[−(
4n2 − 1

)|τ |], (32)

where

r (X )
n =

8(64n6 − 32n4 + n2) − 2π (4n2 − 1)2√4n2 − 2 coth
(
π

√
n2 − 1

2

)
(4n2 − 1)2(128n6 − 128n4 + 34n2 − 1)

. (33)

As n → ∞, the coefficient r (X )
n behaves as 1/n4. Therefore,

the infinite sum in Eq. (32) converges for any τ including τ =
0. At long times, |τ | � 1, gX (τ ) decays exponentially with the
decay rate determined by the ground-state eigenvalue λ1 = 3,

gX (|τ | � 1)  1

N
r (X )

1 e−3|τ |, (34)

where

r (X )
1 =

264 − 18
√

2π coth
(

π√
2

)
297

= 0.61321 . . . . (35)

In its turn, the quantity gX (τ = 0) yields the variance of the
c.m. fluctuations,

〈
X 2

〉 = gX (τ = 0) = 1

N

∞∑
n=1

r (X )
n . (36)

Evaluating the infinite sum over n numerically, we obtain

var X (t ) = 〈
X 2

〉 = 0.6346 . . .

N
. (37)

Figure 1 (top panel) compares this theoretical prediction
with the variance of the c.m., measured in Monte Carlo
simulations at different N (see the Appendix for a brief de-
scription of the simulation algorithm). Figure 1 (bottom panel)
compares the theoretically predicted covariance gX (τ )
[Eq. (30)] with the covariance measured in the simulations at
N = 2500 and different τ . An excellent agreement is observed
in both cases.

The 1/N scaling of the variance of the c.m. is to be ex-
pected from the law of large numbers. It also reflects the
fact that large-scale hydrodynamic modes (with wavelengths
comparable to the swarm size) dominate the contribution to
the variance. We will encounter quite a different situation in
the next section, which deals with fluctuations of the swarm
radius �(t ).

V. FLUCTUATIONS OF THE SWARM RADIUS

Averaging Eq. (26) over the noise, we obtain 〈δ�(t )〉 =
0. Therefore, at least to the accuracy of the linear theory
in 1/

√
N , we have 〈�(t )〉 = π/2. The covariance of �(t ) is

given by

g�(τ ) = 〈�(0)�(τ )〉 − 〈�〉2 = 〈δ�(0)δ�(τ )〉. (38)

It is convenient to calculate the contributions to g�(τ ) from
the branching noise and from the noise of Brownian motion
separately. Therefore we define δ� = δ�b + δ�d , where

δ�i(t ) = 4

π

∞∑
n=1

(−1)n
∫ ∞

0
e−λnt ′

∫ π/2+0

−π/2+0
Ri(x, t − t ′)

× cos 2nx dx dt ′ (39)

FIG. 1. Fluctuations of the c.m. X (t ). Top panel: The variance
of X (t ) vs N from Monte Carlo simulations (symbols) and from
theoretical prediction (37) (solid line). Bottom panel: The covari-
ance gX (τ ) vs τ at N = 2500 from simulations (symbols) and from
Eq. (32) (solid line). The dashed line is the small-τ asymptotic
gX (τ ) = 0.6346 . . . − 2.4674 . . . τ .
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and i = b, d . We can write

g�(τ ) = g(b)
� (τ ) + g(d )

� (τ )

= 〈δ�b(0)δ�b(τ )〉 + 〈δ�d (0)δ�d (τ )〉. (40)

Then, using Eq. (39) and performing the averaging, we obtain

g(i)
� (τ ) = 8

π2N

∑
n, m�1

exp [−(4n2 − 1)|τ |]
4(n2 + m2) − 2

s(i)
nm, (41)

where

s(b)
nm = − 1

4(n + m)2 − 1
− 1

4(n − m)2 − 1

+ 2

4n2 − 1
+ 2

4m2 − 1
+ 2 (42)

and

s(d )
nm = 8nm

[
1

4(n + m)2 − 1
− 1

4(n − m)2 − 1

]
. (43)

Again, the infinite sums over m can be evaluated exactly with
Mathematica, leading to the expression

g(i)
� (τ ) = 64

πN

∞∑
n=1

r (�)
n exp

[−(
4n2 − 1

)|τ |], (44)

where

r (�)
n = n2

√
4n2 − 2 coth(π

√
n2 − 1/2)

64n4 − 32n2 + 1
(45)

for both i = b and i = d . Somewhat surprisingly, the branch-
ing noise and the noise of the Brownian motion give identical
contributions to the covariance of �(t ). Therefore,

g�(τ ) = 128

πN

∞∑
n=1

r (�)
n exp

[−(
4n2 − 1

)|τ |]. (46)

For τ �= 0 the infinite sum over n in Eq. (46) converges. In
particular, the long-time decay of g�(τ ) with τ is again purely
exponential, ∼e−3|τ |, with the same ground-state eigenvalue
λ1 = 3 as for the c.m.

But what happens at τ = 0? The large-n asymptotic of r (�)
n

from Eq. (45) is

r (�)
n  1

32n
. (47)

Therefore, at τ = 0 the sum over n in Eq. (46) diverges log-
arithmically at n → ∞, implying an infinite variance. On the
other hand, our Monte Carlo simulations (see below) clearly
show a finite variance of �. How to resolve this paradox?

Let us return to the covariance g�(τ ) and recall that
the Langevin description, which we adopted here as an ap-
proximation to the microscopic model, is applicable only at
“macroscopic” times τ � 1/N . Since the divergence of g�(τ )
as τ → 0 is only logarithmical, we can introduce a cutoff at
τ ∼ 1/N in the hope to obtain the correct result for the vari-
ance of �(t ) with logarithmic accuracy. Therefore, we proceed
in the following way. For 1/N � |τ | � 1 we use the large-n
asymptotic (47) of r (�)

n and replace the summation over n in
Eq. (46) by integration. This gives

g�(τ )  2

N

e|τ |

π
�(0, 4|τ |), (48)

FIG. 2. Fluctuations of the swarm radius �(t ). Top panel: The
variance of �(t ) vs N as measured in Monte Carlo simulations.
Bottom panel: N times the variance of �(t ) vs ln N . Symbols indicate
simulation results. The dashed line shows the function (2/π ) ln N +
a, where a  1.29 ± 0.03 [see the text after Eq. (50)].

where �(0, 4|τ |) is the incomplete gamma function. In fact,
we must use the |τ | � 1 asymptotic of Eq. (48), which
leads us to

g�(τ )  2

πN
ln

1

|τ | ,
1

N
� |τ | � 1. (49)

The logarithmic growth of correlations of �(t ) with a decrease
of the time difference τ is a noticeable phenomenon. In the
frequency space it corresponds to a 1/ f noise. The 1/ f noise
has been observed in a plethora of physical and biological
systems [28], and its appearance in the fluctuations of �(t ) is
unexpected.

Now we can evaluate the variance of �(t ) by introducing
a cutoff in Eq. (49) at τ = 1/N . We obtain, with logarithmic
accuracy,

var �(t )  2

π

ln N

N
. (50)

This result is markedly different from Eq. (37) by the presence
of the large logarithmic factor ln N , and this result is fully
supported by our Monte Carlo simulations of the microscopic
model. Figures 2 and 3 show the simulation results for the
fluctuations of �(t ), and compare them with theoretical pre-
dictions (46), (49), and (50). As one can see from the bottom
panel of Fig. 2, the slope of the straight line, predicted by
Eq. (50), agrees very well with the simulations. To eliminate
the offset, we introduced a single adjustable offset parameter
a. It corresponds to a numerical factor under the logarithm
which is beyond the logarithmic accuracy of Eq. (50).
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FIG. 3. Fluctuations of the swarm radius �(t ). Symbols: The
covariance g�(τ ) measured in the Monte Carlo simulations for
N = 2500. Solid line: Theoretical prediction (46). Dashed line: The
asymptotic (49).

VI. SUMMARY AND DISCUSSION

We studied analytically and numerically fluctuations of
a swarm of Brownian bees in the limit of large but finite
N . We focused on two fluctuating quantities: the c.m. of
the swarm X (t ) and the swarm radius �(t ). We employed a
first-principles Langevin equation for this system, linearized it
around the deterministic steady-state solution, and calculated
the two-time covariances of X (t ) and �(t ). As we found,
the variance of X (t ) behaves “normally”: It scales as 1/N
as to be expected from the law of large numbers. But the
variance of the swarm radius �(t ) exhibits an anomalous
scaling (1/N ) ln N . This anomaly is caused by significant con-
tributions to the variance from all spatial scales: from scales
comparable to the swarm size down to the scale ∼1/

√
N of

a narrow region near the edges of the swarm where only a
few bees are present. We have also shown that, at high but not
too high frequencies, the power spectrum of the fluctuations
of �(t ) exhibits the 1/ f noise. Our Monte Carlo simula-
tions of the microscopic system are in good agreement with
theory.

A generalization to higher dimensions is especially in-
teresting for the fluctuations of the swarm radius �(t ). One
should expect that a small fraction of particles near the
(circular or spherical) swarm boundary give a significant
contribution to the variance of �(t ) in higher dimensions
as well. Furthermore, in all dimensions, the average steady-
state particle flux to the boundary is the same (and equal
to N). Therefore, the deterministic steady-state particle den-
sity u = Ud (x) behaves in a universal way near the swarm
boundary. Does this universality lead to a similar behavior
of the variance of �(t ) vs N in different dimensions? Fig-
ure 4 depicts the results of our Monte Carlo simulations for
d = 2 and 3, where we measured the variance of �(t ) at
different N . For comparison, also shown is the variance of
�(t ) for d = 1. Amazingly, as one can see from the figure,
the slope 2/π of the straight line N var �(t ) vs ln N , pre-
dicted by Eq. (50) for d = 1, holds for d = 2 and 3 as well.
This remarkable coincidence certainly deserves a closer look
at via an extension of our analytical calculations to higher
dimensions.

It is instructive to compare the Brownian bees model
with stochastic models, describing “pulled” reaction fronts

FIG. 4. The variance of the swarm radius �(t ) for d = 1, 2, and
3 as measured in the Monte Carlo simulations. Shown is N times the
variance of �(t ) vs ln N . The symbols indicate simulation results for
d = 1, 2, and 3 (from bottom to top, respectively). The three dashed
lines show the function (2/π ) ln N + ad with the same slope 2/π

and d-dependent offsets: a1 = 1.29 ± 0.03, a2 = 2.42 ± 0.01, and
a3 = 3.35 ± 0.05.

propagating into an unstable empty state. The best known
example of such models is the stochastic Fisher-Kolmogorov-
Petrovsky-Piskunov (F-KPP) equation. The velocity of a
stochastic F-KPP front fluctuates around its mean value, and
the variance of these fluctuations scales as 1/ ln3 N , where
N � 1 is the typical number of particles in the front region
[29]. This F-KPP anomaly is much stronger than the one in
the Brownian bees model. This is because the F-KPP front
velocity fluctuations are solely determined by a small fraction
of particles located at the leading edge of the front [29].

In conclusion, we should remind the reader that the
Langevin equation provides an accurate description only of
typical, small fluctuations of reacting and diffusing systems
of particles. Therefore, our present work is limited to typical
fluctuations of the Brownian bees. It would be very interest-
ing, and challenging, to also study large deviations of X (t )
and �(t ), which correspond to the distribution tails of these
quantities. Large deviations of persistent fluctuations of �(t )
have been recently addressed in Ref. [14] by employing the
optimal fluctuation method which bypasses the Langevin de-
scription.
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APPENDIX: MONTE CARLO SIMULATIONS

We performed continuous-time Monte Carlo simulations
(see, e.g., Ref. [30]) of the microscopic model. The small time
intervals �t between two consecutive binary branching events
were drawn from the exponential distribution with rate param-
eter N . During these time intervals �t the particle positions
were advanced according to the Brownian motion, given by
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the normal distribution N (xi, 2�t ), where xi is the particle’s
initial position, and i = 1, 2, . . . , N .

Next, one particle is chosen randomly, from the uniform
distribution, to be the particle which is about to branch.
The particle farthest from the origin is then relocated to the
position of the chosen particle. This is equivalent to the re-
moval of the farthest particle because of the birth of a “new”

particle. This process can be thought of as relabeling the
particles.

The measurements were performed, after the system
reached a steady state, at fixed time steps δt = 1/N . The
simulation time was chosen to be sufficiently large, so that
the precision of all measurements is at least within 1% with
95% confidence.
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